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Purpose of review

With the advancement of computational approaches and abundance of biomedical data, a broad range of
neurodegenerative disease models have been developed. In this review, we argue that computational
models can be both relevant and useful in neurodegenerative disease research and although the current
established models have limitations in clinical practice, artificial intelligence has the potential to overcome
deficiencies encountered by these models, which in turn can improve our understanding of disease.

Recent findings

In recent years, diverse computational approaches have been used to shed light on different aspects of
neurodegenerative disease models. For example, linear and nonlinear mixed models, self-modeling
regression, differential equation models, and event-based models have been applied to provide a better
understanding of disease progression patterns and biomarker trajectories. Additionally, the Cox-regression
technique, Bayesian network models, and deep-learning-based approaches have been used to predict the
probability of future incidence of disease, whereas nonnegative matrix factorization, nonhierarchical cluster
analysis, hierarchical agglomerative clustering, and deep-learning-based approaches have been employed
to stratify patients based on their disease subtypes. Furthermore, the interpretation of neurodegenerative
disease data is possible through knowledge-based models which use prior knowledge to complement data-
driven analyses. These knowledge-based models can include pathway-centric approaches to establish
pathways perturbed in a given condition, as well as disease-specific knowledge maps, which elucidate the
mechanisms involved in a given disease. Collectively, these established models have revealed high
granular details and insights into neurodegenerative disease models.

Summary

In conjunction with increasingly advanced computational approaches, a wide spectrum of
neurodegenerative disease models, which can be broadly categorized into data-driven and knowledge-
driven, have been developed. We review the state of the art data and knowledge-driven models and
discuss the necessary steps which are vital to bring them into clinical application.
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INTRODUCTION

With the silver tsunami (i.e., an aging population)
sweepingacross theworld,neurodegenerativediseases
(NDDs) are becoming endemic, placing a dispropor-
tionate level of burden on older adults (those aged
65 years or over) [1]. NDDs affect nearly 50 million
people worldwide and roughly 10 million new cases
are reported every year (https://www.who.int/news-
room/fact-sheets/detail/dementia). To prevent the
occurrenceof theseconditions, slowtheirprogression,
and reduce their global socioeconomic impact, a
deeper understanding of the pathophysiology under-
lying these diseases is necessary.
uthor(s). Published by Wolters Kluwer Health, Inc. www.co-neurology.com
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KEY POINTS

� Diverse knowledge and data-driven NDD models have
been developed for various purposes.

� These models are limited in their clinical applications
because of deficiencies with clinical studies.

� Knowledge-driven models can enhance the interpretive
power of empirical, data-driven models by
incorporating relevant background knowledge.

� Artificial intelligence has the potential to overcome
deficiencies with clinical studies and the limited
applicability of certain models by simulating
virtual patients.

Degenerative and cognitive diseases
Understanding the cause of NDDs is challenging
because of the complex nature of these diseases and
the existence of dysregulations at different biologi-
cal scales, ranging from mutations at the genetic
level to structural and functional alterations of the
brain at the clinical level. For this reason, a broad
variety of biomarkers throughout all modalities,
including imaging and nonimaging have been stud-
ied. However, effectively translating these extensive
biomarker modalities into a clinical application
remains a challenging task.

In recent years, computational approaches that
analyze these biomarker modalities have led to a
wide range of models that help to understand NDDs.
Existing models can be placed in two primary cate-
gories namely, data-driven models and knowledge-
driven models. Although data-driven models are
informed directly by patient-level data, knowl-
edge-driven models rely on reasoning over findings
of previously published studies. Here, we highlight
recent advancements of diverse data-driven models
in the context of their applications and describe
knowledge-driven models and their applications
in NDD research. Finally, we propose the use of
artificial intelligence in this field to overcome the
limitations associated with clinical data upon which
such models are built in order to generate new
avenues for better disease comprehension.
Data-driven models

The multifaceted nature of NDDs demands quanti-
fication of a wide variety of biomarkers of all modal-
ity types, including imaging and nonimaging, such
as cerebrospinal fluid samples and omics data. To
translate these biomarker modalities into clinical
application, they can be subjected to computational
approaches independently (unimodal) or in combi-
nation (multimodal). Unimodal-based models
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overlook the complexity of a disease as they do
not consider the interdependence between different
biological modality measurements. Nonetheless, in
NDD research, certain modalities, such as genetic
[2,3] and neuro-imaging [4–6], are well-suited for
unimodal biomarker analysis. Specifically, genetic
biomarkers are used in these analyses as NDDs are
partially driven by genetics [7] and the imaging
modality is used as it can estimate pathological
changes occurring in patients [8]. In contrast, mul-
timodal-based models provide a more comprehen-
sive overview of a disease by integrating a variety of
biomedical and clinical biomarkers.

In the following, we review current develop-
ments in the field of multimodal-based models.
We start with models that provide an overview of
biomarker dynamics in the time course of disease
which can facilitate disease diagnosis and patient
staging and then highlight models which assist in
patient prognosis. Finally, we conclude with models
that are used for patient stratification.
Disease progression monitoring, diagnosing,
and patient staging

Disease progression, or biomarker trajectory, and
the current disease stage can be estimated by two
primary models. The traditional type models the
trajectory of biomarkers based on discrete disease
stages, however, a finite number of stages fail to
capture continuous changes related to disease pro-
gression over time [9–11]. Alternatively, in the con-
temporary type, disease progression is modeled
based on measured biomarkers (e.g., mini mental
state examination) [12] and thus, the disease time
course is regarded as a continuous process. Although
the traditional models were developed by reasoning
over previously published studies, the more contem-
porary ones were developed using diverse computa-
tional approaches. These include linear and
nonlinear mixed models (N/LMMs) [13–15], differ-
ential equation models (DEMs) [15], self-modeling
regression models (SMORs) [16], and event-based
models (EBMs) [17–19].

Although a diverse set of contemporary models
exist, there are trade-offs between the techniques
that have been used to develop them. For example,
an N/LMM model [14] can make an assumption on
the shape of biomarker trajectory (e.g., exponential
curves), whereas a DEM model [15] and SMOR
model [16] can loosen this assumption. In DEMs,
each biomarker is treated independently, yet SMORs
pool data from all available biomarkers to estimate
the dynamics of biomarkers over the course of dis-
ease [20]. In contrast to SMORs and DEMs which
provide continuous biomarker trajectories, EBMs
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provide a discrete description of the biomarkers
dynamics [20,21]. This type of model does not
include any time information between rate of bio-
marker changes, which limits its capability in dis-
ease monitoring [21]. However, in contrast to other
models, EBMs can also address individual deviations
from a generic disease progression model [22].
Patient prognosis

Risk models can provide prognostic information by
predicting the probability and the time of future inci-
dence of disease. Diverse computational approaches
such as the Cox-regression technique [23–25], Bayes-
ian network models [26], and deep-learning-based
approaches [27,28] have been used to establish such
models. There also exists a trade-off between current
implementations of these approaches.

Although in the Cox-regression-based models,
relationships among features are restricted by a
number of assumptions and the causal structure
cannot be modeled, Bayesian networks can model
the underlying causal relationship between predic-
tive risk variables [29

&&

]. This enables Bayesian net-
works to ask ‘what-if’ questions and predict risk at
the individual-level as the effects in Bayesian net-
works are represented by directed arrows and thus,
with any manipulation of the independent variable,
the model can predict its influence on the depen-
dent variable [30].

Furthermore, the prediction accuracies in cur-
rent implementations of Bayesian networks and
deep-learning-based approaches are notably higher
than those for Cox-regression models as the former
approaches are well suited for dealing with high
dimensional data. In Cox-regression and Bayesian
network-based models, feature selection is done
manually or semiautomatically and thus relies upon
prior knowledge from researchers. However,
because deep learning algorithms can automatically
infer features that can help to predict future inci-
dence of disease, they perform better compared with
the Cox-regression and Bayesian network-based
models [31]. Moreover, the current implementation
of deep-learning-based models are capable of accept-
ing any irregular length of data as an input without
preprocessing, in contrast to Cox-regression and
Bayesian network-based models where a preprocess-
ing step is required for handling unequal time-series
and missing values.
Patient stratification

NDDs are highly heterogeneous diseases in terms of
clinical and biological appearance and progression
patterns. As such, stratification of patients based on
1350-7540 Copyright � 2020 The Author(s). Published by Wolters Kluwe
disease subtypes may lead to improved disease man-
agement and the design of better treatments, which
in turn brings us closer to the goal of precision
medicine. To this end, diverse clustering approaches
have been used, such as nonnegative matrix factori-
zation [32], nonhierarchical cluster analysis (e.g., k-
means clustering) [33,34], and hierarchical agglom-
erative clustering [35,36]. Although these methods
can differentiate subtypes of patients, they are gen-
erally not suitable for longitudinal clinical data that
often suffer from missing data or unequal time-
series measurements because of patient dropout.
This is because state-of-the-art distance measure
methods (e.g., Euclidean) are unable to compute
dis/similarity between samples with different longi-
tudinal measurement lengths [37]. Moreover,
Euclidean distance measures often ignore existing
temporal correlations between the measurements.
Recently, de Jong et al. [38

&&

] proposed an autoen-
coder-based method to cluster multivariate time-
series with many missing values. Although the
autoencoder-based model currently only works with
equal length time series, it outperformed the clus-
tering approaches that used state-of-the-art distance
measures as well as those models which used dis-
tance measures specifically designed for unequal
time series, such as Dynamic Time Warping.
Knowledge-based models

Knowledge-based models have been developed in
parallel to data-driven approaches to facilitate the
interpretation of empirical data with background
knowledge. Such models have effectively garnered
novel insights into several disease areas and have also
led to new disease taxonomies. By classifying diseases
through data and knowledge-based models, it is pos-
sible to establish an alternative approach to the cur-
rent paradigm of disease classification by clinical
appearance. This can facilitate the identification of
disease subtypes and associated molecular processes
and thereby, help to establish potential disease bio-
markers and novel therapeutic targets [39].

NDDs are a particularly complex set of diseases,
where short and direct causal links canbe challenging
to discern. However, NDDs have considerable genetic
components and with an abundance of biomedical
omics data generated from high-throughput technol-
ogies, several data-driven approaches can be used to
gain insights on these multifaceted diseases. None-
theless, these approaches tend to lack contextual
information; for instance, the cumulative effect of
several dysregulated genes with slight alterations can
be greater than the effect of a single, highly altered
gene. Conversely, knowledge-based models, such as
pathway-centric approaches, can incorporate prior
r Health, Inc. www.co-neurology.com 251
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knowledge to point at relevant pathways or biologi-
cal processes and possess greater explanatory power
[40]. Thus, by taking into account pathway effects,
pathway-centric approaches consider a condition in
its broader biological context rather than elucidating
specific, individual genes or molecular processes
involved in that condition [41]. In the field of
NDD research, various pathway analyses have
reported significantly enriched pathways in specific
NDDs, such as Alzheimer’s disease [42–44], and Hun-
tington’s disease [45,46], as well as across two or more
NDDs [47–49].

Though various pathway-centric approaches
markedly improve the interpretive power of omics
data, these approaches rely upon canonical pathways
and representing disease context can be challenging
[50]. Moreover, as NDDs tend to be complex and
multifaceted, they may only be partially attributable
to the involvement of a given number of pathways.
As such, elucidating disease-specific mechanisms
may be more appropriate for NDDs as compared with
applying pathway-centric approaches [51

&&

]. Accord-
ingly, disease-specific knowledge maps, resources
which contain mechanisms that are specific to a
particular disease, have been developed and can be
used to build computational models of disease. Nota-
bly, the Disease Maps Project has collected disease
maps for several diseases, including AlzPathway for
Alzheimer’s disease [52] and Parkinson’s disease map
for Parkinson’s disease [53], whereas the Neuro-
MMSig knowledge graph [51

&&

] has collated candi-
date mechanisms forAlzheimer’sdisease,Parkinson’s
disease, and epilepsy.
Outlook and perspectives of using artificial
intelligence in neurodegeneration research:
virtual cohorts for data sharing and trial
simulation

Although a wide spectrum of computational models
has been established, current applications of these
models in clinical practice are limited because of
deficiencies that come with clinical studies, such as
biases toward specific ethnicities, small sample sizes,
data missingness, data heterogeneity, and data pri-
vacy. In the following, we first elaborate on the
inherent challenges in using clinical data, then
outline a promising solution to address these chal-
lenges and conclude with its potential applications
in neurodegeneration research.

Ideally, clinical data should be collected in reg-
ular intervals for all patients. However, only a lim-
ited number of clinical studies have collected
longitudinal measurements. Additionally, because
of inclusion–exclusion criteria that cannot be
avoided or the disproportionate representation of
252 www.co-neurology.com
particular ethnicities due to geographic constraints,
these studies tend to have biases [54]. Furthermore,
most clinical datasets have a relatively small number
of samples (fewer than a thousand patients) and a
large number of missing observations [55–57]. As
such, dealing with these deficiencies generally
demands extensive preprocessing such as imputa-
tion or discarding of variables. Finally, different
clinical studies in equivalent disease contexts usu-
ally do not measure the same clinical outcomes and/
or molecular data. Nonetheless, even if measure-
ments of identical outcomes and/or data are col-
lected across studies, as their study protocols vary,
the data coming from one study is often not inter-
operable (mappable) to data coming from another.
Therefore, clinical data are highly heterogeneous
[58]. Additionally, sharing patient data beyond an
organization’s firewalls is restricted because of legal
and ethical constraints. Consequently, there exist
data ‘silos’ which impede the required analyses and
comparisons of multiple studies which are so vital to
gain comprehensive overviews of a specific disease.

Although a broad range of solutions has been
established to address these deficiencies, each of
these has its own challenges. For example, imputing
missing values can lead to errors and discarding
variables that contain a high proportion of missing
values can result in information loss and biased
conclusions [59]. Similarly, although individual
agreements between data users (e.g., research insti-
tutes) and data owners (e.g., Alzheimer’s disease
neuroimaging initiative) can provide access to the
data, its usage is restricted to certain activities. For
instance, use of the data may not be permitted for
teaching and training purposes.

Such shortcomings with clinical data can be
overcome with artificial intelligence, and machine
learning approaches in particular. These approaches
facilitate simulating a synthetic cohort (i.e., virtual
cohort) which is informed by actual cohort data and
can thus represent the fundamental characteristics of
the real cohort [60]. Although this solution has a long
history in physiological studies [61,62], and clinical
trial simulation [63,64], their application in clinical
studies where the focus is on simulating virtual
patients across biological scales and modalities
(e.g., nonimaging, imaging) is a more recent devel-
opment. Recently, Gootjes-Dreesbach et al. [65

&&

]
have developed a variational autoencoder modular
Bayesian network which simulates heterogeneous
clinical study data as a virtual patient cohort.

Not only do virtual cohorts provide new avenues
toward sharing patient-level data without endanger-
ing the data privacy of real patients, they can also
enable the generation of ‘meta-cohorts’ by combin-
ing the virtual patients obtained from different
Volume 33 � Number 2 � April 2020
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available clinical data in disease-specific contexts
[63]. This ‘meta-cohort’ not only addresses the defi-
ciency of small sample sizes in clinical studies, but
also eliminates their inherent biases (e.g., underrep-
resentation of certain ethnicities). Moreover, virtual
cohorts provide opportunities to conduct counter-
factual or ‘what-if’ scenarios. For example, research-
ers can add a feature which has not been observed in
a specific study (e.g., comorbidity) and investigate
how it influences the disease of interest or what the
distribution of a particular biomarker would be if a
patient’s age shifts a number of years [65

&&

]. Ulti-
mately, virtual cohorts can improve the design of
clinical trials and have the potential to bring us
closer to the goal of precision medicine.
CONCLUSION

We have reviewed a wide range of established NDD
models, from unimodal-based models to multi-
modal-based ones. We have shown that in contrast
to data-driven approaches, knowledge-driven
approaches can provide meaningful contextualiza-
tion and insights into the pathophysiology of dis-
ease. We described the deficiencies and limitations
of currently available clinical studies in the scope of
NDDs and argued the potential of artificial intelli-
gence to overcome these shortcomings so that it is
possible to generate new avenues toward better
comprehending neurodegenerative disease.
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