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Abstract: Several challenges appear in the application of deep learning to genomic data. First, the
dimensionality of input can be orders of magnitude greater than the number of samples, forcing
the model to be prone to overfitting the training dataset. Second, each input variable’s contribution
to the prediction is usually difficult to interpret, owing to multiple nonlinear operations. Third,
genetic data features sometimes have no innate structure. To alleviate these problems, we propose a
modification to Diet Networks by adding element-wise input scaling. The original Diet Networks
concept can considerably reduce the number of parameters of the fully-connected layers by taking the
transposed data matrix as an input to its auxiliary network. The efficacy of the proposed architecture
was evaluated on a binary classification task for lung cancer histology, that is, adenocarcinoma
or squamous cell carcinoma, from a somatic mutation profile. The dataset consisted of 950 cases,
and 5-fold cross-validation was performed for evaluating the model performance. The model
achieved a prediction accuracy of around 80% and showed that our modification markedly stabilized
the learning process. Also, latent representations acquired inside the model allowed us to interpret
the relationship between somatic mutation sites for the prediction.

Keywords: deep learning; Diet Networks; lung cancer; interpretable neural networks

1. Introduction

With the advance of big data in biomedicine, deep learning has achieved state-of-the-art performance
in various fields, including bioinformatics. A large number of analytic pipelines—such as sequence
analysis, protein structure estimation, molecular property or interaction prediction, and biomedical
image analysis—have incorporated deep-learning-based algorithms [1]. One remarkable feature of deep
learning is that it excels at handling raw data in an end-to-end manner, acquiring the essential high-level
features automatically [2]. Thus, the model can learn features meaningful for distinguishing attributes
of samples without relying on feature engineering based on domain knowledge. As human experts do
not always know which feature representation best suits a given task, deep learning can shed light
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on machine learning tasks, particularly those involving complex biological phenomena. Moreover,
its scalability enables it to handle the processing of massive quantities of data [3].

Cancer is a leading cause of death worldwide. Complex intra- and inter-layer interactions between
omics, such as somatic mutation, gene expression, copy number alteration, and deoxyribonucleic acid
(DNA) methylation, influence its biological behavior. One of the main purposes of cancer genome
analysis is to clarify the relationship between genetic variations and phenotypes underlying cancer’s
biology. Currently, genome-wide association studies (GWAS) are the most widely used technique
for analyzing genotype–phenotype associations based on a statistical test to determine the level of
association between a single genetic variant and a phenotype. However, suppose there are epistatic
interactions between genetic variants associated with phenotypes. In that case, the association cannot
be identified through GWAS because it tests each gene locus independently for association with a
phenotype of interest [4]. Such complex compositions also hinder the power of conventional machine
learning techniques by making it difficult to design custom features, which are prerequisites for most
of the algorithms. Therefore, deep learning should be a promising approach to successfully handling
the mapping between genotype and phenotype, leading to the data-driven discovery of the critical
signatures of somatic mutations involved in cancer genesis.

1.1. Current Challenges in Applying Deep Learning to Genomic Data

To the best of our knowledge, there have been only a few studies that utilize deep learning to
analyze the genotype–phenotype association. This is because some fundamental challenges arise when
deep neural networks are applied to identify genetic characteristics associated with cancer phenotypes.

The first obstacle is the substantial imbalance between the number of samples and the number
of features per sample. In other words, the number of genetic features or covariates, which typically
ranges in the millions, sometimes exceeds the number of patients. Under such circumstances, deep
neural networks tend to overfit the training data, failing to generalize well about unseen data. This is
because deep neural networks are usually in an over-parameterized condition, in which a vast number
of free parameters must be optimized by backpropagation. One straightforward solution is to design a
lightweight architecture that employs fewer parameters without sacrificing representational capacity.
Another approach is to use regularization methods—including dropout, early stopping, and weight
decay—that imposes some penalty on the model to reduce its test error but not its training error [5].
Notably, multi-task learning is a special type of regularization [6]. Some researchers integrate auxiliary
tasks, which can leverage additional information, including domain knowledge or self-supervision
based on unlabeled data, as implicit regularization methods [7–9].

Second, deep neural networks are most often treated as a black-box function, and it is difficult to
provide a human-understandable interpretation of its prediction. In particular, many researchers in the
field of biomedicine are interested more in the biological insights, such as genetic variants associated
with a cancer phenotype, than in the model accuracy. Therefore, difficulty in the interpretability of a
deep learning model can be a major drawback. A straightforward approach for interpreting a model’s
behavior is to systematically vary each feature of the input and observe how the output changes. A
more computationally tractable method utilizes the derivative or gradient, observing the sensitivity to
small perturbations as an indicator of the importance of the input feature [10,11]. Other algorithms,
such as Local Interpretable Model-agnostic Explanations, create a linear approximation of any classifier
or regressor for a local neighborhood of given input [12]. Moreover, embedding techniques can
provide insights into how the model captures each input feature in a particular context by distributed
representation, reflecting the semantic relationship between variables [13,14].

The last problem to be addressed here is the availability of innate structure in the genetic
data features. When DNA base sequences are given as input, deep learning architectures such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs) can predict some
functional activities based on the sequential information [15–19]. However, there are some types of
biological data for which no spatial or sequential structure can be objectively defined. For example,
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when data for a somatic mutation such as single-nucleotide variants (SNVs) are acquired through
genotyping techniques, it is difficult to assign any meaningful elemental arrangement to the array
representing the correspondence between genomic position and the presence of mutations. One unique
approach for alleviating this problem is transforming non-image genomic data into image form, thereby
integrating the advantage of CNNs [20]. However, the arbitrary transforming of genomic data into
images can itself be regarded as a feature engineering, lacking a strong rationale for its optimal
formulation. Therefore, the naive implementation of a multilayer perceptron (MLP) consisting of
fully-connected layers has been used as the first choice. Still, this approach is problematic because the
number of free parameters in the first layer, which is the product of the number of input features and
the number of hidden units, can be quite large.

1.2. Related Work

To conduct genotype–phenotype association studies using a deep-learning-based approach,
dimensionality reduction (including auto-encoders) or preselection is generally applied to reduce the
number of effective input variables. However, dimensionality reduction or preselection can overlook
variables that have a small effect. Also, the impact of the individual input variable on the prediction
gets more challenging to measure due to the abstraction through these pre-processing techniques.
Recently, Romero et al. proposed the Diet Networks architecture to reduce the number of free parameters
to be learned [21]. By exploiting the transposed data matrix (which is similar to considering features
as samples and vice versa) for auxiliary networks, it approximates a part of model parameters without
keeping gradient information, thus mitigating computational loads. Diet Networks consist of layers
that are fully-connected, which enables to handle raw genomic data without any assumption regarding
their innate structure. Nevertheless, despite the well-formulated learning framework of Diet Networks,
it might lose the capacity to learn the meaningful relationship between input features and given labels,
particularly when the pattern of variables in the transposed data matrix is limited.

1.3. Our Contributions

Given the challenges above of deep learning in the field of bioinformatics, we modified the
original Diet Networks concept by adding element-wise input scaling (EIS). The core of our modification
is to relax the formulation of Diet Networks by introducing a small number of learnable parameters
that can be optimized by usual backpropagation. Hence, the dependency on the transposed data
matrix should be mitigated to improve the learning capacity of the model. To investigate the practical
performance of the proposed method compared with other configurations of Diet Networks and MLP
with the same architecture, we defined a simple task—predicting the histological types of lung cancer
from somatic mutations (i.e., SNVs, insertions and deletions). Notably, the introduction of EIS led to an
apparent effect that helped stabilize the model in the training process under our experimental setting.
Based on the best configuration, the prediction accuracy of Diet Networks with EIS reached at around
80%, which was the same level as the MLP. Our formulation of the task also allowed us to observe each
input variable’s internal representation from the trained model parameterization. Interestingly, the
internal representations were highly compressed into a narrow manifold. Then, the prediction capacity
of the model was approximated by the two-dimensional (2D) subspace spanned by the first and second
principal components (PCs). Finally, we confirmed that PC scores, according to a particular axis, can
be interpreted as an indicator of each somatic mutation site’s relevance to the histological types.

2. Materials and Methods

2.1. Data Collection

Information regarding lung cancer histology and somatic mutations was downloaded from
the Pan-Lung Cancer dataset [22], which is publicly available at cBioPortal (http://cbioportal.org).
From among the 1114 patients in the dataset, we selected 954 patients with clinical information,
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including 481 with lung adenocarcinoma (LUAD) and 473 with lung squamous cell carcinoma (LUSC).
To obtain the equal size of five splits, the last four cases were excluded from the dataset, resulting in
final population size of 950 patients. As a result, each split has the same number of patient (n = 190)
for the subsequent 5-fold cross-validation. Two histological types (LUAD and LUSC) were used as a
binary class label for the prediction task. As all the data analyzed in the present study are in the public
domain, ethical approval was not required.

2.2. Preprocessing of Somatic Mutation Data

A total of 17,961 unique gene symbols were identified from the dataset. The preprocessing
pipeline was applied as follows. First, the number of somatic mutations—such as SNVs, insertions,
and deletions–was counted for each gene symbol. Note that we did not consider genome structural
variants such as copy number alterations and fusing genes. We also did not count somatic alterations
that occurred at silent or spliced regions of the genome, as it can exert minimum biological impact.
Then, the genes were arranged in order by mutation count in the concatenated data matrix along with
the samples. Lastly, values associated with the genes were binarized according to the presence of
any somatic mutation. If a gene had a positive mutation count, a value of 1 was assigned, and 0 was
assigned otherwise.

2.3. Proposed Methods

In this study, we aimed to identify improved configurations and modifications for the original
Diet Networks concept [21] from the viewpoint of the model’s learning ability. Here, we first review
the original Diet Networks concept and then describe our contributions. The source code and the data
employed in this work are publicly available on GitHub (https://github.com/Kaz-K/diet-networks).

2.3.1. Overview of Diet Networks

Suppose that there is a substantial imbalance between the number of samples N and the number
of features Nd (N � Nd). The Diet Networks concept aims to reduce the number of parameters in
a fully-connected neural network given a data matrix X ∈ RN×Nd with N samples and Nd features.
It consists of three components: one basic network F and two auxiliary networks Ge, Gr (Figure 1).
Each component is built on fully-connected layers, a structure that can be versatile and effective for
uncovering complex genotype–phenotype patterns [23]. For simplicity, we consider a particular case in
which all the networks are three-layered MLPs. Given an input matrix X, the basic network computes
corresponding hidden layer H ∈ RN×Nh via an encoding part of the network fe, and then outputs
Nc-class classification Ŷ ∈ RN×Nc through a discriminative part fd. Note that each network consists
of a linear transformation and a nonlinear activation function. Optionally, the basic network has a
reconstruction path fr to reconstruct the input X̂ ∈ RN×Nd , which is bifurcated from the hidden layer.
Thus, the formulation of the basic network can be described as follows:

Ŷ = fd(H), X̂ = fr(H), H = fe(X). (1)

Let We and Wr be affine transformations of fe and fr, respectively. Given the data matrix X ∈
RN×Nd and corresponding hidden layer H ∈ RN×Nh , the size of We and WT

r will be Nd×Nh. Therefore,
the dimensionality of these matrices can grow linearly with that of the input data, a phenomenon
known as a parameter explosion [21]; this causes difficulties in scaling neural networks for handling
samples with a very large number of attributes. Based on these observations, Romero et al. refer to We

and Wr as a fat hidden layer and a fat reconstruction layer, respectively [21].

https://github.com/Kaz-K/diet-networks
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Figure 1. Overview of network architectures investigated in the present study. (a) Multilayer perceptron
(MLP) consists of three-layered fully-connected networks; its overall architecture is the same as that
of the basic network of Diet Networks. (b) The original Diet Networks concept approximates two
fat layers, We and Wr (only We is shown here), by the auxiliary networks taking the transposed data
matrix as their input. (c) Our modification to Diet Networks. Applying element-wise input scaling (EIS)
provides a learnable vector ue to the input, which is directly optimized through backpropagation of
gradients from the output ŷ to the input x. On the other hand, We is estimated by the auxiliary network.

Two auxiliary networks are introduced to alleviate parameter explosions in the basic network.
These auxiliary networks take a transposed data matrix XT ∈ RNd×N as input. Then, the corresponding
fat parameters are calculated by the auxiliary networks as follows:

We = Ge(XT), Wr = Gr(XT). (2)

Note that now the weights of fat layers are obtained as the outputs of these auxiliary networks.
Then, computational loads can be drastically reduced because gradient information for each matrix
weight does not need to be kept during the model training. Also, this estimation is based on the
assumption that each variable’s feature may be associated with the pattern of values taken across the
patients. Therefore, it doesn’t need to be a transposed counterpart to the basic network. In other words,
any pattern of values from the same data distribution can also be useful.

Finally, the overall model is trained by minimizing the following objective function:

L = H(Ŷ , Y) + γ||X̂ − X||22, (3)

where H indicates a cross-entropy function and γ is a hyperparameter to balance classification loss
and reconstruction loss.

2.3.2. Element-Wise Input Scaling for Neural Networks

The original Diet Networks concept is well-formulated for handling the parameter explosion
problem; however, the learning capacity could be heavily dependent on the transposed data matrix.
There is no room to directly optimize the weights of the first affine layer by backpropagation, which is a
standard learning algorithm for deep learning. Therefore, if the pattern of values inside the transposed
data matrix does not have sufficient variation for a given task, the representation ability of the model
might be rigorous, failing to capture the data’s characteristics enough for the prediction. Thus, we
aimed to relax the formulation by assigning an additional degree of freedom to the networks without
significantly increasing the parameters.
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We assigned learnable variable-wise scalars as EIS by imposing a diagonal metric on the input
space, which is represented as a diagonal matrix, Ue ∈ RNd×Nd . If sparsity is encouraged using a
proper norm (e.g., L1) on the scale factors, feature selection can also be achieved in the formulation.
Similarly, we also added a diagonal matrix Ur ∈ RNd×Nd , which is expected to compensate for the
representative capacity of Wr. As a whole, the formulation of Diet Networks with EIS can be presented
as follows:

Ŷ = fd(H), X̂ = sigmoid(HWrUr), H = relu(XUeWe). (4)

Note that the optimization processes for the diagonal matrices, Ue and Ur, and affine matrices,
We and Wr, are quite different. As shown in Figure 1, the former diagonal matrices are optimized
by backpropagation through the gradient from the output Ŷ to the input X̂, which is in the usual
manner of deep learning models. The latter affine matrices are estimated by the auxiliary networks in
the same way as the original implementation without holding gradient information to alleviate the
computational burden. Since the diagonal matrix has only Nd effective parameters to be learned, we
consider that the total computational load does not increase significantly.

We also extended the objective function by adding an L1 penalty to the scale factors as follows:

L = H(Ŷ , Y) + γ||X̂ − X||22 + δ||Ue||1, (5)

where γ and δ are weights for balancing the importance of the terms.
In addition to its use with Diet Networks, EIS can be applied to MLP as well. Hereinafter, this

modified MLP architecture is referred to as MLP with EIS.

2.3.3. Implementations of Neural Networks

For comparison, we implemented four types of fully-connected neural networks: MLP, MLP with
EIS, Diet Networks, and Diet Networks with EIS. As the MLP architecture is the same as that of the
basic network of Diet Networks, we will use the same notation for describing the structure of the
MLP. All networks shared a basic network consisting of an input layer of Nd nodes, a hidden layer of
Nh nodes, and Nc output nodes for the given classification task. The two auxiliary networks of Diet
Networks were designed with an input layer of N nodes, a hidden layer of Nj nodes, and an output
layer of Nh nodes.

2.4. Analysis of Hidden Representations

Let xi be one data sample, which is given as the ith row of the data matrix X. The corresponding
hidden representation hi can be regarded as the ith column of We in the MLP and Diet Networks.
From the same point of view, the ith column of UeWe can be taken as the ith hidden representation
hi in Diet Networks with EIS. This simplification can be made because the data matrix is binarized,
containing only 0 s and 1 s (see Section 2.2). We visualized the distribution of hidden representations
of somatic mutations acquired in each neural network to observe how each somatic mutation was
embedded and contributed to the overall output. A t-distributed stochastic neighbor embedding
(t-SNE) projection [24,25] and PCA plotting were performed for the 2D visualization.

2.5. Performance Evaluation

The study dataset (n = 950) was split into five groups. For each split of 190 cases, one group was
taken as a validation dataset (n = 190), and the remaining four groups were used as a training dataset
(n = 760) for the model. In each epoch of training, the accuracy of the histology’s binary classification
was evaluated using the validation dataset, and the accuracy score was retained. After repeating this
procedure five times (5-fold cross-validation), the accuracy for a particular period was gathered for all
procedures, and the mean and standard deviation were computed for each model configuration.



Biomolecules 2020, 10, 1249 7 of 16

3. Results

3.1. Experimental Setup

All neural networks (i.e., MLP, MLP with EIS, Diet Networks, and Diet Networks with EIS) were
implemented using Python 3.7 with PyTorch library 1.2.0 [26] on an NVIDIA Tesla V100 graphics
processing unit with CUDA 10.0. According to the dataset and the binary classification task, basic
conditions were as follows: N = 950, Nd = 17, 961, and Nc = 2. Adam optimization [27] was used with
initial learning rates of 5× 10−3. A weight decay of 5× 10−4 was applied. The other hyperparameters
were empirically determined as follows: Nh = 128, and Nj = 256; the batch size was 100, and the
maximum number of epochs was 5000. Note that the transposed matrix XT ∈ R17,961×950 was fixed
during training, whereas an input matrix for each iteration was split according to the batch size to be a
size of 100× 17, 961. The magnitudes of γ and δ were tuned in the patterns of {0.001, 0.01, 0.1} and
{0.0001, 0.001, 0.01}, respectively. In the condition without the reconstruction path, the numbers of
parameters of each network architecture (i.e., parameters of fe and fd in MLPs, and those of fe, fd, and
Ge for Diet Networks) are shown in Table 1. Note that the increase in the number of parameters of Diet
Networks with EIS (Baseline) is small compared to that of Diet Networks (Baseline).

Table 1. Number of learnable parameters of each network architecture.

Architecture Number of Parameters

MLP (Baseline) 2,299,394
MLP + EIS (Baseline) 2,317,355
Diet Networks (Baseline) 227,970
Diet Networks + EIS (Baseline) 245,931

3.2. Evaluation of Classification Accuracy

The classification accuracy of MLP, MLP with EIS, Diet Networks, and Diet Networks with EIS
using various hyperparameter settings is presented in Table 2. Mean accuracy with standard deviation
was calculated during the period between epochs 400 and 500. “Baseline” indicates that both γ and
δ were set to 0. The weight for the reconstruction error γ was varied, and the value of 0.1 exhibited
the best accuracy (0.78± 0.05) for Diet Networks (marked in the table with an asterisk). Similarly, a γ

value of 0.1 provided the highest accuracy (0.79± 0.02) for Diet Networks with EIS (marked with a
double asterisk). Positive values of δ to encourage the sparsity of EIS did not improve the classification
accuracy. The best configurations for both MLP (marked with a dagger) and MLP with EIS (marked
with a double dagger) are also indicated in Table 2.

3.3. Observation of Learning Process

The training curves of each model architecture under the best configuration were evaluated. For
these models, Figure 2 displays the mean with the standard deviation of validation accuracy during
the shorter training process between epochs 1 and 500, while Figure 3 displays the more extended
period between epochs 1 and 5000. These observations show that MLP (Baseline), MLP with EIS
(Baseline), and Diet Networks with EIS (γ = 0.1) achieved relatively stable training processes. On
the other hand, the training curve of Diet Networks (γ = 0.1) was unstable right after the start of the
training, which can be seen as relatively large variances in Figure 2c. Especially after around epoch
1000, the prediction performance markedly degraded and eventually dropped to near the chance rate
(Figure 3c). The same unstable training trend was reproduced for all configurations of Diet Networks
without EIS, and the addition of EIS could improve the stability of the learning process for each (see
the difference in standard deviations between model configurations in Table 2).
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Table 2. Classification accuracy on the validation dataset. *, **, †, ‡ indicate the best configurations for
each network architecture.

Configuration Accuracy ± Standard Deviation

Diet Networks (Baseline) 0.78 ± 0.06
Diet Networks (γ = 0.1) * 0.78 ± 0.05
Diet Networks (γ = 0.01) 0.67 ± 0.16
Diet Networks (γ = 0.001) 0.73 ± 0.17
Diet Networks + EIS (Baseline) 0.77 ± 0.04
Diet Networks + EIS (γ = 0.1) ** 0.79 ± 0.02
Diet Networks + EIS (γ = 0.01) 0.77 ± 0.03
Diet Networks + EIS (γ = 0.001) 0.78 ± 0.02
Diet Networks + EIS (δ = 0.01) 0.76 ± 0.06
Diet Networks + EIS (δ = 0.001) 0.78 ± 0.03
Diet Networks + EIS (δ = 0.0001) 0.76 ± 0.03
Diet Networks + EIS (δ = 0.001, γ = 0.1) 0.76 ± 0.03
Diet Networks + EIS (δ = 0.001, γ = 0.01) 0.75 ± 0.03
Diet Networks + EIS (δ = 0.001, γ = 0.001) 0.75 ± 0.04
MLP (Baseline) † 0.82 ± 0.04
MLP + EIS (Baseline) ‡ 0.77 ± 0.03
MLP + EIS (δ = 0.01) 0.74 ± 0.02
MLP + EIS (δ = 0.001) 0.75 ± 0.03
MLP + EIS (δ = 0.0001) 0.76 ± 0.04

Figure 2. Training curve showing validation accuracy for each model during a short period between
epochs 1 and 500: (a) multilayer perceptron (MLP) (baseline), (b) MLP with element-wise input
scaling (EIS) (baseline), (c) Diet Networks (γ = 0.1), and (d) Diet Networks with EIS (γ = 0.1).
Note that a relatively broad range of variance appeared in the training curve of Diet Networks
(γ = 0.1). Vertical axis and horizontal axis indicate accuracy mean ± standard deviation and number
of epochs, respectively.
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Figure 3. Training curve showing validation accuracy for each model during a long period between
epochs 1 and 5000: (a) multilayer perceptron (MLP) (baseline), (b) MLP with element-wise input
scaling (EIS) (baseline), (c) Diet Networks (γ = 0.1), and (d) Diet Networks with EIS (γ = 0.1).
Note that the classification accuracy of Diet Networks gradually dropped to around 0.5 as training
proceeded. Vertical axis and horizontal axis indicate accuracy mean ± standard deviation and number
of epochs, respectively.

3.4. Distribution of Hidden Representations

The hidden representations of these four types of model architecture based on the obtained
configurations were evaluated by t-SNE projection and PCA plotting in 2D space. For each architecture,
trained models in the first split in the 5-fold cross-validation procedure were evaluated at epoch
500. Further, to interpret the plots, we evaluated statistically significant (p < 0.05) frequent somatic
mutations for each histology by using the t-test, and classified each gene into two groups (Table 3):
LUAD-dominant and LUSC-dominant. For example, the LUAD-dominant group includes genes with
somatic mutations that occurred statistically frequently in adenocarcinoma histology. In this manner, a
total of 482 genes were classified as LUSC-dominant, and 540 as LUAD-dominant. In 2D plots of the
hidden representations (Figure 4), each mutation site is colored according to these groups. Notably, the
directional preference of a cluster can be understood as the preference of each gene for each histology.

3.5. PCA Approximation

As can be seen in the PCA plots in Figure 4, there is a directional preference of hidden
representations, which implies that embedded variables are aligned on a narrow manifold. We
approximated each hidden representation hi based on the linear combination of PCs as follows:

hi ≈ ∑
k∈K

sk × PCk, (6)

where sk is the k-th PC score of hi for the k-th principal component PCk and K is a set of indices of
PCs. Here, we compared three patterns of indices: K ∈ {(1), (2), (1, 2)}.
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Table 3. Ten most frequent dominant somatic mutations for each histology.

(a) Lung squamous cell carcinoma (LUSC)-dominant.

Gene Symbol p-Value

TP53 8.1 ×10−23

SYNE1 1.1 ×10−14

TTN 1.5 ×10−11

PTEN 1.7 ×10−9

NFE2L2 3.1 ×10−9

KMT2D 6.1 ×10−9

CDKN2A 8.9 ×10−7

LRRK2 4.1 ×10−5

PHC3 7.0 ×10−5

ATP10A 1.1 ×10−4

(b) Lung adenocarcinoma (LUAD)-dominant.

Gene Symbol p-Value

KRAS 6.0 ×10−32

STK11 3.6 ×10−12

EGFR 2.6 ×10−10

PTPRD 1.5 ×10−6

SNTG1 9.0 ×10−6

RP1L1 1.1 ×10−5

NID1 2.5 ×10−5

LPPR4 3.0 ×10−5

SETBP1 3.7 ×10−5

FRMPD4 6.9 ×10−5

Using this approximation, we evaluated validation accuracy by applying the same 5-fold
cross-validation (Table 4). Suppose an approximated model can reproduce the same level of prediction
accuracy with the non-approximated one. In that case, we can consider that the relationship between
hidden representations in the decomposed subspace is representative enough for the model output.
Interestingly, the 2D PCA approximation (K = (1, 2)) of Diet Networks with EIS produced an accuracy
of 0.80± 0.02, which was very similar to the non-approximated result of 0.79± 0.02 (see the row
indicated by the double asterisk in Table 2). The same tendency was also confirmed in MLP (Baseline)
and MLP with EIS (Baseline), while only the approximated Diet Networks (γ = 0.1) was unable to
achieve the original level of prediction accuracy, showing a performance drop from 0.78± 0.05 to
0.67± 0.11. Therefore, we can consider that the 2D PCA plot of the approximated Diet Networks with
EIS (γ = 0.1) represented a significant relationship between variables for the model output (Figure 4h).
Note that the 2D relationship between gene mutations can be easily understood using visualization.
We also show the same PCA plots with some gene symbols in (Figure 5).

Table 4. Validation accuracy based on the various principal component analysis (PCA) approximations
of each network architecture.

Approximation K = (1) K = (2) K = (1, 2)

MLP (Baseline) 0.81 ± 0.04 0.52 ± 0.04 0.81 ± 0.04
MLP + EIS (Baseline) 0.76 ± 0.01 0.46 ± 0.04 0.76 ± 0.02
Diet Networks (γ = 0.1) 0.66 ± 0.19 0.48 ± 0.05 0.67 ± 0.11
Diet Networks + EIS (γ = 0.1) 0.56 ± 0.12 0.66 ± 0.13 0.80 ± 0.02

Moreover, we investigated the dominant PC for the model output by comparing the classification
accuracy between K = (1) and K = (2) based on Diet Networks with EIS (γ = 0.1). In this
particular case, the second PC can be more representative for the preference of each gene because the
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approximation by K = (2) produced a higher accuracy (0.66± 0.13) than that of K = (1) (0.56± 0.12).
This demonstrates that each feature’s importance can be estimated by the corresponding PC score for
PC2. Therefore, the positive and negative directions of PC2 can be regarded as preferences for LUSC
and LUAD, respectively. The PC scores for somatic mutations with large positive or negative values
are listed in Table 5.

Figure 4. Distribution of hidden representations: (a) t-distributed stochastic neighbor embedding
(t-SNE) projection for multilayer perceptron (MLP) (baseline), (b) principal component analysis (PCA)
plot for MLP (baseline), (c) t-SNE projection for MLP with element-wise input scaling (EIS) (baseline),
(d) PCA plot for MLP with EIS (baseline), (e) t-SNE projection for Diet Networks (γ = 0.1), (f) PCA plot
for Diet Networks (γ = 0.1), (g) t-SNE projection for Diet Networks with EIS (γ = 0.1), and (h) PCA
plot for Diet Networks with EIS (γ = 0.1). Horizontal axis and vertical axis of PCA plots indicate the
first and second principal components, respectively. Lung adenocarcinoma (LUAD)-dominant genes
and lung squamous cell carcinoma (LUSC)-dominant genes are colored red and blue, respectively.
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Table 5. Ten most frequent somatic mutations having (a) positive or (b) negative principal component
(PC) scores for the second principal component.

(a) Positive PC scores.

Gene Symbol PC Score

SYNE1 6.49
TP53 5.95

CUBN 5.12
MUC5B 4.06
PCDH15 4.03

TTN 3.69
TPTE 3.65

NFE2L2 3.55
TMEM132D 3.40

LRRK2 3.19

(b) Negative PC scores.

Gene Symbol PC Score

EGFR −4.73
KRAS −4.29
NID1 −4.17

GUCY2F −3.84
ROBO2 −3.11
STK11 −3.07

FRMPD4 −2.94
PTPRD −2.57
SETD2 −2.49

SIPA1L2 −2.31

Note the similarities and differences between the lists of genes in Tables 3 and 5. While the
two lists were not entirely consistent, there was a considerable overlap between them. For example,
LUSC-dominant genes, such as TP53, TTN, NFE2L2, and LRRK2, and LUAD-dominant genes, such as
KRAS, STK11, EGFR, PTPRD, NID1, and FRMPD4, were also shown in the list of positive and negative
PC scores, respectively, in Table 5. Other genes were not shared between these lists, implying that each
measure was weighted differently for individual genes.

Figure 5. Principal component analysis (PCA) plots of hidden representations with names of genes for
Diet Networks with element-wise input scaling (EIS) (γ = 0.1). Horizontal axis and vertical axis indicate
the first and second principal components, respectively. Lung adenocarcinoma (LUAD)-dominant
genes and lung squamous cell carcinoma (LUSC)-dominant genes are colored red and blue, respectively.
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4. Discussion

One remarkable consequence obtained by adding EIS was the stabilized training process of Diet
Networks (Figure 3), which maintained the same level of classification accuracy as MLPs with the
same architecture (Table 2). The stability of the training process of the deep learning model is quite
important. If the learning curve shows oscillation, it means that the model is not converged to the
optimal solution. This benefit may owe to the fact that EIS provides the network with an additional
degree of freedom, particularly for Diet Networks. Because the original Diet Networks concept does
not allow direct propagation of gradients to fat layers, the representation capacity tightly depends
on the fixed pattern of values in the dataset as given by the transposed data matrix. Therefore, when
the variation of values in the transposed data matrix is not enough, it can be challenging to capture
meaningful hidden representations for a particular task, impairing the learning capacity of the model,
as shown in (Figure 3c). Because the number of parameters of Diet Networks with EIS is still much
smaller than that of MLPs (Table 1), this empirical technique to add EIS can be useful in expanding the
application of Diet Networks to other machine learning tasks. This perspective may be particularly
important in the field of biomedicine since a discordance between the number of samples and the high
dimensionality of features per sample is common when handling genetic data.

We also investigated the interpretability of the models by using PCA approximations.
Interpretability is the ability to provide the meaning in a manner understandable to a human [28].
Providing an interpretable view into how the model works can be more important than a simple binary
prediction. Identifying specific factors that influence the phenomenon can contribute to new treatments
and more precise diagnoses in the field of biomedicine. In our experiment, the 2D PCA approximation
reproduces the predictive performance of Diet Networks with EIS at a rate of nearly 100% (Table 4).
The overall performance was also sufficiently high (0.80± 0.02) under the approximation. This ensured
that 2D subspaces spanned by the first and second PCs are representative of the classification model
and do not oversimplify the essential features. This decomposability mapped every somatic mutation
site to be readily interpretable in the hidden space, where the positional relationship between genes
indicates how the model treats each gene in relative terms for the classification (Figure 5).

Furthermore, we pursued the interpretation for the directional preference in the subspace. In our
findings, the higher reproducibility rate of the 1D PCA approximation along the second PC direction
suggested that the PC scores for PC2 can estimate the importance of each factor for the model output
(Table 5). Interestingly, there was a considerable overlap with gene lists according to the frequency
information (Table 3). For genes that were shared between the lists according to frequency measure
and PC score, we can speculate that their frequency information has a significant impact on the model
prediction of Diet Networks with EIS. Still, there is also a discrepancy between two lists, and only one
PC direction was unable to provide a sufficient approximation for the classification accuracy. Therefore,
we also noticed that Diet Networks with EIS can take into account not only frequency information
but also the effects of interactions between features for particular genes. Intuitively, the interaction
between variables is apparent because a lot of genes distributed out of perpendicular to the PC axes
(Figure 5).

An interesting question is whether the somatic mutation sites with higher PC scores indeed
have biological meanings, especially those already known to exert biological functions in lung cancer,
according to other references in the literature. For example, among somatic mutation sites showing
top 10 negative PC scores (Table 5b), KRAS, EGFR, STK11, and SETD2 have already been shown to be
significantly mutated genes for LUAD, and, more importantly, the majority of these genes seem to be
mutated exclusively in LUAD and not in LUSC [22]. Similarly, another study showed that STK11 and
KRAS mutations—all holding negative PC scores—are associated with much higher frequencies in
LUAD than in LUSC. Notably, KRAS has shown mutation with a frequency 26 times higher in LUAD
than in LUSC [29]. As for the preference of LUSC (Table 5a), NFE2L2, which has the eighth largest
positive PC score, has been reported as a significantly mutated gene in LUSC [22]. Generally, few
known somatic mutations occur exclusively in LUSC and not in LUAD, and overlapping mutations
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sometimes occur among different histology types [22]. What needs to be discussed carefully here is
that TP53, ZFHX4, and MUC5B are known to be significantly mutated in both LUAD and LUSC [22,30].
For example, mutations in MUC5B have also been detected in both LUAD and LUSC [31]. As far as
we observed, the majority of these genes mutated in both subtypes belong to the positive PC score
group (see Figure 5 for ZFHX4). We thought that the two-sided preference of mutation sites would be
reflected by relatively large norms to the direction of the first PC; however, it was not exclusive for
the particular set of genes because KRAS and EGFR also showed relatively high first PC scores, for
example. Therefore, at least for the genes responsible for LUAD, we can conclude that the decomposed
hidden representations reflect the histological preference, which is particularly shown by the second
PC scores. From a more fundamental point of view, interpreting the hidden representations inside each
neural network depends on the level of genetic information available, regularization techniques, and
learning tasks. We expect that if the analysis is further integrated with other bioinformatics pipelines,
this method may provide a data-driven approach to finding cancer-type-specific driver candidates.

The task of predicting the histological type of lung cancer from somatic mutations (i.e., SNVs,
insertions, and deletions) is simple yet fundamental to the practice of cancer medicine. Compared
with other biological data such as those for gene expression, somatic mutations are particularly useful
in classifying tumors because they are more robust to variations in environmental or experimental
conditions. Besides, if some combinatorial somatic mutation patterns could be identified that can
predict cancer types or subtypes, it would be essential to develop diagnostic gene marker panels,
facilitating personalized medicine. On the binary classification task of identifying whether the somatic
mutation data are associated with squamous cell carcinoma or adenocarcinoma, the proposed model
achieved a prediction accuracy of around 80%. Deep learning models that provide both high accuracy
and interpretability may also be useful in precision medicine.

4.1. Limitations

Our experiments on Diet Networks with EIS have the following limitations. First, we did not
evaluate whether the same interpretable hidden interpretations can be obtained from different datasets.
The task of binary classification from somatic mutation profiles may be simple, as indicated by the
high accuracy achieved by the 1D approximated model of MLP (Table 4). It is necessary to perform a
future study to evaluate the proposed method on other datasets with a much higher dimensionality
of input with complex interactions. Partially, the interpretable latent distribution may be brought by
our formulation of the task, by assigning binary variables to the input, rather than the introduction of
EIS. Then, the weight of the first matrix in the fully-connected layer can be taken as a set of feature
embeddings. Second, we have not provided a theoretical background to support the rationale for the
stable training process achieved by the addition of EIS. However, it may be a straightforward solution
to improve the learning performance of Diet Networks, which can be restricted by a limited variability
represented by the transposed data matrix, by introducing a small number of learnable parameters
in the form of a diagonal matrix. Finally, we did not include any additional information on somatic
mutations from the biomedical literature. We lacked an opportunity to map the feature importance
factors extracted by Diet Networks with EIS onto known mutation profiles (such as driver mutation or
passenger mutation in the development of lung cancer).

Despite these limitations, we believe that our findings are meaningful and worth reporting because
this is the first study that compared the performance of Diet Networks and MLP with the same number
of layers and nodes. Diet Networks with EIS is designed to be versatile and can easily be applied to
tasks with other datasets. Further, it is essential to emphasize that the original implementation of Diet
Networks could not perform well in terms of accuracy and stability even for the current task, despite
the various learning configurations. Therefore, the modification by adding EIS to Diet Networks can
be a simple but effective solution to improve the learning capacity of Diet Networks.
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4.2. Conclusions

The introduction of EIS stabilized a training process of Diet Networks and achieved the same
level of accuracy to MLP with the same number of layers and nodes. The model was applied to the
task of classifying the histology of lung cancer, and it presented a list of gene symbols responsible for
contributing to the prediction.
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