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Contact, collision, and combat sports have more head impacts as compared to noncontact sports; therefore, such sports are
uniquely suited to the investigation of head impact biomechanics. Recent advances in technology have enabled the development
of instrumented equipment, which can estimate the head impact kinematics of human subjects in vivo. Literature pertaining to
head impact measurement devices was reviewed and usage, in terms of validation and field studies, of such devices was discussed.
Over the past decade, instrumented equipment has recorded millions of impacts in the laboratory, on the field, in the ring, and on
the ice. Instrumented equipment is not without limitations; however, in vivo head impact data is crucial to investigate head injury
mechanisms and further the understanding of concussion.

1. Introduction

The potential for concussion is related to the number of
opportunities within a sport for events that cause contact to
the head of an athlete; therefore, relatively higher incidence
rates of concussion are expected in contact, collision, and
combat sports compared to noncontact sports. This renders
such sports uniquely suited to the investigation of head
impact biomechanics. For over half a century, researchers
have attempted to use instrumented sporting equipment to
measure the loading of the head experienced by athletes
during impacts. However, only in the last decade has instru-
mented equipment been used to collect large amounts of
data for full sporting teams over entire seasons. Instrumented
helmets and skullcaps have been used in American football
and ice hockey, whilst instrumented headgear and head-
bands have been used in boxing and soccer. Instrumented
mouthguards and skin patches have been developed for use
in contact and collision sports that do not require wearing
helmets or headgear such as soccer, rugby league, rugby
union, and Australian football. The main advantage of using
instrumented equipment is the ability to estimate the head
impact kinematics of human subjects in vivo.

The objective of the current study is to discuss the devel-
opment, validity, and potential of different instrumented
equipment: helmets, headgear, headbands, skullcaps, skin
patches, and mouthguards.

2. Development of Instrumented Equipment

In 1961, the Committee on the Medical Aspects of Sports
of the American Medical Association was concerned with
the incidence of head injuries in American football and
suggested the gathering of head impact data [1]. In response,
Aagaard and Du Bois [2] instrumented a suspension helmet
with a triaxial accelerometer, which was able to telemeter
impact data for a linebacker during a professional Amer-
ican football game. Reid et al. [3] further developed the
telemetry system and collected head impact data for an
American football player during collegiate games over several
seasons. Similarly, Moon et al. [4] developed an instru-
mented headband, which was worn underneath the helmet.
However, both studies recorded peak linear accelerations
in excess of 1000 g [3, 4], which were much greater than
contemporaneous head injury tolerance limits [5, 6]. Reid
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et al. [7–10] revised the instrumented helmet system by
mounting the accelerometers on the suspension system in
an attempt to obtain more representative data; however, no-
injury impacts of up to 400 g were still being recorded, which
is higher than the pass criteria of amodernAmerican football
helmet standard [11]. One instrumented helmet captured a
concussion, which had a peak linear acceleration of 188 g, and
another instrumented player reported feeling “fuzzy,” which
may have been considered a concussion under the current
sports-related consensus definition [12], from an impact with
unremarkable peak linear acceleration. Early attempts to
collect data during American football games using instru-
mented helmets were considered largely unsuccessful due
to the technical difficulties associated with safely obtaining
accurate measurements [13]. Concomitantly, instrumented
mouthpieces were used to measure kinematic data in early
human volunteer sled test studies investigating injury tol-
erance limits for automotive and aerospace applications
[14–27].

A decade later, Morrison [28] attempted to use instru-
mented helmets to investigate head impacts in American
football; however, similarly to previous studies [3, 4, 7–
10], unreasonably high peak linear accelerations in excess
of 500 g were recorded. Instrumented helmets were not
used to gather head impact data again until Naunheim
et al. [29] recorded the peak linear head accelerations of
American football and ice hockey players during high school
games. Peak linear head accelerations of up to 120 g and
150 g were measured for the American football and ice
hockey players, respectively; however, no concussions were
reported.

3. Instrumented Helmets and Headgear

In 2003, Greenwald et al. [30] developed the Head Impact
Telemetry (HIT) System, which uses a novel computational
algorithm to process data from a nine-accelerometer array
incorporated into a helmet, allowing continuous sideline
monitoring of head impacts in real-time [31, 32]. Pendulum
impact testing using a Hybrid III anthropomorphic test
device (ATD) head-neck system was performed to evaluate
the accuracy of the HIT System [33], from which the
mean error for linear acceleration was 4%; however, angular
accelerations had a mean error of 17%. Manoogian et al.
[34, 35] investigated 50 helmet-to-helmet impacts using two
HIT System helmets mounted on Hybrid III ATD head-
neck systems in a pendulum arrangement and found peak
linear acceleration of the head to be less than 10% of peak
linear acceleration of the helmet, which may explain the
high results of early helmet instrumentation studies [3,
4, 7–10, 28]. Manoogian et al. [34, 35] reported a good
agreement between the measured accelerations of the HIT
System and the Hybrid III ATD headform. Similar validation
assessment studies were also performed on HIT Systems,
which had beenmodified for use in boxing [36, 37] and soccer
[38].

To address the limitation of angular acceleration estima-
tion accuracy, Chu et al. [109] developed a revised compu-
tational algorithm, which iteratively optimised the equations

of motion for a head impact to determine the full head
kinematics with six degrees-of-freedom (6DOF).The revised
algorithm was implemented in a revised system, which
comprised 12 uniaxial accelerometers arranged in orthogonal
pairs, tangential to the skull, in six locations within the hel-
met. In a validation assessment of the 6DOF system, Rowson
et al. [94] used a linear impactor to impact an American
football helmet mounted on a Hybrid III ATD head-neck
system. Mean errors for peak linear and angular acceleration
were reportedly 1% and 3%, respectively. Although the revised
system offered more accurate data for angular acceleration
in comparison to the HIT System, prohibitive costs lim-
ited the widespread implementation of the 6DOF system
[110].

Beckwith et al. [95] also used a linear impactor to deliver
impacts to an American football helmet, which was instru-
mented with the HIT System, mounted on a Hybrid III ATD
head-neck system. The HIT System was found to overesti-
mate linear acceleration and underestimate angular accel-
eration of the Hybrid III ATD headform by 1% and 6%,
respectively.

Allison et al. [96] evaluated the accuracy of the HIT
System for ice hockey helmets. A linear impactor was used
to impact an instrumented helmet, which was mounted on
a Hybrid III ATD head-neck system, at speeds ranging from
1.5 to 5.0m/s to several sites: front, rear, side, oblique-rear,
and oblique-front. Initially, the effect of the interface between
the helmet and the ATD headform was investigated using
three interface conditions: nylon skull cap to mimic previous
validation assessment studies [94, 95], dry human hair wig,
and wet human hair wig. The latter was chosen by Allison
et al. [96] as the most realistic interface condition. The
HIT System algorithm identified almost a fifth (19%) of all
impacts as perturbations, especially frontal impacts to the
facemask, and removed such data. For the remaining impacts,
peak linear and angular accelerations were found to strongly
correlate with the reference data recorded by the ATD
headform; however, correlations varied with impact location
and the error associated with the HIT System data was found
to be greater than previously reported for American football
helmets [94]. Wilcox et al. [111], which included developers
of the HIT System, criticised the protocol used by Allison
et al. [96] for not being representative of on-ice conditions;
however, Arbogast et al. [112] defended the protocol used
by Allison et al. [96], which was chosen to mimic previous
HIT System studies for boxing headgear [37] and American
football helmets [94, 95].

Similarly for American football helmets, Jadischke et al.
[100] used a linear impactor to investigate the accuracy of
the HIT System for two helmet sizes: medium and large.
For the large size helmet tests, the front, rear, and sides of
the helmet shell were impacted at speeds of approximately
9.3m/s. For the medium size helmet tests, various helmet
shell sites were impacted at speeds ranging from 5.0 to
11.2m/s. Root-mean-square (RMS) errors of HIT System
linear and angular accelerations from theATDheadformdata
for the large size helmet were 18% and 66%, respectively, and
for the medium size helmet were 18% and 20%, respectively.
Themedium size helmet was also impacted to facemask sites,
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for which RMS deviations of HIT System linear and angular
accelerations from the ATD headform data were 148% and
71%, respectively. Jadischke et al. [100] also investigated the
pressure exerted by an American football helmet on the
head of a volunteer high school player using a nylon skull
cap. A medium size helmet mounted on a 50th Hybrid
III ATD headform was found to exert peak pressures of
93 kPa, which were in excess of the discomfort pressure of
69 kPa reported by volunteer high school players. Previous
validation assessment studies had used medium size helmets
[94, 95], which Jadischke et al. [100] considered too tight in
comparison to comfortable helmet pressures. Similar to the
study of Allison et al. [96], the protocol of Jadischke et al.
[100] was also criticised for not being representative of on-ice
conditions.

Siegmund et al. [108] assessed the validity of the HIT
System using a linear impactor to impact a mandibular
load-sensing headform (MLSH) [113], which was wearing
an American football helmet and mounted on a Hybrid III
ATD neck. For peak linear acceleration and peak angular
acceleration, the HIT System did not achieve level 1 validity,
which was arbitrarily defined as “an average intercept and
slope that were not statistically different from zero and one,
respectively, for all impact sites combined”.

For over a decade, numerous studies have used the HIT
System to collect a large amount of head kinematic data
from American football and ice hockey players (Table 1)
[114], which have been used to further the understanding
of concussion and investigate injury tolerance criteria [115].
The HIT System has also been used to monitor the head
impacts of boxers [36, 37, 43] and female ice hockey players
[52, 66, 83, 116].

The GForceTracker (GFT) comprises a triaxial accel-
erometer and gyroscope and, similar to the HIT System,
allows continuous collection of head impact data in real-time
[117]. In contrast to the HIT System, a GFT unit is attached
to the helmet, which allows integration with a helmet of
choice across a range of sports. During an impact, the GFT
samples linear acceleration and angular velocity at 3000Hz
and 800Hz, respectively, with the angular velocity signal
passing through a low-pass filter with a cut-off frequency of
100Hz.

Allison et al. [101] evaluated the accuracy of theGFTusing
a linear impactor, at speeds ranging from 1.5 to 5.0m/s, to
impact a hockey helmet mounted on a Hybrid III ATD head-
neck system at various sites: facemask, side, rear-oblique,
and rear. Relative to the peak linear acceleration data from
the Hybrid III ATD headform, the raw data from the GFT
demonstrated large differences of up to 150%, which was
attributed to the lack of algorithm to transform the data to
the centre of gravity of the head. When logistic regression
was used to account for impact direction, mean absolute
errors of up to 15% were obtained, which varied by helmet
brand, impact direction, and sensor location, but not impact
severity. In contrast, relatively small raw data differences
of up to 15% were reported for angular velocity and mean
absolute errors of less than 10% were obtained after logistic
regression was used to account for impact direction. Mean
absolute errors for angular velocity did not vary substantially

by helmet brand, impact direction, sensor location, or impact
severity. Allison et al. [101] recommended that helmet brand-
specific correction algorithms be developed to transform
the raw linear acceleration data obtained from the GFT
to represent the kinematics of the centre of gravity of the
head.

In a similar study, Campbell et al. [104] used a linear
impactor to impact an American football helmetmounted on
a Hybrid III ATD head-neck system to assess the accuracy of
the GFT. Impact speeds ranged from 3.0 to 5.5m/s and var-
ious helmet locations were impacted: facemask, front, front-
oblique, side, and rear. A correction algorithmwas developed
and used to predict the kinematics at the centre of mass of
the head. Campbell et al. [104] found a strong correlation
(𝑅2 = 0.97) between the peak linear accelerations measured
by the GFT with the correction algorithm applied and the
Hybrid III ATD headform data. A strong correlation (𝑅2 =
0.94) was also found between raw peak rotational velocity
measured by the GFT and the Hybrid III ATD headform
data. Campbell et al. [104] supported the conclusions of
Allison et al. [101] regarding helmet brand-specific correction
algorithms.

Certification of instrumented helmets is a contentious
issue [118]. In 2013, National Operating Committee on Stan-
dards for Athletic Equipment (NOCSAE) published a press
release stating that American football helmets with additional
third-party products, such as impact sensors, which were
not affixed during standards testing, voided the certifica-
tion of compliance with the standard [119]. Several months
later, NOCSAE published a clarification stating that helmet
manufacturers were required to decide whether additional
third-party products voided the certification of their helmets
[120].

4. Instrumented Mouthguards

Half a century ago, instrumented mouthpieces were used to
measure kinematic data in early human volunteer sled test
studies [14–27]. More recent studies have used instrumented
mouthpieces, which resemblemouthguards used for orofacial
protection in sports, to investigate head kinematics during
soccer heading with [121–123] and without [124–126] head
protection; however, such devices were hardwired and not
suitable for in-game situations. Higgins et al. [127] conducted
impact drop tests to compare acceleration data from an
instrumented mouthpiece and helmet with data from a
modified NOCSAE headform. A significant relationship was
observed between mouthpiece and headform acceleration;
however, helmet acceleration was not significantly associated
with headform acceleration.

More recently, Paris et al. [128] instrumented a custom
acrylic mouthguard with a single dual-axis accelerometer,
which was able to wirelessly transmit linear acceleration
data. Kara et al. [129] further developed the instrumented
mouthguard design of Paris et al. [128] to incorporate an
array of three accelerometers so that angular acceleration,
in addition to linear acceleration, was able to be measured.
Six heading events were conducted, which all involved
the same female subject. The device was suggested as a
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potential tool for the assessment of concussion during game
play.

The X2 Impact mouthguard is a device instrumented
with a triaxial accelerometer and gyroscope, which sam-
ples linear acceleration and angular velocity at 1 kHz and
800Hz, respectively, during an impact. Angular velocity is
interpolated to 1 kHz, filtered, and differentiated to generate
angular acceleration. Using a similar design to the X2 Impact
mouthguard, Camarillo et al. [97] evaluated the accuracy of
an instrumented mouthguard for measuring kinematics of
the head during impact. A custom ATD headform mounted
on a Hybrid III ATD neck and wearing an American football
helmet was impacted at various sites using a linear impactor.
The normalised RMS errors for impact kinematic profiles
were approximately 10% for peak linear acceleration, angu-
lar acceleration, and angular velocity. An impedance-based
saliva sensor is incorporated for on-field use to determine
actual impact events when the mouthguard is present in the
mouth. King et al. [130] monitored head impacts of 38 New
Zealand amateur rugby union players using the X2 Impact
mouthguard during the 2013 season; however, no concussions
were recorded. Siegmund et al. [108] assessed the validity
of the X2 mouthguard using a linear impactor to impact
a mandibular load-sensing headform (MLSH) [113], which
was wearing an American football helmet and mounted on a
Hybrid III ATD neck. Similar to the HIT System results from
the same study, the X2 Impact mouthguard did not achieve
level 1 validity for peak linear acceleration and peak angular
acceleration.

Kuo et al. [107] investigated the effect of mandible con-
straints on the accuracy of an instrumented mouthguard
for helmeted ATD and cadaver tests. RMS errors of 40%
and 80% for angular velocity and acceleration, respectively,
were found for the worst-case scenario of the unconstrained
cadaver mandible; however, such errors could be mitigated
to below 15% by isolating sensors from mandible loads.
Hernandez et al. [131] used instrumented mouthguards to
monitor head impacts of American football players during
collegiate games and training, the data from which informed
ATD reconstructions. In addition, Hernandez et al. [132] also
monitored head impacts to boxers and mixed martial artists,
which, in combination with video analysis, enabled such
impacts to be reconstructed using a finite element human
head model [133].

Wu et al. [134] developed an instrumented mouthguard
with a triaxial high-range accelerometer and gyroscope.
The device also incorporated infrared proximity sensing to
determine if the mouthguard is worn on the teeth. Frequency
domain features of linear acceleration and rotational velocity
measured by a Hybrid III headform during impacts at speeds
ranging from 2.1 to 8.5m/s delivered by a linear impactor
were used to train a support vector machine classifier. In
a subsequent study, Wu et al. [106] assessed the validity of
the instrumented mouthguard for soccer heading impacts
by tracking fiducial grids with dual high-speed video. The
instrumented mouthguard was worn by the volunteer during
the heading of a soccer ball, which was projected at a
speed of 7m/s. Compared to the video-tracked kinematics
in the sagittal plane, the instrumented mouthguard had RMS

errors of 16%, 18%, and 12% for peak anterior-posterior
linear acceleration, peak inferior-superior linear acceleration,
and peak angular velocity in the sagittal plane, respec-
tively.

Contemporaneously, the Cleveland Clinic developed the
Intelligent Mouthguard (IMG) [98, 99, 102], comprising a
triaxial accelerometer and gyroscope, which is capable of
sampling up to 4 kHz. A drop tower was used to validate the
sensors used in the IMG for linear and angular accelerations
ranging within 10–174 g and 0.85–10.00 krad/s2, respectively,
with impact durations of 4.6–31.8ms. The IMG underesti-
mated the reference linear and angular accelerations by 3%
and 17%, respectively. In addition, validation of the IMG
was performed by impacting a modified Hybrid III ATD
head, which was wearing either an American football helmet
or boxing headgear, with a linear impactor at speeds of
up to 8.5m/s [102]. The accelerations recorded by the IMG
correlated well with the headform data (𝑅2 = 0.99) for
both theAmerican football helmet and boxing headgear tests.
Bartsch et al. [102] instrumented two collegiate American
football players and four amateur boxers during competition;
however, no concussions were recorded.

5. Instrumented Skin Patches

The X2 X-Patch is a small microelectromechanical system,
worn over the left or right mastoid process, which com-
prises a triaxial accelerometer and gyroscope [135]. The raw
accelerometer data is transformed to the centre of gravity
of the head using a rigid body transformation for linear
acceleration and a five-point stencil for rotational accelera-
tion. During an impact, the X-Patch samples linear accelera-
tion and angular velocity at 1 kHz and 800Hz, respectively.
Several studies have used the X-Patch to record kinematic
data during training sessions and competition games for
male American football, female soccer and youth rugby
(Table 2).

Nevins et al. [105] assessed the validity of the X-Patch
using a Hybrid III ATD head-neck system mounted on
a low friction sled. The headform was impacted to the
chin and forehead in different orientations by pneumati-
cally projected softballs, lacrosse balls, and soccer balls at
speeds ranging from 10 to 31m/s. Peak linear acceleration
measured by the X-Patch displayed reasonable agreement
with the Hybrid III ATD headform for the lacrosse and
soccer balls. However, peak linear acceleration was underes-
timated by the X-Patch for softball impacts as was angular
acceleration for all three sports balls. Nevins et al. [105]
suggested that the poor agreement between the X-Patch
and Hybrid III ATD headform for certain conditions was
attributable to the relatively low sampling frequency of the
former.

Kerr et al. [136] evaluated the effectiveness of the Heads
Up Football (HUF) programme using the X-Patch tomonitor
head impacts of youth football players: HUF participants, 38
players, 7 teams, 2 leagues; controls, 32 players, 8 teams, 3
leagues. Players participating in the HUF programme accu-
mulated fewer impacts per athletic exposure than controls.
Similarly, Swartz et al. [88] evaluated the effectiveness of
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Table 2: X2 X-Patch studies of athletes during training and games.

Study Season(s) Sport Level (age) Gender Players Impactsa Concussions
Kerr et al. [87] 2014 American football Youth (8–15 years) M 70 7478 6
Swartz et al. [88] 2014-2015 American footballb Collegiate M 50 Not reported Not reported
McCuen et al. [89] Not reported Soccer High school, collegiate F 43 Not reported 0
Morrison et al. [90] 2015 American football Collegiate M 10 Not reported 0
Stucker [91] Not reported Soccer Collegiate F 25 13,479 0
Cummiskey [85] 2013 American football High school M 15 231 0
King et al. [92] 2015 Rugby Youth (8-9 years) M 14 721 3
Svaldi et al. [93] Not reported Soccer High school F 14 Not reported 0
aNumber of recorded impacts that surpass a predefined minimum linear acceleration threshold. bHelmetless training drills.

theHelmetless Tackling Training (HuTT) programme, which
incorporates tackling drills without helmets and shoulder
pads into training sessions, over the 2014 and 2015 collegiate
seasons. Intervention and control groups, each comprising
25 American football players, were instrumented with the
XPatch with the former participating in the HuTT pro-
gramme. Swartz et al. [88] found that the intervention group
experienced 28% less head impacts per athletic exposure
compared to the control group. In another study, which var-
ied the level of equipment worn byAmerican football players,
Reynolds et al. [137] instrumented 20 collegiate players with
the X-Patch during training and games comprising the 2013
season. The type of equipment worn during each training
session was found to be associated with different head impact
profiles as mean peak linear and angular accelerations for
helmet-only training sessions were significantly less than
mean peak accelerations for half-pad and full-pad training
sessions and competitive games.

In a soccer heading study, Wu et al. [106] assessed the
validity of the X-Patch by tracking fiducial grids with dual
high-speed video. The X-Patch was attached to the mastoid
process of a volunteer during the heading of a soccer ball,
which was projected at a speed of 7m/s. Compared to
the video-tracked kinematics in the sagittal plane, the X-
Patch had RMS errors of 14% for peak anterior-posterior
linear acceleration and 29% for both peak inferior-superior
linear acceleration and peak angular velocity in the sagittal
plane.

More recently, King et al. [92] used the X-Patch to moni-
tor the magnitude, frequency, and location of head impacts
to junior rugby union players in New Zealand over four
consecutive matches. Of the 14 instrumented players, three
were medically diagnosed as having sustained a concussion.
The standardisation of reporting of head impact biomechan-
ical data was suggested to enable accurate comparison across
published studies.

6. Instrumented Skullcaps and Headbands

The Checklight is a sensor device, which is integrated into
the rear of a skullcap [138]. Impact data is not provided;
however, green, yellow, and red lights are triggered for
“mild,” “intermediate,” and “severe” impacts, respectively.

Cummiskey [85] used an impulse hammer to impact an
American football helmet, which was worn by a Hybrid III
ATDover the Checklight skullcap.The red light was triggered
by four impacts, the most severe of which corresponded to
peak linear and angular headform accelerations of 123 g and
7660 rad/s2, respectively. Bartsch et al. [102] used a Check-
light skullcap in a validation assessment study; however, no
results were reported. Harper et al. [139] monitored head
impacts of youth and high school football players during
training and games using the Checklight. Harper et al. [139]
concluded that the Checklight has limited usefulness as it
does not allow for real-time sideline data monitoring and
threshold limits are unknown. In a soccer heading study, Wu
et al. [106] assessed the validity of the Checklight skullcap
sensor location by tracking fiducial grids with dual high-
speed video. A 6DOF sensor device [134] was used in lieu
of the Checklight sensor, which does not allow raw data
extraction. Compared to the video-tracked kinematics in
the sagittal plane, the skullcap had RMS errors of 16% for
peak anterior-posterior linear acceleration and 13% for both
peak inferior-superior linear acceleration and peak angular
velocity in the sagittal plane.

Instead of traditional accelerometers, the Shockbox uses
four binary force switches to measure differential voltage
[140]. Foreman and Crossman [141] assessed the validation
of the Shockbox by drop testing a rigid headform wearing an
ice hockey helmet, which was instrumented with the device.
Impact speeds ranged from 2.0 to 3.0m/s at various helmet
locations: front, front-oblique, side, rear-oblique, and rear.
An aggregate difference of 9% between the Shockbox and
headform data was reported. Cuminsky [85] used an impulse
hammer to impact an American football helmet, which was
worn by a Hybrid III ATD over the Shockbox headband.
Peak linear acceleration from the Shockbox was compared to
the headform data and RMS errors of 92–298% were found
for seven impact locations. Wong et al. [142] instrumented
the helmets of 22 youth American football players with the
Shockbox device to monitor head impacts during the 2012
season. Other unpublished studies have used Shockbox to
monitor head impacts in American football [143] and ice
hockey [144, 145].

The SIM-G is a head impact sensor device, which com-
prises a triaxial gyroscope and two triaxial accelerometers,
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high-g, and low-g, mounted on a headband [103]. The
developers of the SIM-G, Triax Technologies, assessed the
validation of the device using a pendulum to impact the
NOCSAE heaform in 11 locations. Peak angular velocitymea-
sured by the SIM-G correlated strongly with the headform
data (𝑅2 = 0.98); however, correlations were not as strong
for peak linear acceleration (𝑅2 = 0.84) and peak angular
acceleration (𝑅2 = 0.78). Cummiskey [85] used an impulse
hammer to impact an American football helmet, which was
worn by a Hybrid III ATD over the SIM-G headband. Peak
linear acceleration from the SIM-G was compared to the
headform data and RMS errors of 18–75% were found for
seven impact locations.

7. Other Instrumented Equipment

Circa 2000, instrumented earplugs were developed for
motorsport drivers after it was shown that instrumented
helmets moved relative to the head during collisions [146,
147]. Such ear-mounted devices were also tested by military
cadets during boxing matches [148]. In addition to the HIT
System studies in boxing [36, 37, 149, 150], instrumented
gloves have also been used to estimate punch force in the
laboratory [151, 152] and during boxing matches [138, 152,
153]. Boxing shirts have also been developed, which are
instrumented and detect hits during amateur boxingmatches
[154–159].

In recent years, global positioning system (GPS) units
are commonly worn by elite rugby league [160, 161], rugby
union [162–165], and Australian football [166, 167] players;
however, the validity of suchmicrosensors to detect collisions
has been questioned [168]. Another device provides video
footage from a first-person perspective using rugby headgear
instrumented with a video camera [169, 170]; however, due
to rules regarding rugby headgear design [171], the primary
application of such a device is as a training tool to assess
performance [170].

8. Conclusion

Recent advances in technology have enabled the develop-
ment of instrumented equipment: helmets, headgear, head-
bands, skullcaps, skin patches, andmouthguards.The current
study was conducted to review the development, valid-
ity and potential of such instrumented equipment, which
estimates the head impact kinematics of human subjects
in vivo.

The HIT System is widely used; however, it is expen-
sive and limited in that it can only be incorporated into
particular helmets and headgear. Other head impact sensors
are less expensive, such as the Checklight and Shockbox,
and are commercially available despite the lack of validation.
In contrast, the GForceTracker is continually undergoing
validation assessments and is only currently available for use
in research. For some devices, laboratory validation studies
have found large discrepancies betweendevicemeasurements
and headform data (Table 3), especially for certain impact
directions. Such discrepancies may be a result of nonrigid
skull coupling for helmets, headgear, headbands, skullcaps,

and skin patches. Relatively small errors have been reported
for instrumented mouthguards; however, constraint limita-
tions have been identified with clenched teeth providing the
most accurate results.

Over the past decade, instrumented equipment has
recorded millions of impacts in the laboratory, on the field,
in the ring, and on the ice. Instrumented equipment is not
without limitations; however, in vivo head impact data is
crucial to investigate head injurymechanisms and further the
understanding of concussion.
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