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Abstract
The ryanodine receptor calcium release channel is central to cytoplasmic Ca
signalling in skeletal muscle, the heart, and many other tissues, including the
central nervous system, lymphocytes, stomach, kidney, adrenal glands,
ovaries, testes, thymus, and lungs. The ion channel protein is massive (more
than 2.2 MDa) and has a structure that has defied detailed determination until
recent developments in cryo-electron microscopy revealed much of its
structure at near-atomic resolution. The availability of this high-resolution
structure has provided the most significant advances in understanding the
function of the ion channel in the past 30 years. We can now visualise the
molecular environment of individual amino acid residues that form binding sites
for essential modulators of ion channel function and determine its role in Ca
signalling. Importantly, the structure has revealed the structural environment of
the many deletions and point mutations that disrupt Ca  signalling in skeletal
and cardiac myopathies and neuropathies. The implications are of vital
importance to our understanding of the molecular basis of the ion channel’s
function and for the design of therapies to counteract the effects of ryanodine
receptor-associated disorders.
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Introduction
Intracellular Ca2+ signalling in many tissues depends on Ca2+ 
ions cycling between the bulk of the cytoplasm and specialised 
intracellular Ca2+ stores in endoplasmic reticulum (ER). Ca2+ is 
released from the stores through two classes of ion channel: the 
inositol 1,4,5-trisphosphate receptor (IP3R) and the ryanodine  
receptor (RyR)1. Muscle contraction is almost entirely dependent 
on a massive outflow of Ca2+ from the modified ER— 
sarcoplasmic reticulum (SR)—through RyR channels; relaxa-
tion then follows the return of Ca2+ to the store by SERCA  
(sarcoplasmic endoplasmic reticulum calcium ATPase) pumps1. 
The RyR opens in response to an action potential during exci-
tation-contraction (EC) coupling. The action potential travels 
along the fibre surface and throughout the muscle fibre along 
transverse tubule extensions of the surface membrane, which  
forms multiple junctions with the SR membrane2. The gap 
between the membranes is filled almost entirely by the cytoplas-
mic bulk of the RyR, which is embedded in the SR membrane 
(Figure 1). In skeletal muscle, the action potential is detected 
by a surface membrane voltage sensor in the α

1S
 subunit of 

the dihydropyridine receptor (DHPR, also known as Ca
V1.1

)3,4.  
The signal from the action potential is transmitted to the RyR 
through a series of protein–protein interactions that are not 
yet fully defined but likely include the β

1a
 subunit of the DHPR 

and the STAC3 protein5,6. A simpler EC coupling system 
exists in the heart, where an action potential induces Ca2+  
entry through the cardiac DHPR (Ca

V1.2
) and the entering Ca2+ 

ions activate the cardiac RyR2 in a Ca2+-activated Ca2+ release 
process1. The massive RyR ion channel protein is composed of 
four monomers of more than 500 KDa. Its efficient operation 
depends on a myriad of factors that interact with its many domains. 
Such factors include associated proteins such as calmodulin,  
the FK506 binding proteins, and CLIC2, all of which bind to its 
large cytoplasmic domain. Binding to its tiny luminal domain 
are triadin, junctin, and the Ca2+ binding protein calsequestrin5. 
Other essential factors regulating the ion channel open probabil-
ity and gating behaviour include post-translational modifications 
such as phosphorylation, oxidation, nitrosylation, nitration, and 
glutathiolation7,8. Acquired changes in channel function and  
genetically transmitted modifications can severely disrupt the ion 
channel’s function and detrimentally alter Ca2+ signalling to lead 
to skeletal and cardiac myopathies that can be debilitating and 
often fatal. Despite the essential function of this ion channel pro-
tein, the molecular nature of its gating mechanisms and how they 
are disrupted in myopathies have remained elusive. Such insight 
required near-atomic resolution structures of the protein, which 
are now available with a resolution of not more than 6.1 Å follow-
ing recent advances in cryo-electron microscopy (cryo-EM)9–16.  
Thus far, the more structurally stable RyR1 protein has been 
determined at the highest resolution of about 3.8 Å10,13 (Figure 1). 
The highest resolution is achieved for the most stable parts of 
the protein, particularly the C-terminal portion encompassing 
the transmembrane/pore domains. The pore itself has been 
determined with highest resolution17. Consequently, the high- 
resolution cryo-EM structure of the RyR protein is only partially  
resolved.

The impact of high-resolution structures of the 
ryanodine receptor
The enormous impact of the higher-resolution structures on our 
understanding of RyR function has been elegantly presented 
in full reviews by Meissner17, Samsó18, Zalk and Marks19, and 
Santulli et al.20. In particular, Meissner17 and Samsó18 provide 
excellent summaries of the different terminology applied to 
the various structural domains of the RyR, which have evolved  
in different ways as increasingly higher-resolution structures 
have been reported over the last 20 years. The various domains 
of RyR1 are shown in Figure 1 and Figure 2 and are based on 
Yan et al.10 and Zalk et al.9, respectively, and illustrate very  
different terminologies used by different authors. Different  
terminologies and residue numbers are summarised in Table 
1 of 17. There are 10 significant domains in each RyR subu-
nit: (1) the N-terminal domain, which is a hot spot in RyR1 and 
RyR2 for disease-causing mutations; (2) the SPRY1 domain that 
is part of the binding site for FKPB12 and, with SPRY3, forms 
a major part of the “clamp” region (older nomenclature) that 
closely opposes the T-tubule membrane and may interact indirectly 
with the DHPR α

1S
 subunit in EC coupling; (3) the Ry 1 and 2  

or P2 domains; (4) the SPRY2 and 3 domain; (5) the junctional 
solenoid (Jsol or Handle), which also contributes to the FKBP 
binding pocket (see legend to Figure 1); (6, 7) bridging solenoid 
(Bsol encompassing helical domains 1 and 2) and containing 
the protein kinase A (PKA) and Ca2+/calmodulin (CaM)- 
dependent protein kinase II (CaMKII) phosphorylation sites; (8)  
the core solenoid (Csol or central domain), which contains two 
EF hand Ca2+ binding motifs; (9) the transmembrane domain 
(TMD) containing the Ca2+ pore with binding sites for ryano-
dine and the luminal domain of the RyR with triadin and 
junctin binding sites; and (10) the C terminal domain (CTD)  
that forms part of the Ca2+, ATP, and caffeine activation site.

The Ca2+, ATP, and caffeine binding sites have been identified by 
comparing differences between RyR1 with Ca2+, but not ATP or 
caffeine, and RyR1 with ATP and caffeine bound, but without 
Ca2+13. All three activators bind within a small region of the pro-
tein in which the CTD comes into close approximation with the 
Csol domain and TMD. Ca2+ binds at the interface between 
the CTD and CSol. ATP binds at the junction between the  
CTD, the cytoplasmic extension of the S6 transmembrane helix, 
and the “thumb and forefinger” region adjacent to CSol. Caf-
feine binds between the CTD and cytoplasmic extension of 
the S6 helix. As predicted from many previous biochemical 
and physiological studies21–24, the ryanodine binding site is  
within the pore and adjacent to residue Q4933.

Of particular importance to muscle physiology are the substan-
tial differences between the structures of the skeletal (RyR1) 
and cardiac (RyR2) isoforms, which explain many of the func-
tional differences between the proteins and their role in Ca2+  
signalling in the two tissues17,18,25. Also of major importance for 
basic muscle physiology/biophysics are the structural changes  
determining ion channel gating between the open and closed 
states. The recent high-resolution structures of RyRs locked into 
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Figure 1. The near-atomic resolution structure of RyR110. (A) The linear sequence of RyR1 domains, starting at the N-terminal domain 
(NTD). (B) “Side” view of RyR1 highlighting two of four protomers. Domains in (B) are colour-coded in the same way as those in (A). Modified 
from Figure 1 of Yan et al.10. The 10 major domains in each subunit include the N-terminal domain, which harbours many RyR1 and RyR2 
disease-causing mutations. They also include the SPRY1 domain that forms part of the binding site for FKPB12, the helical and central 
domains, which contain protein kinase A and Ca2+/calmodulin protein kinase II (CaMKII) phosphorylation sites, the transmembrane domain 
containing the ion pore, and the C-terminal domain that forms part of the Ca2+, ATP, and caffeine activation sites17 (Figure 2). FKBP12 binds 
in a cleft formed by the Handle, NTD, and SPRY1/3 domains. Suggested FKBP12 binding residues are located in the Handle domain (P1780, 
C1781, and S1687)10 and in a hydrophobic cluster around D720 in the SPRY1 domain26. The cytoplasmic surface of the transverse tubule  
(T-tubule) membrane is shown overlying the RyR to illustrate the way that the bulk of the RyR is sandwiched between the membranes on  
either side of the T-tubule/sarcoplasmic reticulum (SR) junction. RyR, ryanodine receptor.

open or closed conformations, in combination with previous 
lower-resolution structural studies, allow refined models of the  
ion channel gating mechanisms to be developed13,14,16,18,20. This 
has been no easy task, as the ion channel opening and closing 
require the coordination of more than 40 domains and the trans-
mission of allosteric changes from both cytoplasmic domains 
and luminal domains to the channel gating mechanism. As stated 
by Samsó18, “the RyR is the quintessential allosteric machine”. 
Detailed summaries of RyR1 and RyR2 domain structures are 
given in several recent publications13,14,16,18,20,25. In addition,  
defined locations of essential ATP, caffeine, and Ca2+ binding 
sites in RyR1 are reported by des Georges et al.13, and these 
observations provide a basis for predictions of the location of 
similar sites in the RyR2 protein27. It became apparent that the  

channel can exist in a variety of conformations, not simply “open 
or closed”. Indeed, priming changes in the C-terminal activa-
tion module can occur without altering pore structure, and there  
may be a hierarchy of pore structure changes that depend on 
binding of Ca2+, ATP, or caffeine that have not yet been deter-
mined but can produce incremental changes in channel open  
probability13. It is worth noting that the structure of the open 
channel may continue to be further refined as optimal conditions, 
including the lipid content of preparative solutions, are developed  
for cryo-EM structural studies16.

Mutations in RyRs can lead to severe genetic conditions, includ-
ing malignant hyperthermia (MH) and central core disease (CCD) 
in skeletal muscle28 and arrhythmia in cardiac muscle29. Locating 
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the mutated residues in the full-length channel structure has 
been difficult in the past but is now possible with the high- 
resolution cryo-EM RyR structures20. Although such mutations 
can occur at almost any region in the protein, there are specific 
“hot spots”. MH occurs when RyR1 is activated by a volatile  
anaesthetic and leads to a rapid rise in core body temperature and 
organ failure unless treated30. MH mutations generally occur in  
central (Bsol) and N-terminal clusters in regions that would  
impact on pore opening and lead to uncontrollable Ca2+ 
release in the presence of anaesthetics20. CCD is characterised  
histologically by cores of inactive tissue in the centre of muscle 
fibres that lead to progressive muscle weakness28. RyR1 muta-
tions causing CCD are clustered in the C-terminal Ca2+ binding 
site at the interface between the CTD and CSol, where they can  
directly affect the activation mechanism20. Mutations in the  
cardiac RyR2 that lead to arrhythmias are generally located in 
the pore, transmembrane, and central domain regions, which  
are directly involved in channel activation and gating13–20.

Importantly, the detailed three-dimensional (3D) locations of 
disease-causing mutations in RyR1 and RyR2 and determina-
tion of structural changes associated with mutations that lead to  
disrupted Ca2+ signalling will help in understanding the molecular 
process involved in regulating the ion channel gating mecha-
nisms. In addition, the structure of potential drug binding 
sites opens the possibility of rational design of therapeutics to  
correct defective RyR channel function and restore healthy Ca2+  
signalling20,25,31,32. As an aside, the high-resolution struc-
tural studies have provided evidence supporting early insight-
ful hypotheses that the functional consequences of some of the  

disease-causing mutations are caused by “unzipping” of essential 
inter-domain interactions and thereby favour the open unstable  
conformation of the channel33–35.

It is worth noting that X-ray crystallography has been used to 
predict the structure of individual elements within the RyR.  
X-ray crystal structures of isolated RyR domains at resolutions 
of less than 2 Å have been obtained and have defined the struc-
tures of ligand binding sites and also revealed structural changes 
induced by ligand binding or caused by mutations33. X-ray  
crystal structures have been docked into the 3D envelope of 
RyR calculated from cryo-EM data to help interpret the high-
resolution structures reported for RyR19–11. This is further  
discussed in 17,19,36. The potential power of combining atomic  
resolution X-ray crystallography and nuclear magnetic resonance 
with cryo-EM to obtain high-resolution structures of large pro-
teins of more than 500 KDa is discussed in detail in a review by  
Vénien-Bryan et al.36.

The recent high-resolution cryo-EM structures have been piv-
otal in revealing the truly minute nature of the luminal domain 
of the RyR protein. Residues that comprise the “luminal” 
domain can be defined as those that extend from the SR  
membrane into the luminal compartment (Figure 1 and Figure 2). 
The parts of the protein extending beyond the membrane likely 
consist only of short luminal loops linking the transmembrane 
helices 5 and 6 and the pore helix and thus constitute less than  
1.5% of the protein mass5. However, as the hydrophilic lumi-
nal environment extends into the highly charged domains of 
the channel pore, the actual amount of the protein exposed 

Figure 2. “Side view” of the open RyR1 channel structure9. The structure (PDB code 5TAL) reveals the major domains of the protein and 
the location of Ca2+, ATP, and caffeine binding sites identified by 13. Adapted from 17; the structural domain nomenclature is as given in 10. 
The transmembrane domain (TMD) containing the permeation pathway is shown embedded in the sarcoplasmic reticulum (SR) membrane, 
which is depicted as a solid pale blue rectangle. NTD, N-terminal domain; RyR, ryanodine receptor.
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to the luminal solution is greater than the luminal loops that 
extend beyond the generalised membrane boundary. Neverthe-
less, it is remarkable that the luminal domain is relatively very  
small given the importance of luminal conditions in determining 
the open probability of RyR1 and RyR2 channel in vivo and 
in vitro. The open probability of the RyR channel is very  
sensitive to changes in luminal [Ca2+], and changes in the RyR’s  
sensitivity to luminal Ca2+ underlie the defects in Ca2+ signalling 
that produce skeletal and cardiac myopathies37,38. In addition, the 
luminal domains provide the RyR binding sites for the associated  
regulatory proteins triadin and junctin (Figure 3)39,40. These 
proteins anchor the RyR to the luminal Ca2+ binding protein  
calsequestrin, and all three proteins impact on RyR1 and RyR2 

activity. Mutations in any of the three luminal proteins can 
alter the functional interactions between the proteins and the  
luminal domain of the RyR. Such altered interactions lead to  
significant changes in RyR function and Ca2+ signalling and  
produce significant cardiac and skeletal myopathies5.

Concluding comments
The high-resolution cryo-EM revolution over the past four years 
has had a major impact on the interpretation of RyR physiol-
ogy in terms of the specific structural changes within the RyR 
protein. The structure of the protein in the open and closed state 
reveals conformational changes in the pore that allow Ca2+ flow 
from the SR and significant associated changes in the structure  
of remote cytoplasmic domains of the protein. The nature of  
structural re-organisation resulting from post-translational  
modifications and mutations can now be predicted and the  
predictions tested and refined in future cryo-EM studies of RyRs  
subjected to specific modifications or mutations. It is likely  
that some of the current structures, particularly those of the open 
conformations, will be further refined as yet higher-resolution 
structures become available and improved isolation conditions are 
developed.

It is also likely that the next major structural development will 
be the determination of the structure of the RyR in the intact 
adult mammalian muscle fibre, ideally in the environment of the 
junctional gap that separates the surface (T-tubule) membrane 
and the SR. This will reveal the RyR1 structure when it is asso-
ciated with other proteins that are essential for EC coupling 
such as the DHPR α and β subunits, STAC3, and junctophilin.  
For those in the field, it is a continual frustration that we 
know these proteins are essential for EC coupling and we can  
construct models for their interactions but that we will never 
fully understand skeletal EC coupling until we have determined 
their 3D associations within the intact cell. This next step awaits 
the development of high-resolution tomography techniques, pos-
sibly cryo-EM tomography18. Indeed, high-resolution tomography 
may also reveal the way in which RyR channels associate with 
each other in the SR membrane to allow “coupled gating” between 
neighbours, a phenomenon that is seen in lipid bilayers41–44 and that 
is thought to be critical to RyR function in muscle fibres20,45.

Figure 3. Proposed region for ionic interactions between  
skeletal triadin (Trisk 95) and RyR1. The near-atomic resolution 
structure of the pore-forming elements of RyR1 showing two diagonal 
protomers (Extended Data Figure 8 in 10). The grey transmembrane 
S5 and S6 helices and red pore helix, S5–pore helix linker, and SF 
linker between the pore helix and S6 helix are shown. Mutagenesis 
studies suggest that residues D4878, E4907, and E4908 in the 
outer regions of the pore helix are associated with K218, K220, and 
K224 in Trisk 9539,40. The approximate positions of E4907 and E4908 
are indicated by the black arrowhead, and the arrow indicates the 
predicted binding site for Trisk 95. RyR, ryanodine receptor; SR, 
sarcoplasmic reticulum. Reprinted by permission from Springer 
Nature: Pflügers Archiv European Journal of Physiology, Three 
residues in the luminal domain of triadin impact on Trisk 95 activation 
of skeletal muscle ryanodine receptors, E. Wium, A. F. Dulhunty, N. 
A. Beard, © 2016.
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