
sensors

Article

The Impact of Load Style Variation on Gait Recognition Based
on sEMG Images Using a Convolutional Neural Network

Xianfu Zhang 1,2, Yuping Hu 1, Ruimin Luo 2, Chao Li 2 and Zhichuan Tang 3,*

����������
�������

Citation: Zhang, X.; Hu, Y.; Luo, R.;

Li, C.; Tang, Z. The Impact of Load

Style Variation on Gait Recognition

Based on sEMG Images Using a

Convolutional Neural Network.

Sensors 2021, 21, 8365. https://

doi.org/10.3390/s21248365

Academic Editor: Mukesh Prasad

Received: 10 November 2021

Accepted: 13 December 2021

Published: 15 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Schlool of Jewelry and Art Design, Wuzhou University, Wuzhou 543002, China;
zhangxianfu@zju.edu.cn (X.Z.); 3779@hnsyu.edu.cn (Y.H.)

2 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China;
joeluo@zju.edu.cn (R.L.); superli@zju.edu.cn (C.L.)

3 Industrial Design Institute, Zhejiang University of Technology, Hangzhou 310023, China
* Correspondence: ttzzcc@zju.edu.cn

Abstract: Surface electromyogram (sEMG) signals are widely employed as a neural control source
for lower-limb exoskeletons, in which gait recognition based on sEMG is particularly important.
Many scholars have taken measures to improve the accuracy of gait recognition, but several real-time
limitations affect its applicability, of which variation in the load styles is obvious. The purposes
of this study are to (1) investigate the impact of different load styles on gait recognition; (2) study
whether good gait recognition performance can be obtained when a convolutional neural network
(CNN) is used to deal with the sEMG image from sparse multichannel sEMG (SMC-sEMG); and (3)
explore whether the control system of the lower-limb exoskeleton trained by sEMG from part of the
load styles still works efficiently in a real-time environment where multiload styles are required. In
addition, we discuss an effective method to improve gait recognition at the levels of the load styles.
In our experiment, fifteen able-bodied male graduate students with load (20% of body weight) and
using three load styles (SBP = backpack, SCS = cross shoulder, SSS = straight shoulder) were asked to
walk uniformly on a treadmill. Each subject performed 50 continuous gait cycles under three speeds
(V3 = 3 km/h, V5 = 5 km/h, and V7 = 7 km/h). A CNN was employed to deal with sEMG images
from sEMG signals for gait recognition, and back propagation neural networks (BPNNs) and support
vector machines (SVMs) were used for comparison by dealing with the same sEMG signal. The
results indicated that (1) different load styles had remarkable impact on the gait recognition at three
speeds under three load styles (p < 0.001); (2) the performance of gait recognition from the CNN was
better than that from the SVM and BPNN at each speed (84.83%, 81.63%, and 83.76% at V3; 93.40%,
88.48%, and 92.36% at V5; and 90.1%, 86.32%, and 85.42% at V7, respectively); and (3) when all the
data from three load styles were pooled as testing sets at each speed, more load styles were included
in the training set, better performance was obtained, and the statistical analysis suggested that the
kinds of load styles included in training set had a significant effect on gait recognition (p = 0.002),
from which it can be concluded that the control system of a lower-limb exoskeleton trained by sEMG
using only some load styles is not sufficient in a real-time environment.

Keywords: sEMG image; load style; gait recognition

1. Introduction

The surface electromyogram (sEMG) signal is employed widely as a neural control
source for lower-limb exoskeleton and prosthesis devices [1,2]; these sEMGs are generated
by the electrical activity of the muscle fibre during contraction or relaxation and can be
obtained from the skin surface in a noninvasive manner by a muscle-computer interface
(MCI) communication system [3]. Assisted by the MCI, the reflections of the sEMG at
the level of muscle activity are transformed into interactive commands that express the
user’s movement intentions for the control of lower-limb exoskeletons [2,4]. The control
signals that are used to guide the work of lower-limb exoskeletons can be derived from
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gait recognition from sEMG signals [5]. Joshi, C. D et al. [1] used the sEMG signal from the
lower-limb muscles based on a Bayesian information criteria algorithm to recognize eight
different gait phases for the control of exoskeletons. Chen Lingling et al. [6] employed
sEMG from leg muscles to recognize the gait phases and translated it as a switch signal
of self-locking control to drive the lower-limb prostheses. Xu et al. [7] used the sEMG
signals from the calf muscle as the input of gait recognition (including go forward, go
backward, turn left, and turn right), and then the gait information was leveraged to control
the motion of the lower-limb exoskeleton and realize human–computer interaction. Peng
et al. [2] proposed an SVM-based gait recognition method using sEMG signals to control a
lower-limb prosthesis device.

The above literature focuses mainly on increasing the gait recognition performance
based on offline sEMG signals by multisensor cooperation [8], algorithm optimization [9],
the incorporation of more reasonable features [10], etc., to control lower-limb exoskeletons
and prostheses more effectively. Some studies have obtained an ideal gait recognition
accuracy of up to 95% in laboratory conditions [11], but there are still several real-time limi-
tations in using sEMG signals to recognize gait for the control of lower-limb exoskeletons
and prostheses. For example, compared with the laboratory, there are more non-constant
variations that may greatly affect the gait recognition performance based on sEMG in a real-
time environment, such as the instability of sEMG signal [12], inaccurate positioning of the
electrodes placed on the muscles [13], slope variations on the ground [14], and the different
loads that user can carry [15]. In addition, the different load styles are also critical variables
which can often be encountered in real-time environments. In the laboratory, the training
data are obtained under a determined load style, and the employed training strategy of gait
recognition has the ability to identify the style of the load. However, in real-time conditions,
the load styles we choose were random, which is significantly different from the conditions
in the laboratory. Many scholars have conducted in-depth studies of the effects of different
load styles on mechanical parameters and gait characteristics. For example, Abaraogu, U.
O. et al. [16] exposed the effects of a 1-strap backpack load and a 2-strap backpack load on
the gait phases and perceived the exertion of young adults. Dahl, K. D. et al. [17] compared
the traditional backpack and the nontraditional BackTpack and revealed that the subjects
who use the nontraditional BackTpack can obtain a more natural stance and gait pattern.
Pascoe, David D. et al. [18] investigated the effects of different styles of carrying book bags
on the gait kinematics of youths and found that book bags carried on one shoulder can
significantly change gait and posture compared with a two-strap backpack under daily
physical stresses. However, few scholars have paid attention to the effects of different
load styles on the accuracy of gait recognition based on sEMG, so this area is still not well
understood.

Algorithms, such as BPNN [19], Long Short-Term Memory (LSTM), SVM [2], and
linear discriminant analysis (LDA) [1], are combined with manual feature extraction for
gait recognition. Manual feature extraction often loses some features [4], resulting in class
performance that is not very satisfactory.

Recently, CNN have achieved great success in computer vision [20], image process-
ing [21], speech recognition [22], and other fields. Subsequently, CNN have been applied
successfully to process sEMG signals [4,23]. For example, Park and Lee [4] employed a
CNN model to learn the features of six hand movements based on sEMG, and the perfor-
mance of the CNN was better than that of the SVM. Fricke C. et al. [23] applied CNN to
process sEMG for gait recognition and achieve a better result than classic classification
algorithm. With the deepening of research, some scholars have further improved CNN
for recognition and classification with promising results. Chen, Cf. et al. [24] proposed a
method based on LSTM-CNN for gait recognition and obtained 97.78% accuracy. Guo B.
et al. [25] designed a light-weight convolutional neural network (Lw-CNN) for sEMG to
recognize the upper-limb motion intents, and the average accuracy is up to 95%.
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Inspired by the success of EMG maps [26,27] and myoelectric topography [28,29] in
applications of sEMG-based pattern recognition, as well as the advantage of CNN in image
processing, some scholars have tried to convert high-density sEMG (HD-sEMG) signals
into greyscale images. Under these conditions, EMG-based pattern recognition can be
accordingly transformed to image classification. Geng, W. et al. [30] trained a deep CNN
model using sEMG images converted from HD-sEMG signals to recognize eight gestures
and obtained 99.0% accuracy under 40 frames of sEMG images at a 1000 Hz sampling rate.
With the same thinking, Yu Du [31] presented an eight-layer convolutional neural network
based on adaptation architecture to deal with HD-sEMG images for gesture recognition,
and the results outperformed four other conventional classifiers in both intra- and inter-
session tests. The applications of sEMG images in gesture recognition in the existing
literature are mainly focused on HD-sEMG. For sEMG images from sparse multichannel
sEMG (SMC-sEMG) signals, which require precise anatomical positioning, there is no
relevant research in the field of gait recognition. sEMG images do not lose their inherent
features, which are commonly lost in manual feature extraction, and the SMC-sEMG can
also be converted to an sEMG image as an HD-sEMG. Moreover, implementing the CNN
on a small-size dataset can achieve good performance if the choice of filters, weights and
number of layers are reasonable [32]. Thus, it is also reasonable to study gait recognition
based on SMC-sEMG images and CNNs.

To clarify these issues thoroughly, fifteen adult males took part in our experiment.
Every subject walked on a uniform running treadmill with three load styles under three
speeds. The CNN was employed to deal with the SMC-sEMG image from the SMC-sEMG
signal to investigate (1) whether the different load styles have a significant impact on
gait recognition; (2) whether the CNN based on SMC-sEMG images performs well in
gait recognition; and (3) whether a lower-limb exoskeleton (or prosthesis) control system
trained by sEMG signals from single or parts of load styles still functions well in the face of
multiload style conditions.

2. Experimental Method
2.1. Subjects

Fifteen able-bodied (intact) male graduate students (mean ± SD; age = 26 ± 2 years,
height = 172.2 ± 5.4 cm, weight = 64.1 ± 4.2 kg, Body Mass Index (BMI) = 21.6 ± 0.7 kg/m2)
from Zhejiang University who were skilled in using a treadmill participated in our study.
Before the experiment, all subjects underwent anthropometric measurements, including
age, height, and weight. Then, they were given a complete physical examination to ensure
that they were free from neurological and musculoskeletal diseases. They were not allowed
to participate in any physical strenuous exercise that might introduce fatigue. The purpose,
details, and procedure of the experiment were provided to the local human ethical clearance
committee of Zhejiang University for review and were approved. All subjects provided
informed consent after they completely understood the experiment.

2.2. Experimental Procedure

According to the different roles the lower-limb muscles play during the gait cycle, four
thigh muscles (tensor fasciae latae, semitendinosus, adductor longus, and vastus medialis)
were selected for the acquisition of the surface EMG signal; of these, the tensor fasciae latae
and the semitendinosus are closely related to the stance phase, while the adductor longus
and the vastus medialis mainly affect the swing phase [33,34], as shown in Figure 1.
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After all instruments were configured correctly and the signal was checked to be in 
a very good steady state, the experiment continued to the next step. The subjects were 
required to walk on the treadmill at three uniform speeds (V3, V5, and V7 = 3, 5, and 7 
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Figure 1. The experimental equipment and connection, the placement of the electrodes, and load styles (SBP = backpack,
SCS = cross shoulder, and SSS = straight shoulder).

In the experiment, all the subjects were asked to wear T-shirts and white shoes to
strengthen the colour contrast between their shoes and the treadmill belt, which is good
for the division of the gait phase by identifying the demarcation points of the heel strike
and toe off of both feet. Then, the subjects were familiarized with the entire experimental
process and the equipment.

Four electrode groups were used to acquire sEMG signals, every group contained
3 Ag/AgCl electrodes. Each electrode group was adhered to a target muscle, and the line
through the two electrodes (non-reference electrode) aligned with the direction of target
muscle fibres on the midline of the muscle belly [35]. Then, the exact location on which the
electrode groups were placed on the skin was marked to ensure that the electrode groups
were placed in the same position in each experiment, and a new electrode group was used
in each experiment. To improve the stability of the signal and the conductivity of electrodes,
conductive gel was used after the hair on the four measured muscles was shaved off, and
the skin was cleaned with medical alcohol [36]. We also used medical bandages to fix data
wires on the thigh to reduce the noise signal produced by shaking wires, and the bandage
should not be loose or too tight, so that it could fix the wire without interfere with muscle
activity. In addition, the subject rested for 10 min after each experiment to remove the
negative effects from fatigue.

After all instruments were configured correctly and the signal was checked to be
in a very good steady state, the experiment continued to the next step. The subjects
were required to walk on the treadmill at three uniform speeds (V3, V5, and V7 = 3, 5,
and 7 km/h, respectively) [37] under three load styles (SBP, SCS, and SSS; Figure 1) for
50 continuous gait cycles (as shown in Figure 1). The weight of the load (bag and load)
was 20% of the body weight of the subject [36]. In the entire experiment, 6750 data sets
(15 subjects × 50 gait cycles × 3 load styles × 3 speeds) were acquired, as shown in Table 1.

Table 1. Speed and load style information in nine trials.

Speed Load-Style Trial

V3
SBP: backpack Trial 1

SSS: straight shoulder Trial 2
SCS: cross shoulder Trial 3

V5
SBP: backpack Trial 4

SSS: straight shoulder Trial 5
SCS: cross shoulder r Trial 6

V7
SBP: backpack Trial 7

SSS: straight shoulder Trial 8
SCS: cross shoulder Trial 9
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In the experiment, we chose a traditional one-shoulder bag and backpack with no
sternum strap or hip-loading belt to carry the load. The adoption of this bag and backpack
makes the experiment more convincing for their universal applicability. Then, the shoulder
straps of the backpack were adjusted to ensure that the load was placed on the level of
pelvis [17], and the same method was employed to ensure that the load of the shoulder
bags was placed at the same level height.

2.3. Data Acquisition

The subjects were instructed that data would be collected when they walked steadily
on the treadmill. The surface electromyographic (sEMG) signals of the target muscles of
subjects were collected by MyoScan-Pro sensors, which have the ability to record up to
1600-microvolt (µV) sEMG signals. The collected signal was filtered in a range of 10 Hz
to 400 Hz, and a 50 Hz notch filter was employed to remove line interference. Then, the
signals were input into a PC for data analysis using a digital sEMG system (FlexComp
Infiniti System, Thought Technology Ltd., Montreal, QC, Canada), which contains ten
channels and a video collection system [36], which can guarantee the synchronism of the
sEMG data and the video data. In the experiment, all sEMG signals were sampled at
2000 Hz.

The video data were collected synchronously by a high-speed, high-resolution camera
at 60 frames per second. The camera was fixed perpendicular to the direction of the running
belt of the treadmill, and the vertical distance to the treadmill was adjusted to ensure that
the entire running belt was in the camera’s frame [18].

2.4. Signal Preprocessing

All sEMG and video signals were processed offline. The synchronized video of each
experiment was segmented into independent gait cycles one by one, and then each gait
cycle was subdivided into 5 separate gait subphases (initial stance, midstance, terminal
stance, initial swing, and terminal swing) by a trained and experienced observer by
identifying the demarcation point of the heel strike and toe off of both feet [38]. Then, the
divided video was used as a reference to label the five gait subphases of the synchronized
sEMG signal [5]. The labelled sEMG data were then segmented to extract features by the
overlapped windowing technique [39], and the analysis window was set to 30 ms and
overlapped by 10 ms.

2.5. Classification Methods
2.5.1. CNN

1. sEMG image.
The sample size of the sEMG signal after pre-treatment was 240 (4 channels for sEMG

signal acquisition, analysis window of 30 ms, sample rate of 2000 Hz). The sEMG signal of
each analysis window was recombined and arranged into a 4 × 60 greyscale image to take
advantage of the CNN in image processing for feature extraction and classification.

2. CNN structure.
We structured the CNN as shown in Figure 2, which included one input layer (L1),

2 convolution layers (C2 and C3), and 2 fully connected layers (F4 and O5).
In this paper, a one-dimensional convolution operation was used, and the neurons

were defined as (l, m, r, and f ), in which l was the layer, m was the feature image, r
was the specific position of neurons in the feature image, and f was the activation func-
tion. The input and out of a neuron were recorded as xl

m(r) and Pl
m(r), respectively, and

Pl
m(r) = f

(
xl

m(r)
)

. In C2 and C3, we employed f (u) = α tanh (β u) as the activation
function (where α = 1.7159 and β = 2/3 [40]). In F4 and O5, we used the sigmoid function
f (u) = 1/(1 + exp−u) as the activation function. Each layer is expressed in detail as
follows:
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(1) L1: input layer. the input matrix HC,T (C = 4, channels; T = 60, sample points),
which can be expressed as 4 × 60.

(2) C2: convolutional layer. The aim of this layer was to carry out spatial filtering for
input signals. We used 7 spatial filters and set the convolution kernel [4 × 1] in the layer,
so 7 feature maps (the size of each feature map was [1 × 60]) were obtained. The function
can be expressed as (1) [41].

P2
m = f

(
i≤4

∑
i=1

Hi,r × K2
m + b2

m(r)

)
(1)

where K2
m is the convolution kernel of C2, and b2

m(r) is the bias of C2.
(3) C3: which was similar to C2, which filtered input signals in the time domain. We

used 6 time filters and set the convolution kernel size [1 × 6], and 42 feature maps (each
size [1 × 10]) were obtained. The function can be expressed as (2) [41].

P3
m = f

(
i≤6

∑
i=1

P2
m[(r− 1)× 6 + i]× K3

m + b3
m(r)

)
(2)

where K3
m is the convolution kernel of C3 and b3

m(r) is the bias of C3.
(4) F4: fully connected layer, which is fully connected with C3, and 110 neurons were

set in the layer.

P4 = f

(
i≤42

∑
i=1

z≤10

∑
z=1

P3
i (z)w

4
i (z) + b4(r)

)
(3)

where w4
i (z) is the weight from C3 to F4 and b4(r) is the bias.

(5) O5: outer layer, which was fully connected to F4 and included 5 neurons (5 gait
phases: initial stance, midstance, terminal stance, initial swing, and terminal swing). The
expression is

P5 = f

(
i≤110

∑
i=1

P4(i)w5(i) + b5(r)

)
(4)

where w5(i) is the weight from F4 to O5, and b5(r) is the bias.
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In our CNN, gradient descent was employed to adjust the weight and bias to ensure
the smallest error. The model’s loss convergence was determined to be optimal after 104

iterations. The range of input weight and bias was [−1/n(l.m.r)in, 1/n(l.m.r)in], in which
n(l.m.r)in was the number of neurons in the upper layer connected with the ith neuron in
this layer. The learning rates σ2–3 and σ4–5 (C2–C3 and F4–O5, respectively) were defined
by (5) and (6) [41,42].

σ2–3 =
2ψ

Nsh
n(l.m.0)

√
Nin

n(l.m.i)

(5)

σ4–5 =
ψ√

Nin
n(l.m.i)

(6)

where Nsh
n(l.m.0) is the number of neurons sharing weight, Nin

n(l.m.i) is the number of inputs,
and ψ is a constant.

2.5.2. Classic Classification Algorithm

In contrast to a CNN, an SVM and BPNN were employed to recognize the gait phases.
A: Feature Extraction
After filtering, labelling, and segmentation, the sEMG data were extracted to reduce

the sEMG signal dimension, which decreased the complexity and improved the computa-
tional efficiency of pattern recognition and classification. Based on the same thinking, it
was important to choose features with clear distinction, less complexity, and substantial
efficiency [43]. In our paper, integral electromyography (iEMG) and the root mean square
(RMS) were employed as the input features of SVM and BPNN, and they can be expressed
as shown in Equations (7) and (8).

iEMG =
1
N

N

∑
k=1
|Vk| (7)

RMS =

√√√√ 1
N

N

∑
k=1

V2
k (8)

where Vk is the ith sEMG data sampling. k = 1, 2 . . . , N. N is the number of sampling points
in each time window.

Therefore, the input vector P can be expressed as
Pk = {RMSk1, iEMGk1, RMSk2, iEMGk2, RMSkr, iEMGkr}, where k is the number of

time windows and r is the number of sEMG channels.
In this experiment, the sEMG data were collected from four muscles, which means

that each time window included eight features. The outputs were five gait phases, i.e.,
initial stance, midstance, terminal stance, initial swing, and terminal swing.

B: Classification Methods
The SVM is widely used to process EMG signals. With appropriate kernel functions,

the SVM can obtain good adaptability and robustness. Therefore, in this study, we
chose the Gaussian radial basis function (RBF) as the kernel function to construct the
SVM model [44]. Cross-validation was employed in the training phase of SVM model
construction.

BPNNs have achieved great success in pattern recognition and classification based on
sEMG signals. In our study, we designed a three-layer BPNN, which includes 20 nodes in
the hidden layer. This means that there were eight nodes in the input layer and one node
in the output layer, which was the gait phase corresponding to the time window.
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2.6. Data Analysis

To study the impact of load styles on gait recognition, we converted the sEMG signal
into an sEMG image from different load styles and speeds (9 experiments per subject,
135 experiments in total) and took the sEMG image as the input of the CNN model. In each
experiment, 60% of the data were selected randomly for training CNN models, 20% of the
data were set for selecting optimal parameters, and the remaining 20% of the data were
set to test the performance. In each experiment, the recognition accuracies of the five gait
phases were obtained separately, and the five values were averaged to acquire the average
recognition accuracy of a single trial. For comparison, the SVM and BPNN were employed
to process the same data.

Univariate analysis of variance (UNIANOVA) was adopted to investigate the impact
of load styles on gait recognition. The least significant difference (LSD) post hoc test was
implemented to search for the full effect if the impact was significant. SPSS 24.0 (SPSS Inc.,
USA) was employed to analyse the experimental data, and a confidence level of 95% was
selected.

3. Results
3.1. Accuracies of the Five Gait Phases under Different Load Styles and Speeds

Three different CNN models were constructed under each speed, as shown in Table 2.
There were substantial differences in the accuracy of gait recognition. The highest value
(97.56%) appeared at SBP under V5, and the lowest value (80.73%) was from SCS under V3.
When only the load style was considered, the highest accuracy of gait recognition at three
different speeds came from SBP (88.60% at V3, 97.56% at V5, and 93.65% at V7), followed
by SSS (85.17% at V3, 94.67% at V5, and 91.11% at V7), and the lowest value occurred at
SCS (80.73% at V3, 87.96% at V5, and 85.54% at V7). The gait recognition total average
accuracies at the three load styles and three speeds were significantly different. V5 had the
highest value (93.40%), and V3 had the lowest value (84.83%).

Table 2. Gait phase recognition (%), gait recognition (%) under each load style and speed, and the total average values of
gait recognition (%) at three load styles and three speeds.

Speed V3 V5 V7

Load styles SBP SSS SCS SBP SSS SCS SBP SSS SCS

Initial stance 96.00 93.69 78.87 96.61 90.81 88.32 90.35 84.42 88.56
Midstance 90.40 90.38 92.66 99.14 99.05 98.60 99.03 95.58 98.95

Terminal stance 95.18 90.59 76.32 95.27 92.85 84.25 88.22 90.47 80.91
Initial swing 72.69 70.30 74.98 98.14 94.62 77.18 92.24 87.67 78.58

Terminal swing 88.73 80.89 80.82 98.63 96.02 91.45 98.41 97.41 81.70
Accuracy 88.60 85.17 80.73 97.56 94.67 87.96 93.65 91.11 85.54

Total Avg 84.83 93.40 90.10

The bold numbers indicate the minimum and maximum accuracy values of gait recognition in the three load styles and at the three speeds.

UNIANOVA revealed that the different load styles had a substantial effect on gait
recognition (p < 0.001); the same conclusion was also drawn from the speed data. In
addition, the LSD post hoc test showed a significant difference among the three load styles
(p < 0.05).

For comparison, we adopted an SVM and BPNN to process the same data. The gait
recognition performance of the three algorithms is presented in Figure 3. Under the three
speeds, the average gait recognition performance of the three load styles from the CNN
was the best (84.83% at V3, 93.40% at V5, and 90.10% at V7). Furthermore, the performance
of gait recognition from the SVM and BPNN indicated the same tendency: the performance
from SBP was better than that from SSS, and the performance of SCS was the worst among
the three algorithms under each speed for all experiments. UNIANOVA showed the same
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conclusion: the different load styles also had significant effects on gait recognition, as
obtained from SVM and BPNN (SVM: p < 0.05; BPNN: p < 0.05).
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3.2. Results of the Confusion Matrix

Three different CNN models were constructed at each speed, which were trained
by the data from one of the three load styles, and the test data were from all three load
styles evaluated one by one at the same speed. All the performances are presented in
Figure 4. Every value in those matrices represented gait recognition performance among
all subjects according to the designated training load styles (vertical axis) and testing load
styles (horizontal axis). The values on the main diagonal were obtained when the training
and testing data were from the same load styles (intra-load styles), and the other off-main
diagonal values were obtained when the training and testing data were from different
load styles (inter-load styles). Then, a t-test indicated that there was a marked difference
(p < 0.05) between the values on and off the main diagonal, which means that load styles
had a significant effect on gait recognition. For example, when the testing data were
from SBP and the training data were from SBP, SCS, and SSS under V5, the gait recognition
performances (97.56%, 66.89%, and 67.41%, respectively) were markedly different. A
similar phenomenon was also found in other experiments. Among all the experiments, the
best and poorest performances at V3 appeared when the training data came from SBP and
SCS and the testing data came from SBP (SBP–SBP: 88.60%; SCS–SBP: 54.84%). For V5 and V7,
the best and poorest performances appeared when the training data came from SBP and
the testing data came from SBP and SCS (SBP–SBP: 97.56% at V5 and 93.65% at V7; SBP–SCS:
56.53% at V5 and 64.48% at V7).
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Statistics were employed to analyse all the values in the three matrices, and the intra-
and inter-load styles and overall accuracy, expressed as the mean ± SD, are presented in
Table 3. The total intra-load style accuracy was 89.44%, which was much better than the
total inter-load style accuracy (67.83%) and the total overall accuracy (75.03%). Moreover, as
shown in Table 2 and Figure 4, different speeds had a substantial effect on gait recognition.
The overall gait recognition accuracy at V3 (69.77%) was significantly different from those
at V5 (77.17%) and V7 (78.15%).

Table 3. Intra- and inter-load styles and the overall accuracy of gait recognition (%) (mean ± SD)
across the three speeds.

V3 V5 V7 Total

Intra-load style accuracy
(mean ± sd) 84.83 ± 3.95 93.40 ± 4.93 90.10 ± 4.15 89.44 ± 5.32

Inter-load style accuracy
(mean ± sd) 62.24 ± 6.47 69.05 ± 9.94 72.18 ± 4.67 67.83 ± 8.13

Overall load style accuracy
(mean ± sd) 69.77 ± 12.56 77.17 ± 14.70 78.15 ± 9.91 75.03 ± 12.64

3.3. Results of the Mixed-Load Styles Evaluation

At each speed, all the data from the three load styles were mixed as the testing data
group (group 3 (V3), group 5 (V5), and group 7 (V7)), and the training data were mixed
as one or several load styles. This means that there were seven different combinations
of load styles in the training data at each speed: one load style in the training data
(three kinds), two load styles in the training data (three kinds), and three load styles
in the training data (one kind). The performances are summarized in Figure 5, which
shows that the poorest performance occurred when the training set included one load
style (71.90% at V3, 63.80% at V5, and 74.78% at V7), while the performance was much
better when the training set included two load styles (80.08% at V3, 80.33% at V5, and
83.59% at V7); the best performance occurred when the training set included three load
styles (86.96% at V3, 96.69% at V5, and 90.44% at V7). The trend lines (linear prediction)
intuitively display the marked impact of the kinds of load styles included in the training
data on gait recognition.
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4. Discussion

In this study, we first investigated the impact of load styles on gait recognition based
on sEMG images from sEMG signals using a CNN. Then, we discussed whether a lower-
limb exoskeleton control system with sEMG as the control signal and trained by parts of
the load styles can still function efficiently in real-time conditions where a multiload style
is required.
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Table 2 shows that the gait recognition performances among the three load styles
under each speed fluctuate substantially (88.60–80.73% at V3, 97.56–87.96% at V5, and
93.65–85.54% at V7). Then, UNIANOVA suggested that there was a significant effect of
the load styles on gait recognition (p < 0.001), and the LSD post hoc test showed that a
significant difference existed among the three load styles (p < 0.05). The load had a marked
effect on the muscle activity, and the different load styles could influence the activity levels
of muscles involved, which may influence the fatigue of the corresponding muscles and
the gait stability [45], which would then affect gait recognition. Simpson et al. [46] revealed
that a one-strap bag (SSS, SCS) had a markedly greater energy cost than a SBP [18], indicating
that the fatigue under the one-strap bag was much worse than that under the backpack,
which is in accordance with our findings that the gait recognition performances of SCS
and SSS were much worse than that of SBP. Different load styles had significant effects on
posture and gait balance [17]. With SSS and SCS, the load was placed on one side of the body,
which caused much greater lateral spinal bending and worse balance than with SBP [18],
and the marked force difference from the load on the left and right sides of the body also
substantively damaged the gait balance [47]. Moreover, without physical hindrance, the
swing amplitudes of the bags of SSS and SCS were much greater than that of SBP at the
same speed, which leads to worse physical stability [48]. Yu-Chih Hung et al. [49] revealed
worse posture stability with a one-shoulder bag (i.e., SCS, SSS in our study) than that with a
SBP, which can explain to some extent why the gait recognition results of SSS and SCS were
worse than that of SBP.

The SVM and BPNN algorithms were employed to deal with the same data separately
to verify our conclusion, and the results shown in Figure 3 showed that load styles had
a significant effect on gait recognition, which was also clearly obtained from SVM and
BPNN (p < 0.05); however, the performances of SVM and BPNN were generally worse
than that of the CNN at the three tested speeds. A possible reason for this difference was
that no information was lost in the feature exaction of the CNN, while the hand-crafted
features (iEMG, RMS) in the SVM and BPNN may drop inherent information [4], resulting
in the poor performance of gait recognition. The results demonstrate that in addition to
the HD-sEMG image, the CNN based on the SMC-sEMG image also performs well in gait
recognition.

To explore whether lower-limb exoskeletons still work well in a real-time environ-
ment, a feasible method was to test whether the control system using sEMG as a control
signal was sufficiently effective when the training and testing load styles were unequal
(i.e., inter-load styles) [12]. Our experiment (Table 3) showed that when the testing
and training data were from the same load styles at each speed (intra-load styles), the
performance of gait recognition was much better than the performance of gait recog-
nition when the data were from different load styles (inter-loads) (84.83–62.24% at V3,
93.40–69.05% at V5, 90.10–75.51% at V7, and total 89.44–69.94%). Therefore, we can
safely conclude that a control system of lower-limb exoskeletons trained by single or
partial load styles is obviously insufficient in a real-time environment where various
load styles are required.

We further studied the impact of load styles on gait recognition in real-time envi-
ronments and explored ways to increase gait recognition at the level of load styles. All
the data at each speed were collected as a group for the testing set to imitate a real-time
environment, in which varied load styles are the norm. The three datasets from the three
load styles were freely combined into seven datasets as a training set to imitate the possible
load styles that people encounter in real environments. The performance of gait recognition
at each speed revealed the same conclusion: if more load styles are included in the training
set, better performance is achieved, as shown in Figure 5. UNIANOVA suggested that the
kinds of load styles included in the training set had a significant effect on gait recognition
(p < 0.001), and based on these results, we can conclude that increasing the kinds of load
styles in the training set can clearly improve gait recognition and can subsequently improve



Sensors 2021, 21, 8365 12 of 15

the effectiveness of the exoskeleton using the EMG signal as a control signal in a real-time
environment.

In addition, we found that speed was not a factor that could be ignored in gait
recognition, as shown in Table 2. The total average gait recognition at V5 was best
(93.40%), followed by that at V7 (90.10%), and the lowest performance was at V3 (84.83%).
These results were consistent with those of Rossi et al. [37], who found that the gait at
a fast speed was better than that at a slow speed. The performance of gait recognition
at V5 was better than that at V7. A possible reason is that V5 was a natural walking
speed in daily life, which is more likely to produce ideal and stable sEMG signals [50].
Kadaba et al. [51] demonstrated that a normal and comfortable pace was good for
the repeatability of sEMG in gait cycles and was good for improving gait recognition
performance.

However, some limitations are present in our experiments. For instance, the subjects in
our experiments were all able-bodied people who were not afflicted by stroke or hemiplegia
(the real users of exoskeletons). Second, we only explored whether the CNN based on SMC-
sEMG images performs well in gait recognition and investigated the impact of different
load styles on the accuracy of gait recognition. However, we did not validate the control
system based on sEMG with the exoskeleton on. Therefore, the next study will focus on
the inclusion of people with disabilities beside verification of sEMG control system with
the exoskeleton on. With these factors taken into consideration in studies on the effects
on gait recognition, we will attempt to improve the accuracy of gait recognition and the
effectiveness of the control system for lower-limb exoskeletons based on sEMG in real-time
environments.

5. Conclusions

In this paper, we demonstrated that the different load styles had marked effects on gait
recognition based on sEMG images using a CNN, and the same conclusion was obtained
from a BPNN and SVM, which means that the marked effect was not mainly caused by
algorithms but load styles. In our study, the gait recognition based on SMC-sEMG images
using the CNN was much better than those using the SVM and BPNN, indicating that the
CNN has good performance in processing SMC-sEMG images for gait cognition in addition
to HD-sEMG images. We also found that the performance of gait recognition when the
training and testing data of CNN were from intra-load styles was much better than the
performance when they were from inter-load styles. Moreover, we freely combined the
data from three load styles at each speed to imitate the possible load styles that the users
of lower-limb exoskeletons may meet in real-time environments and pooled all data at
each speed as a group to imitate a real-time environment at the level of the load styles.
The results showed that if more load styles were included in the training data, better
gait recognition performance was obtained, which suggests that a lower-limb exoskeleton
control system trained by a single load style or by only some load styles does not work
efficiently in real-time environments. We can also deduce that including more load styles
in the training data was an effective method to improve gait recognition in a real-time
environment at the level of the load styles. This study not only contributes to the EMG
guidance of a lower-extremity exoskeleton but, at a certain level, also explains that the
difference in load styles significantly impacts the posture and gait balance of the human
body, providing good guidance for the posture correction of the human body, especially
for teenagers.
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