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Abstract

The complexity of morphogenesis poses a fundamental challenge to understanding the

mechanisms governing the formation of biological patterns and structures. Over the past

century, numerous processes have been identified as critically contributing to morphoge-

netic events, but the interplay between the various components and aspects of pattern for-

mation have been much harder to grasp. The combination of traditional biology with

mathematical and computational methods has had a profound effect on our current under-

standing of morphogenesis and led to significant insights and advancements in the field. In

particular, the theoretical concepts of reaction–diffusion systems and positional information,

proposed by Alan Turing and Lewis Wolpert, respectively, dramatically influenced our gen-

eral view of morphogenesis, although typically in isolation from one another. In recent years,

agent-based modeling has been emerging as a consolidation and implementation of the

two theories within a single framework. Agent-based models (ABMs) are unique in their abil-

ity to integrate combinations of heterogeneous processes and investigate their respective

dynamics, especially in the context of spatial phenomena. In this review, we highlight the

benefits and technical challenges associated with ABMs as tools for examining morphoge-

netic events. These models display unparalleled flexibility for studying various morphoge-

netic phenomena at multiple levels and have the important advantage of informing future

experimental work, including the targeted engineering of tissues and organs.

Background and history

Morphogenesis is the complex chain of biological processes with which cellular populations

self-organize, in a reproducible manner, into predetermined structures or patterns. It involves

a multitude of mechanisms and systems and is governed by signal transduction across various

spatial and temporal scales. In addition to evident outward patterning events, such as the for-

mation of stripes on a tiger’s back or the regular spacing of hairs or feathers, morphogenesis

encompasses all molecular processes that convert a fertilized egg cell into a blastula, then into

an embryo with germ layers that have their unique roles, and ultimately into a functional

organism. It has been known for some while that the numerous simultaneous events during

this journey, such as the development of fingers out of a limb bud or the organization of neu-

rons into functional networks in the brain, involve fundamental processes of cell migration
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and differentiation, but it is extraordinarily difficult to ascertain and characterize the molecu-

lar, mechanistic underpinnings guiding these processes and allowing the often complicated

structures to form.

Notwithstanding these challenges, the fact that an extremely complex organism evolves out

of a single cell or a seemingly homogeneous group of cells is very intriguing, and it is hardly

surprising that the biological and chemical study of morphogenesis eventually coalesced with

mathematical—and later computational—approaches that attempted to distill the essence of

pattern formation out of the overall complex developmental process. Whereas the first mathe-

matical approaches relied on simple diffusion gradients and biochemical reactions, the emer-

gence of unprecedented computer power and its wide accessibility increasingly permitted

more complicated and realistic simulation studies, which have culminated by now in sophisti-

cated agent-based models (ABMs). These models are uniquely qualified for spatially and func-

tionally representing the complexity of a system that is the collective result of a multiplicity of

well-timed, fine-tuned cues. This review summarizes the development of morphogenetic mod-

els from relatively simple reaction–diffusion (RD) models to today’s complex ABMs and places

particular emphasis on proliferation, migration, and differentiation as the main mechanisms

for pattern formation.

The history of morphogenetic observations and investigations goes back a long time, but

theory-based explanations were not proposed until the 20th century. A landmark was D’Arcy

Thompson’s work On Growth and Form [1], in which he described similarities between

mechanical and physical systems and the shapes of biological organisms. Because of severe

limitations with respect to both theoretical analysis and experimental validation, his observa-

tions and calculations were purely hypothetical, as he freely acknowledged. Nevertheless, they

marked the beginning of an illustrious scientific development. A decade later, Alan Turing

proposed in his treatise The Chemical Basis of Morphogenesis [2] a mechanistic explanation

that dominated the field for several decades. The core concept of this theoretical explanation

was the by now widely accepted RD mechanism, in which, under the right conditions, a two-

molecule reaction system is capable of producing periodic patterning through diffusion insta-

bility. Specifically, a fast-diffusing global inhibitor interacts with a slow-diffusing local activa-

tor, and their functional coupling can be shown to exhibit nonlinear reaction dynamics that

can generate repetitive patterns, such as spots or stripes [3]. For instance, the inhibitor pre-

vents features such as hair follicles from forming too close to each other, an important and

widespread effect sometimes called lateral inhibition [4].

The RD patterns produced by the inhibitor and activator gradients can be considered

chemical prepatterns that act as templates for future differentiation. Thus, the apparent initial

homogeneity of an egg or cell cluster morphs into spatially distinct profiles of “invisible” high

and low concentration regions, which later guide the implementation of cellular fate decisions

and the emergence of visible shapes and forms. Importantly for the field of computational

morphogenesis, Turing’s RD mechanism demonstrated that it is feasible to represent morpho-

genetic patterns using a simple, biochemically plausible system governed by simple mathemat-

ical rules. Alas, although the theory was conceptually convincing, it did not gain significant

traction in the field for almost five decades.

In another landmark publication, two decades after Turing’s proposal, Lewis Wolpert

introduced the conceptual framework of positional information (PI) as a mechanism of pat-

tern formation during morphogenesis [5]. This theoretical framework was inspired by old

observations during the morphogenesis of sea urchins, which Hans Driesch had made as early

as 1891 [6]. According to the tenets of PI, a cell is able to determine its assigned fate from its

position relative to other parts of the organism [7, 8]. The position, in turn, is characterized by

the concentration of a morphogen. Thus, a cell senses its positional value by interpreting a
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morphogen concentration and makes a fate decision based on this local information. It is

assumed that the cell interprets the position based on its genetic makeup and its developmental

history, but a central claim of PI is that there is no prepattern in the embryo. A reasonable bio-

logical implementation of PI could be a morphogen source leading to a spatial morphogen gra-

dient that gradually decreases with the distance from the source, thereby providing PI. The

concept of PI is quite intuitive and was quickly accepted in the field, partly because experimen-

tal findings corroborated its existence [9]. For instance, numerous experiments, especially in

the field of limb development, regeneration, and transplantation, clearly suggested that cells

indeed possess characteristic information regarding their position, which may be acquired

through dedicated regulatory programs involving genes such as sonic hedgehog (SHH), hunch-
back, andHox (e.g., [10]).

In spite of the intuitive appeal of PI and intense research over several decades, it remains

unclear even today how the necessary gradient is established, how the cell senses it, and how a

cell correctly interprets it. Diffusion comes to mind, but diffusion processes are not particu-

larly reliable, precise, or robust toward external perturbations, and one must wonder how

interactions between morphogens and their environment would be realized in terms of effec-

tive molecular events. Furthermore, although sensing of a morphogen by a cell is easy to imag-

ine in principle, the cells along a gradient would have to be able to distinguish very subtle

concentration differentials [11]. As Wolpert [8] himself recently stated, “There is no good evi-

dence for the quantitative aspects of any of the proposed gradients and details of how they are

set up.” Thus, to summarize PI, many experiments have convincingly suggested that PI exists,

but it is not clear how it is implemented in living organisms. Finally, one should note that PI

and RD are not mutually exclusive but in fact complementary (e.g., [12]).

The advent of the digital computer and its eventual widespread availability drastically accel-

erated research on morphogenesis. Computational modeling permitted additional complexity

to be considered with minimal effort and effectively decreased the limitations caused by math-

ematical tractability. In particular, the RD mechanism experienced burgeoning interest [13–

15], and the Turing paradigm was successfully put to the test with sophisticated differential

equation modeling and improved experimental techniques. Ultimately, research in recent

years has substantiated the role of RD mechanisms alongside PI mechanisms during develop-

ment [16–20], despite their slow start. In addition to the two prominent morphogen-based

mechanisms, newer approaches to understanding morphogenesis with computational means

have also taken mechanical, electrical, and environmental cues into account [21–25]. However,

similar to the treatment of chemical mechanisms, both mechanical and electrical cues have

typically been investigated independently. This is a clear shortcoming, as these factors often

act simultaneously and presumably synergistically. Thus, in moving forward, it seems wise to

pay attention to the multiscale nature of morphogenesis and to the integration of the diverse

signals that control it.

A brief description of mathematical and computational approaches

to morphogenesis

RD strategies

The original RD system proposed by Turing was composed of two partial differential equa-

tions (PDEs) describing the spatiotemporal dynamics of two compounds, A and B. In general-

ized format, these equations read

@A
@t
¼ DAr

2Aþ F A;Bð Þ;
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@B
@t
¼ DBr

2Bþ G A;Bð Þ;

where ther-terms represent diffusion and F and G are the nonlinear functions representing

the reaction kinetics. For this system to achieve diffusion-driven instability, the nonlinearity of

the reactions is obligatory, and the diffusivities between the two species must be different. Var-

ious particular reaction formats have been analyzed as pattern generators using the RD para-

digm. The first examples satisfying these requirements were proposed several decades ago, for

instance, by Gierer and Meinhardt [26] and by Schnakenberg [27]. At the time of these studies,

computers did not have the bandwidth or speed for realistic simulation studies, which man-

dated mathematical solution by hand, which quickly became very laborious, given the sensitiv-

ity of the RD mechanism to parameter values and initial conditions. An important “trick”

toward solving the equations was the transformation, or scaling, of the equations into a nondi-

mensional format. The resulting dimensionless equations maintain continuity between diffu-

sion and reaction terms of both species but retain the feature of being quite general with

respect to parameter values and also simplify the visualization of the admissible parameter

space. Murray provided solutions for this set of nondimensional RD systems and describes a

methodology to isolate the Turing space, which consists of the range of parameter values that

successfully generate patterns [28].

Structurally, the RD approach has not changed much since its inception: it is still mostly

driven by two interacting molecules and uses PDEs, inspired by continuum mechanics, on a

predefined two-dimensional (2D) grid (Fig 1A). A few cases have extended the physical space

to three-dimensional (3D) domains to represent morphological features more realistically

[29], whereas others have resorted to growing domains that can account for expanding cell

populations [30–33]. A notable variation of the generic model is the inclusion of additional

species and also of immobile environmental factors. This extension broadens the Turing space

of the corresponding two-molecule system while simultaneously removing the requirement of

differential diffusivities [34]. The potential of immobile factors for enhancing RD pattern for-

mation had been suggested previously [35, 36] but was particularly highlighted by Macron and

colleagues [34], who introduced a sophisticated automated mathematical analysis that directly

identified these network topologies along with their respective parameter constraints.

PI

In contrast to the RD mechanism, there is no universal mathematical representation of PI. The

reason is that PI is a phenomenological concept describing the capacity of a cell to interpret its

location from its immediate environment [7]. The original theory focused solely on the inter-

pretation of morphogen signals for differentiation by defining threshold values that separate

the concentration ranges associated with specified fates (Fig 1B). The premise of PI, that cells

can ascertain their location within developing tissue, has been fundamental to the current

understanding of morphogenetic patterns and confirmed in experiments, as discussed before.

However, no formalism has been established and generally accepted that can be used to verify

PI, and PI has therefore mostly been applied as a qualitative descriptor [37, 38]. Some develop-

ing systems seem to suggest that the time spent by a cell in a certain position is critical [39].

Specifically, if a signal is restricted to the front end of a growing domain, the duration of expo-

sure to that signal can be inferred as PI. Taken together, PI has not been strictly tethered to

morphogen gradients but instead has encompassed a range of mechanisms for designating fate

decisions via cell positions.
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For instance, there has been a recurring theme of local cell–cell interactions contributing to

the acquisition of PI. These interactions could be mediators of PI with varying degrees of influ-

ence. At one end of the spectrum, cell–cell interactions were used as noise modulators, provid-

ing a spatial averaging effect that enhanced detection of morphogen signaling [40, 41]. At the

Fig 1. Overview of the two most popular theories for pattern formation during morphogenesis, reaction–diffusion systems and positional

information, as well as common features of agent-based models for morphogenesis. (A) Archetypal Turing reaction–diffusion system with an

activator and inhibitor generating repetitive patterns from differential diffusivities and nonlinear reaction terms. The reaction–diffusion system

depends on the concept of a chemical prepattern developing in advance of cell fate decision and emphasizes the ability to induce pattern formation

from an allegedly homogeneous initial state. (B) Wolpert’s positional information theory proposes an interpretation step based on concentration

thresholds that alleviates the need for a morphogenetic pattern to match the chemical prepattern. In positional information, a cell is capable of multiple

fate decisions from a single molecular gradient by discerning subtle variances in concentration along the gradient. (C) Agent-based modeling provides a

framework capable of implementing features from both theories. Cell agents can act as the sources of activators (“A”) and inhibitors (“I”), permit

localized reactions, and make autonomous decisions in response to their local environment. In addition to the generation of static patterns, agent-based

modeling allows for the investigation of dynamic, spatiotemporal patterning.

https://doi.org/10.1371/journal.pcbi.1006577.g001
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other end, patterning was derived from a localized, secreted factor affecting cell–cell interac-

tions, without evoking the use of global PI from a morphogen [42]. To what degree cell–cell

interactions play an absolutely necessary role in the interpretation of PI is unclear, but the fact

that such interactions appear to play a role in various systems suggests that computational

approaches are likely to benefit from an implementation at a cellular resolution.

ABMs

RD models employ relatively simple PDEs, which are sufficient for generic analyses of mor-

phogen gradients and their interactions. However, as soon as the target of morphogenetic

modeling is a more realistic, complex space, such as a cell, a blastula, or a developing limb bud,

the use of PDEs becomes cumbersome. In fact, it seems almost impossible for analytic PDE

models to account for genuinely heterogeneous milieus, in which cells or organisms develop.

An alternative that emerged for such purposes over the past three or four decades is the use

of ABMs [43]. The main ingredients of ABMs are autonomous agents that represent some type

of entity, such as a molecule, cell, or person. An agent can, in theory, be anything; generically,

it is a definable, active or responsive element. The dynamics of an agent may consist of a vari-

ety of actions, which must adhere to rules that govern the behavior of the agent. All agents

independently make rule-based decisions as they interact with other agents or their simulated

environment. Usually these decisions are probability-based, as described in later sections

below. ABMs are extremely flexible in their execution and provide an exceptionally powerful

framework for the creation of multiscale models (Fig 1C). In particular, they permit the inte-

gration of processes across time scales. By their nature, ABMs are particularly adept at captur-

ing spatial phenomena. For example, in an RD system modeled with PDEs, an identical set of

equations is solved at each point of an equally spaced grid. Since the reactions are usually cell-

mediated, it is implied that each grid point is a cell. This rigidity makes it a difficult task to

define a system of equations that account for heterogeneity in a cell distribution, heteroge-

neous environmental features, or the inclusion of more than one phenotypic state. In contrast,

ABMs can easily mimic the patterning of classical RD models but with significantly greater

adaptability, such as changes in the environment generated by the agents themselves. Early

work demonstrated this option of a crossover between RD systems and agent-based represen-

tations in the morphogenesis of ant colonies [44] by implementing local activation and long-

range inhibition through memory of the agents. This early work discussed challenges of the

“inverse problem” that still exist today for both natural and synthetic systems—namely, how to

specify desired emergent Turing patterns by agent rules. Here, the same principles from ant

colonies are extended to systems at the resolution of the cell. The properties and history of

each cell can be monitored, multiple cell states can be readily implemented, and movement

does not have to be constrained to a grid. This flexibility of ABMs permits unlimited options

for exploring the dynamics of a complex system. Of importance here is that the ABM frame-

work is very well equipped to simulate morphogenetic events in molecular and cellular detail

and to investigate the role of PI in developmental cell fate decisions.

The dynamic system represented by an ABM is a collection of constituent parts and rules.

For example, in an immunological model, the agents might be various T cells, B cells, and cyto-

kines. In general, the designation of agents is mostly a question of whether the selected parts

are capable of replicating the behavior and/or structures of the examined system. This question

is directly related to the dominant size scale of the system, which in turn tends to be tied to the

timescale of the system. Agents can be portrayed as computational entities in a variety of ways,

and the choice of representations is important, as it can affect interactions with other agents

and movements throughout the environment. Typical agent representations for cell-based
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models are illustrated in Fig 2. In the simplest models, agents are simply grid points on a 2D or

3D lattice that have defined properties. The lattice-based representation is the simplest and

computationally cheapest. It is also the most limited in terms of mechanistic features and

details of cell movement, as movement occurs only to neighboring grid points. The somewhat

more complex Cellular Potts Model (CPM) allows agents to consist of often irregularly shaped

clusters of grid points that share the same or similar properties. The movement of such a clus-

ter is governed by forces and energy. The CPM is the most flexible for representing irregular

cell shapes and movements, and it is also the computationally most intensive model, as it

requires forces to be converted to energy. Some of the newer, more flexible models do not rely

on lattices anymore. A cell is often represented as a compressible sphere or a centroid, which

corresponds to the geometric center of a shape, and a sophisticated algorithm determines

movements while avoiding the overlapping of agents. The lattice-free models are well suited

for generating 3D organizations and emulating deformations but require more up-front effort

for defining realistic details of collision and movement events. As so often is the case in model-

ing, the “best” representation depends on the questions to be asked, the context of the model,

and the availability of data [45].

The rules governing the dynamics of the agents can vary in their degree of abstraction, both

across and within models, but within a single model there is usually a focus on either mecha-

nistic or phenomenological descriptions. For instance, a rule may dictate what happens if two

agents encounter each other. Such mechanistic rules are established based on empirical data or

mathematical representations. An example of the latter might be a random walk model to

describe the motion of a molecule by diffusion. In contrast, phenomenological rules are uti-

lized either to mimic an observed behavior or to condense a cluster of mechanistic events into

a single representative behavior. For example, cell migration involves a cascade of intracellular

signaling, cytoskeleton remodeling, and numerous adhesion forces but is typically modeled as

Fig 2. The three most common physical representations of cells in ABMs. Lattice models are generally the least complex, given the constraints to

movement and interaction, whereas both CPM and lattice-free models possess varying degrees of complexity depending on the features included in the

model. Miniature depictions of the respective images will be placed beside each subsection discussing morphogenetic ABMs in later sections to

designate the types of models described. 2D, two-dimensional; 3D, three-dimensional; ABM, agent-based model; CPM, Cellular Potts Model.

https://doi.org/10.1371/journal.pcbi.1006577.g002
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a direct movement response [46]. ABMs that predominantly consist of mechanistic as opposed

to phenomenological rules are deemed “bottom-up” as opposed to “top-down” models,

respectively. In either case, additional rules can be defined in a manner that the system is able

to learn and evolve as a function of past behavior. Thus, agents can become “smarter” in their

actions and may exhibit new behaviors as a result of past behaviors and experience.

The agents of an ABM typically move in an artificial environment that represents the bio-

logical space of interest in a simplified manner. The simulated environment of an ABM can be

as simple or as complex as the research questions demand or the modeler chooses. In the sim-

plest cases, agents move and interact on a 2D grid space within a plane. They may also diffuse

through a 3D grid representing a fluid or viscous solution. The environment may be static and

passive, in which case the agents interact only with each other, or it can be dynamic, in which

case the environment can have an effect on the actions of the agents and/or the agents can

change the environment. An example is a predator–prey system, in which the environment

could be constant or provide the prey with a feed source that fluctuates dynamically as it grows

and is depleted.

Any additional complexity in model design requires extra rules, definitions, and caveats.

For instance, in an interactive environment, constant updates are necessary to resolve interac-

tions with agents. Movements and interactions in a 3D system require more attention to the

physical properties of the system. Clearly, the computational cost rises significantly for 3D sim-

ulations, especially if the entire space needs to be assessed at every iteration of the simulation.

As a partial remedy, it is often beneficial to design an ABM in a phased manner: one might

begin with a representation of only the most essential features and later add complexity step by

step, as soon as the dynamics and the repertoire of possible behaviors of the current model

become clear.

A hallmark feature of ABMs is their potential to (re)produce emergent behavior. Expressed

differently, the collective decisions of independent agents within a multiagent simulation may

result in realistic complexity and behaviors that are not predictable from the governing rules.

In effect, the system in such a case exhibits a synergistic response that emerges from the cumu-

lative interactions of its various components. This emergent behavior is not always intuitive or

even explainable a priori, especially when the rules are intricate or adaptive. In these cases,

simulations are often the only means for identifying and characterizing emergent phenomena

within the system [47].

Other benefits of ABMs derive from the realistic nature of autonomous agents and their

flexibility, which imposes very few limitations. The autonomy is very important for the defini-

tion of rules, because autonomous agents control their own behavior and react to local factors

without needing to know the global environment. At the same time, the autonomous agent

representation permits heterogeneity, both with respect to agents and rules. The flexibility of

ABMs is immense: agent behavior, types of agents, agent interactions, agent adaptation, vari-

ability in agent scales, stochasticity, and environmental factors are all unlimited in scope and

easily manipulated through corresponding settings of parameter values.

ABMs for morphogenesis

One hallmark of morphogenesis is the coexistence of different types of cells, such as stem cells

and differentiated cells. ABMs for morphogenesis use different agents to represent such cells,

or various other phenotypes, and study how they organize into the targeted patterns. ABM

models of morphogenesis can be broadly organized into three primary categories that denote

the predominant mechanism for generating the targeted morphology or type of anticipated

pattern in each model: proliferation, migration, and differentiation (Fig 3). As a caveat to this
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categorization, one must note that there is certainly overlap and that models frequently employ

two or all three mechanisms.

Proliferation models place their main focus on differential division rates and on volume

exclusion within spatially confined regions to produce patterns (Fig 3a). Furthermore, the pat-

terns are frequently defined by the organization of cell types relative to each other, i.e., the clus-

tering of cell type X surrounded by cell type Y. To generate discernible patterns, these models

typically require at least two distinct cell types and/or a method for identifying unique

Fig 3. Classification used to categorize three types of agent-based models for morphogenesis; each model class

describes the primary mechanism that induces pattern formation. (A) Proliferation models depend on the

differential division of cells, either between cell types with variable growth rates, between cell generations, or as an

alternative to cell death. The illustration depicts volume exclusion of cell types A and B when cell type C has a fast

division rate. (B) Migration models concentrate on directional movement, both in a purely migrational sense and in

terms of polarized growth. The patterning of migration models is typically centered on overall morphology, such as the

branched network of a vascular network. (C) The focus of differentiation models is on patterning that is reliant on fate

change, in most cases following a hierarchy of lineage commitments. The interactions between the various cell types

are major determinants for the resultant behavior.

https://doi.org/10.1371/journal.pcbi.1006577.g003
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populations. The discussion of proliferation in the next section is divided into subsections

based on biological mechanisms that can affect morphological patterning.

Migration models can be classified by the inclusion of directed cellular movement and

their emphasis on the gain of cell polarity. A further criterion is the desired morphological

pattern of these models in comparison to other patterns. Specifically, the shape and growth

of the entire network or system is often more important than the relative location of cell

types within the network (Fig 3b). For example, when assessing the formation of the vascular

network, one might use the degree of branching and interconnected vessels as a metric,

rather than the arrangement of cells within each vessel. The discussion of migration models

is therefore split into two subsections representing extracellular factors that can induce

migration.

Differentiation models consider systems that are derived from a single cell type but produce

patterns or morphologies that contain two or more cell phenotypes. In all cases but one, the

system is initially homogeneous with respect to phenotype and gradually gains heterogeneity

from differentiation events (Fig 3c). The exception to this strategy is an initialization with

heterogeneity, which subsequently requires differentiation into multiple lineages to maintain

the desired morphology. Therefore, patterns from this class are described by the relative orga-

nization of cell types, which all originate from a stem cell. The subsections highlight two differ-

entiation events that are integral for development: the loss of pluripotency and the gain of

heterogeneity in tissue.

If an ABM is designed in a phased manner, the model complexity increases with each

sequential phase. As a case in point, the classification into proliferation, migration, and dif-

ferentiation models itself follows a sequential increase in complexity because of the way cell–

cell interactions are involved in these events and how they are encoded. Proliferation models

place their main attention on individual cell behavior (division, apoptosis, etc.). Therefore,

the most complicated rules that are to be defined only affect the agent performing the rule.

Such rules governing individual agent behavior are the easiest to implement because they

are self-contained and straightforward to interpret. Migration models account for two addi-

tional aspects—namely, the sensing of environmental factors and appropriate responses to

such factors. As a consequence, rules are required that describe how an environmental signal

is perceived and converted into movement and how this movement is coordinated with

neighboring cells. Cell–cell and cell–environment interactions both involve repeated activity

updates and, for migration, a balance between adhesion and motility. Differentiation models

typically combine the features of proliferation and migration models and additionally intro-

duce differentiation mechanisms, which are usually regulated by environmental factors and/

or more complex cell–cell interactions. Thus, the level of detail increases from one section to

the next.

ABMs with proliferation as the major morphogenetic factor

The key feature of ABMs in this category is their capability to specify unique growth rates for

each cell type within a simulation. In a developmental context, this variability in proliferation

can occur through numerous mechanisms, but the most archetypal instances involve inherent

differences in division times between cell types. As a case in point, consider the transition

from a pluripotent stem cell to a multipotent progenitor: the genetic distance between the two

cell types is relatively short, but the difference between their cell cycle lengths is significant

[48]. This fluidity in growth rate as a function of phenotype creates a vast potential for

unique spatial organizations that form dynamically over time, even if one only accounts for

cell division and the original spatial orientation of each cell type. ABMs provide an optimal
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mechanism for investigating the effects of proliferation and cellular densities or arrangements

during morphological processes.

Generational patterning. The first class of proliferation ABMs makes heavy use of cellu-

lar invasion waves, which arguably provide the best example for illustrating the capacity of

proliferation-based patterning. The phrase “cellular invasion” undoubtedly brings to mind

tumorigenesis, but cellular invasion is also an integral part of normal, physiological processes,

such as wound healing and morphogenesis [49]. Invasion waves contain two actions, namely

cell migration (the invasion), which is followed by proliferation of those cells (the wave). Of

particular importance here is the “wave” that occurs after the “invasion.”

As a specific example, the development of the enteric nervous system (ENS) involves the

migration of enteric neural crest (ENC) cells to the foregut, where they proceed as an “invad-

ing wave” that colonizes the entire gastrointestinal tract [50–52]. Initially, it seems intuitive

that the invading wave of cells will maintain an equal composition of progeny from the original

population as it grows. However, clonal dominance during ENS colonization has been

observed [53, 54]. Experimentally, a single green fluorescent protein (GFP)-labeled ENC cell

was added to a population of approximately 8,000 unlabeled ENC cells and fused with gut tis-

sue before the start of colonization [54]. After colonization, large variability was observed in

the number of GFP-positive cells contributing to the ENS across experiments, and in one case

one-third of the entire ENS was composed of GFP-positive cells. To characterize this appear-

ance of clonal dominance in a population of phenotypically identical cells, a cell-invasion

ABM was devised that was capable of tracking cell lineage and generation [54]. The agents

were placed on a 2D grid with equal growth rates and with equal ability to move stochastically

in the form of a random walk, but only if grid space was available. It is easy to imagine that a

cell with a faster division time than others within the initial population would have a competi-

tive advantage and ultimately dominate. However, in this case all cells were assigned exactly

the same division time. Tracking cell generations within this model revealed that 50% of the

final population could be attributed to the progeny of only a few cells (“superstars”) from the

initial population. In other words, despite the identical division time for each agent, a few cells

were able to monopolize the available space and create a spatially distinct distribution of their

progeny. Analysis of the model mechanics yielded the following: (1) location within the initial

population affects the probability of a cell becoming a superstar, but it is not the sole contribut-

ing factor; and (2) stochastic competition via volume exclusion is a sufficient mechanism for

instigating clonal dominance. Specifically, an accumulation of stochastic movement and

daughter cell placement events allows the progeny of a single cell to preclude the growth of

other cells by preventing access to grid space. This competitive advantage is reflected in many

proliferation models that demonstrate domination through volume exclusion [55–60].

Models of balanced growth and death: Apoptosis and homeostasis. Apoptotic events

are integral and necessary for shaping tissue during development; two excellent examples are

the formation of limb buds and the blastocyst [61, 62]. Combined with proliferation, the bal-

ance between cell-specific apoptosis and proliferation allows organisms to maintain morpho-

logical homeostasis while at the same time enabling the formation of heterogeneously

organized structures.

A popular model system that is highly dependent on apoptotic signals is the formation of

small cavities, called acini, in the mammary gland during epithelial morphogenesis of this

gland. Several ABMs have investigated acini formation [63–65], but the most recent model

stands out because it was implemented on a 3D grid [66]. The 2D model representations of

actual 3D systems are informative, but a higher level of abstraction is required for implement-

ing the projection, which often makes model results more difficult to interpret. A good exam-

ple for this situation is the comparison of proliferation rates: one can easily show that a 2D
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model requires a slower rate of proliferation than a 3D model to create the same cross-sec-

tional structure. As a thought experiment demonstrating this difference, imagine either a circle

or a sphere full of cells. In the former, the maximum number of cells is proportional to circle-

radius2/cell-radius2, whereas for the latter it is sphere-radius3/cell-radius3. As a consequence of

the different powers, the same cell doubling time allows the circle to grow faster than the

sphere.

The recent 3D acini ABM [66] begins with a single cell type that expands into the external

basement membrane with a designated proliferation potential. As the acinus grows, cells that

are not adjacent to the basement membrane receive a signal that triggers apoptosis with a set

probability. As cells die over the course of a simulation, the space they occupied becomes part

of the acinus lumen. Of particular note from a modeling point of view is that a minimalistic

rule set is sufficient to capture the dynamics of normal and aberrant acini morphologies. This

rule set slightly modulates the balance between proliferation and apoptosis. It is also important

to mention that this delicate growth–death balance only leads to the correct production and

maintenance of patterning if two requirements are met: (1) the signals must be relatively equal

in magnitude at the population level, and (2) at least one of the signals must be effective in a

spatially distinct manner.

The colon crypt is another system that establishes a dynamic steady state between cellular

growth and death. The bottom of the crypt is inhabited by a small number of adult stem cells,

identifiable by the Lgr5marker gene [67], that give rise to a large population of proliferative

cells. These proliferative cells both self-renew and produce terminally differentiated cells that

make up the majority of the crypt. The patterning capability, which is based on high turnover

rates of cells within the intestine, is probably one reason that intestinal and colon crypts have

been a popular target system for ABMs. Furthermore, monoclonal conversion, which is synon-

ymous with clonal dominance, is commonly found in crypt systems [68].

Several of the following sections cover a variety of crypt models that illustrate how the same

phenomenon may be approached with different types of representations governing the

mechanics within the system. Fig 4 contrasts the representations of some of these models. The

first crypt ABM was designed on a simple 2D lattice, with cell growth and death defined proba-

bilistically as functions of two preset gradients [69]. The two gradients in this model (termed

Divide and Die) are not associated with specific molecules but instead used to provide PI. The

probability of a cell transitioning from a quiescent cell to a proliferating cell and then to a ter-

minal cell increases as a cell moves down the Divide gradient. The Die gradient runs in the

opposite direction, with the highest probability of cell death occurring at the top of the crypt.

Cell movement up the column is defined as a function of cell death, with cells moving upwards

to fill any unoccupied space. Similar to the mammary gland acini model, discussed before, the

growth and death signals are balanced to maintain crypt size but are also spatially distinct to

preserve the cellular organization.

Models accounting for external proliferation cues. Numerous diffusible factors in the

extracellular environment can influence the proliferation of a cell. These factors range from

something as simple as the availability of nutrients to growth-specific proteins that are aptly

termed growth factors. Indeed, many growth factors have been classified as morphogens

because of their ability to promote proliferation and modulate differentiation potential during

development [70, 71]. Many examples of ABMs rely on such morphogens.

The development of the genital tubercle (GT) provides a clear example for the critical role

of morphogens. GT development is identical in males and females until stage embryonic day

(E)15.5 of embryogenesis, when the male GT is exposed to androgens. The androgen signal

promotes proliferation of both mesenchymal and endodermal cell types in the GT, resulting

in sexual dimorphism. An ABM of GT morphogenesis was implemented in the software
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CompuCell3D using a CPM that captured adequate movement and interaction dynamics [14,

72]. A simple signaling network was integrated into the model to account for the three princi-

pal morphogens that direct GT development: SHH, fibroblast growth factor 10 (FGF10), and

androgens. SHH and FGF10 induce growth in mesenchymal and endodermal cells, respec-

tively, whereas androgens enhance sensitivity of urethral plate endoderm and preputial mesen-

chyme to FGF10. In the model, SHH was secreted by endodermal cells at a constant rate, thus

stimulating the secretion of FGF10 in mesenchymal cells in a concentration-dependent man-

ner. Androgens were assumed to permeate the system at a set time point (E15.5), causing an

instantaneous change to the FGF10 sensitivity in all affected cells. The model was initialized

with an idealized geometry of the tubercle at E13.5, containing five distinct cell types. Simula-

tions using this model were able to recapitulate the sexual dimorphism that occurs during GT

development by modulating proliferation in response to androgen signaling.

During puberty, the mammary gland undergoes extensive proliferation and ductal mor-

phogenesis [73]. Previous studies had shown that exposure to ionizing radiation before or dur-

ing puberty significantly increases the risk of developing breast cancer in women by causing

an increase in the mammary stem cell population [74]. To test the mechanisms eliciting the

morphogenetic changes observed after puberty, an in vitro and an in silico ABM were defined

[56]. The in vitro model identified transforming growth factor β (TGFβ) as a major activator

of growth during ductal morphogenesis, whereas the in silico model addressed the mechanism

by which radiation could modulate the TGFβ-induced growth to produce a larger stem cell

population. The ABM was contained on a 2D grid and included three cells types: bipotent pro-

genitor cells, terminal basal cells, and terminal luminal cells. The progenitors had the option to

Fig 4. Comparison of three crypt model implementations and agent descriptions. (A) Cells are defined on a continuous 2D lattice such that a cell

moving off the right edge of the grid reappears on the left edge. Divide and Die gradients are used to describe the behavior of different cell states in the

crypt while movement up the crypt is the result of apoptosis. (B) A centroid model may be employed to investigate the role of crypt geometry on the

location of anoikis within a crypt. The proliferative state of a cell is defined by prespecified regions along the crypt, and cell death is solely dependent on

the occurrence of anoikis. (C) Centroid model that includes differentiation and dedifferentiation between the four main phenotypes present in an

intestinal crypt. Wnt signaling is defined by the position within the crypt, whereas Notch signaling is determined by the phenotype of the cell and its

neighbors. 2D, two-dimensional.

https://doi.org/10.1371/journal.pcbi.1006577.g004
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divide symmetrically or asymmetrically, producing two stem cells or one stem cell and one

basal or laminal cell, respectively. Furthermore, a dedifferentiation mechanism allowed termi-

nal cells to convert back to bipotent progenitors. The model parameters associated with the

probabilities that these events occurred were fit using experimentally determined distributions

of the cell types as the objective metric. These experimental distributions were obtained from

the in vitro model using TGFβ to stimulate growth, with and without irradiation. By compar-

ing the calculated best-fit parameters between these conditions, the likely mechanism precipi-

tating the increased stem cell population was identified as enhanced self-renewal in response

to TGFβ.

Although differentiation was an important component of this model, it played a less vital

role than the proliferation rates for yielding the desired patterning. Specifically, the majority of

daughter cells actually originated from a parent of the same phenotype rather than via differen-

tiation of a progenitor cell. This situation arose because differentiation in the model was cou-

pled to cell division, with the consequence that the rate of differentiation could never surpass

the rate of cell growth. Furthermore, because growth could only occur where space was avail-

able, the growth of progenitor cells was quickly hindered by other cell types through competi-

tion due to volume exclusion.

Models of growth directed through mechanical forces. Mechanical forces are involved

in nearly every aspect of morphogenesis, albeit with varying degrees of influence. At the mac-

roscopic scale, mechanical forces can shape and organize tissue in response to the cumulative

effect of numerous forces at the microscopic scale [75]. In particular, cell adhesion molecules

allow cells to bind together and to their environment, and these adhesion forces affect how the

population expands outwards as cells divide.

Up to this point, the ABMs discussed have been constrained to lattices, and in many cases,

division was only allowed to occur when space was available. Although lattice structures are

useful and computationally efficient, they offer limited spatial resolution and lack the ability to

describe intercellular forces. Furthermore, the division constraints are contextual and require

scrutiny: a constraint could represent contact inhibition or quiescence, but it also frequently

creates an artificial scenario in which mitosis is restricted to the edge of a cell cluster. Centroid

models overcome these limitations by allowing lattice-free movement. A centroid model rep-

resents each cell as a central point that is connected to neighboring cells by stiff springs. If a

cell comes within the confines of another cell, whether by movement or division, a collision

occurs. The collision produces a force that moves both cells to prevent overlap and, if neces-

sary, propagates this movement through the population.

An effective demonstration of a centroid model is again a colon crypt model [76]. This par-

ticular ABM sought to probe the mechanisms behind crypt anoikis, i.e., programmed cell

death in response to detachment from the basement membrane. In this ABM, cellular agents

grow and move freely along a 3D rendering of the crypt membrane, experiencing cell–cell col-

lisions and an attachment force to the membrane. In the biological system, anoikis typically

occurs at the top of the crypt, and the authors hypothesized that the crypt geometry and attach-

ment forces were the crucial factors for simulating the process. By modulating the attachment

forces, the localization of anoikis events could be replicated, and the system was able to self-

regulate the rate of anoikis, thereby maintaining homeostasis. Results like these highlight the

advantage of lattice-free models for investigating behavior that emerges as a function of inter-

action forces, especially within complex geometries.

When pondering mechanical forces during proliferation, one might also consider the

effects of external resistance. It is known that the extracellular matrix (ECM) can act as a scaf-

fold for growth; a pertinent example is the basement membrane of the second crypt model.

The ECM can also act as a boundary or an anchoring point [77]. The stiffness and elasticity of
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ECM are highly variable, and these properties influence the response of cells and their organi-

zation during growth.

An example is adipose tissue, which consists of adipocytes clustered into distinct lobules by

ECM, with variable morphologies. Using a lattice-free ABM platform, the self-organization of

adipose tissue was investigated with adipose cells modeled as growing spheres and ECM fibers

as short lines that could cross-link together [55]. Each ECM fiber had a defined, constant unit

strength, with larger strands of cross-linked fibers able to exert more force on neighboring adi-

pose cells through the fiber network. Additionally, the adipose cells were able to exert pressure

on the ECM network to prevent compression as the available space for growth decreased. To

explore the dynamics of lobule formation, the linking–unlinking frequency (νd) of the fibers

was investigated, which revealed that adjustments of this quantity could result in three distinc-

tive morphologies. Since modulation of νd was representative of the degree of ECM restructur-

ing, the three morphologies were regarded as consecutive “phases” that developed over time.

ABMs with migration as the major morphogenetic factor

Migration events are commonplace throughout development and pivotal for the morphogene-

sis of numerous tissues [78]. The forces behind cell motility are predominantly mechanical,

but the signals that trigger and direct migration can be mechanical, chemical, electrical, or all

three. As mentioned previously, cells in vivo are experiencing a multitude of forces from the

environment and neighboring cells. Furthermore, expansion of a cell population can lead to

passive movement of the cells in response to physical interaction effects (collisions, bound-

aries, etc.). In contrast to passive movement, migration involves the active generation of forces

by a cell to induce movement, usually in response to an external stimulus. Concurrently, cell

polarity accords directionality by establishing a leading or front edge during movement. The

ABMs discussed in this section emphasize two key mechanisms whereby heterogeneous envi-

ronmental factors can direct and coordinate cell movement.

ECM influence on migration. Cell migration during development exhibits a collective

form of organization whereby cell populations are able to traverse long distances as coordi-

nated groups. The emergence of this behavior requires one or more environmental cues that

guide the migration of each cell. One source of directional information for migrating cells is

the variable composition of adhesion and signaling proteins within the ECM [79]. The organi-

zation of ECM components is dynamically modulated by local cells that can secrete and

degrade ECM macromolecules [80]. The resultant remodeling of the ECM can bias migration

[81] and even reinforce specific migration paths [82].

The gastrulation in amphibians provides a representative example of collective migration

that is dependent on an ECM component: fibronectin (Fn) is essential for mesendoderm cells

to migrate as a sheetlike cluster across the inner surface of the blastocoel [83, 84]. As the cells

progress, they bind to the ECM and exert traction forces via integrin–Fn interactions, which

restructure the ECM in the wake of the first migratory cells [85, 86]. In addition, mesendo-

derm cells exhibit “shingling” behavior: cells overlap each other and maintain cell–cell adhe-

sion, mediated by cadherins, during movement.

An ABM, reminiscent of a standard CPM, was developed to investigate the capability of

these interactions to guide coordinated migration [87]. Specifically, each cell is represented by

a 3 × 3 grid on a 2D lattice of Fn, in which the center represents the cell body and its Moore

neighborhood the cell’s “edges.” The edges of adjacent cells are allowed to overlap and produce

an adherence force that mimics shingling behavior. In the model, the Fn matrix is initialized

with randomly distributed concentrations along the x-axis but with a mild gradient along the

y-axis. The restructuring of the matrix is modeled by a decrease in Fn concentration each time
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a cell moves through it. To determine the magnitude and direction of movement, the Fn gradi-

ent is calculated along each edge, with larger forces being generated by larger Fn differentials.

A similar force is calculated for each pixel overlapped by another cell, and the net force vector

is computed as the sum of both forces. This customized framework is able to achieve cellular

movement along the Fn gradient but cannot capture the observed, coordinated sheetlike clus-

tering. In particular, the balance between integrin and cadherin turns out to be disproportion-

ate along the edge of the cell colony. To remedy the situation, the authors introduced an

intracellular feedback network based on Wnt/B-catenin signaling, whereby integrin binding

triggers cadherin production, which in turn equalizes the integrin and cadherin forces and

allows a sheetlike migration to occur.

A second representative example in this category is the development of the neocortex,

which involves an interesting pattern of migration from the intermediate zone (IZ) toward the

marginal zone (MZ) [88–90]. The neocortex consists of six distinct layers of pyramidal neu-

rons. The migrating cells form a growing cortical plate (CP) between the IZ and MZ, one layer

at a time. Cortical layer VI is the first layer of cells to form and is positioned closest to the

migration source (IZ), with each sequential layer migrating over previous layers in an inside-

out manner and increasing cortical thickness [82]. Reelin is an ECM glycoprotein that is essen-

tial for the proper formation of the neocortex [91–93]. In fact, the cortical layers in a Reelin-

null mutation mouse (“reeler” mouse) are inversed, with layer VI becoming the most superfi-

cial layer [94]. However, the exact function of Reelin and its effect on migration through the

CP have been debated [88]. To explore the different hypotheses regarding the role of Reelin

during cortical development, a set of migration ABMs was generated with various rule sets to

reflect each proposed mechanism [95]. It is unnecessary to describe each individual rule com-

bination, but in general, the following held for these models: each layer of cells was introduced

to the system independently and uniquely colored, one row at time; furthermore, cell move-

ment and the conversion to an immotile state were defined as functions of Reelin. Extensive

model testing revealed that it is possible to isolate a rule set that very closely mimics the biolog-

ical system (Fig 3a). This inference of rules was accomplished by comparing the model output

(i.e., the colored cell distributions of CP) against the known behavior in reeler mutants and in

a Reelin-dependent mutant, Dab1 [96]. Other ABMs involving ECM-mediated migration

include [97–99].

Models accounting for chemotactic cues. A widespread mechanism driving morphogen-

esis is a branching process. Indeed, this process can be found across multiple organ systems,

including the lungs, kidneys, and vasculature [100–103]. In each of these tissues, the branched

morphology is achieved through the recurrence of three events affecting the bud or vessel: for-

mation, extension, and splitting. The branching morphogenesis in each of these organ systems

is sensitive to the spatial distribution of a key morphogen, namely, FGF10, glial cell–derived

neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) for lungs, kid-

neys, and vasculature, respectively. Multiple mechanisms have been proposed for initiating the

spatial distribution of each morphogen, including ligand-receptor-based Turing mechanisms

for the lung and kidney systems [19, 104]. In these cases, the morphogen induces expression of

its receptor, which correspondingly increases sensitivity to the morphogen. This receptor–

ligand cooperativity creates regions of high receptor density with enhanced morphogen activ-

ity that are interpreted as locations for branching events. A more common approach for

modeling branching events is the consideration of a morphogen as both an inducer of prolifer-

ation and as a chemoattractant. High concentrations of the chemoattractant polarize the tip of

a growing bud or vessel and cause proliferation in the respective direction. As the network

expands, the vessel/bud cells consume the morphogen and establish a gradient that directs

future growth and branching events.
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A CPM of a ureteric bud in the kidney was compiled to determine the relative influence of

mechanochemical factors on the observed branching morphology [105]. Specifically, this

model assesses the factors affecting a single splitting event within the kidney. Model analysis

revealed that the morphology is most strongly influenced by two model parameters represent-

ing the strength of chemotaxis and the proliferation rate. In fact, if chemotaxis and prolifera-

tion are perfectly balanced, the physiological morphology is achieved, whereas skewing the

ratio leads to pathological morphologies.

A different role of branching morphogenesis can be found at the network level. A good

example is a recently published 3D model of vasculogenesis that delves deep into the mechani-

cal aspects of these branching processes [106]. In contrast to what one might expect, the mor-

phogen (VEGF) is not implemented in the model as a direct activator of proliferation. Rather,

VEGF acts exclusively as a chemoattractant that stimulates migration of vessel tip cells. None-

theless, proliferation is important in this ABM. It is stimulated through mechanical stretch

forces generated by the “pull” force of chemotactically migrating cells, which has indeed been

experimentally observed in vascular endothelial cells. The mechanism by which the stretch

affects proliferation in these experiments consisted of up-regulating the VEGF receptor. The

ABM for this system uses a lattice-free, centroid description of two cell types: tip cells and ves-

sel cells. Both cells types are subject to multiple local forces that govern their behavior (Fig 3b).

Tip cells experience a chemotactic force along a VEGF gradient, a persistent force that results

in the tendency of cells to continue moving in the same direction, an environmental drag

force, and interaction forces from neighboring cells. The vessel cells are exposed to interaction

forces, environmental drag forces, and an angular persistence force that stabilizes and corrects

possible buckling caused by cell division. Furthermore, mechanical stretch and compression of

vessel cells are used to regulate proliferation and sprouting events, respectively. The complex

rule set of this ABM is unique compared to other models of branching morphogenesis, which

typically assume chemical dominance in extension and splitting events. The topics of angio-

genesis and vasculogenesis have been extensively researched and reviewed previously [107],

with copious ABMs for both phenomena [103, 108–117].

ABMs with differentiation as a necessary morphogenetic factor

Morphogenesis and differentiation are highly interdependent. All organs and tissues are com-

posed of heterogeneous assemblies of cells, and the acquisition of phenotypic heterogeneity

through differentiation often occurs concurrently with the gain of organization. Thus,

although differentiation is not as directly involved in shaping tissue as proliferation and migra-

tion are, it is clearly essential for morphogenetic events. The following describes representative

ABMs that focus on (1) initial differentiation from the pluripotent state and (2) differentiation

within tissues.

Gain of organization during loss of pluripotency. The loss of pluripotency at the begin-

ning of development prefaces nearly all instances of morphogenesis. As development proceeds,

pluripotent cells differentiate into the three germ layers and eventually every somatic cell type.

These initial fate decisions are crucial for embryogenesis and require coordination between

the processes that maintain pluripotency or designate cell fate [118]. The transcription factors

governing the pluripotent state can be reduced to a “core” network consisting of octamer-

binding transcription factor 4 (Oct4), sex-determining region Y–box 2 (Sox2), and Nanog

[119–122]. These key transcription factors dynamically regulate their own expression and have

essential roles in directing self-renewal and fate specification [123–126]. The self-renewal

aspect is of particular importance for the study of pluripotent cells in vitro. Pluripotent cells

are only transiently present in vivo, and they quickly acquire germ layer fates. Therefore,
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sustaining expression of the key transcription factors associated with self-renewal is necessary

for the culturing of pluripotent cells in vitro. Typically, this task is accomplished by the addi-

tion of exogenous factors such as leukemia inhibitory factor (LIF), which indirectly activates

Sox2 and Nanog expression in mouse embryonic stem cells (ESCs) [127, 128]. Since the dis-

covery of means for maintaining pluripotent cells in vitro [129–132], the opposite has become

very alluring as well: harnessing the specific organ- and tissue-forming potential of these cells.

Aggregates of pluripotent ESCs can serve as powerful in vitro platforms for studying mor-

phogenesis and early differentiation events, both experimentally and with ABMs. In a land-

mark study, White and colleagues found that spontaneous differentiation of these aggregates

produces transitional patterns as pluripotency is gradually lost [133, 134]. Specifically, sponta-

neous differentiation was instigated by culturing the cell aggregates in the absence of LIF. The

transition out of the pluripotent state was monitored by collecting representative images of the

pluripotency-regulating transcription factor Oct4 expression within the aggregates over the

course of differentiation.

To investigate the emergence of patterns, a 3D ABM utilizing the centroid schema was con-

structed. The ABM simulations considered two cell types (Oct4+ and Oct4−), with the initial

population consisting entirely of Oct4+ cells. Three mechanisms for triggering state change

were explored: stochastic processes, juxtacrine signaling, and paracrine signaling. In total,

seven unique rule sets for governing differentiation were formulated and compared. In gen-

eral, for both juxtacrine and paracrine signaling the Oct4+ cells were modeled as the source of

inhibitory factors, whereas Oct4− cells acted as the source of differentiation activators. To

compare the experimental and simulation results, network metrics were extracted from a

training set of computationally generated pattern classes. Principal component analysis (PCA)

was applied to the multivariate set of metrics calculated from the training set networks and

mapped onto a dimensionally reduced latent space. By applying the same PCA transform to

metrics calculated from the experimental and simulation data, spatial patterns of Oct4 expres-

sion could be evaluated as a function of proximity to each pattern class within latent space.

This strategy facilitated a direct and quantitative comparison between the simulation results

and the experimental data, thus identifying the state-change mechanism best able to describe

the observed patterning.

As with other studies, this model investigation faced a generic challenge of agent-based

modeling, namely the unbiased quantification of results. Here, model validation was

approached by assessing population-based and phenotype-specific metrics that were able to

quantify spatial features rather than relying on visual comparison. In fact, the specific method-

ology of this study may serve as a generic means of validating ABMs by comparison of spatial

characteristics, which is particularly important in morphogenetic studies. For example, the

same network-based analysis was used to examine the evolution of spatial patterning during

cichlid gastrulation in vivo [134]. Fig 5 provides an overview of this approach for comparing

spatial patterning between simulation and experimental systems.

ABMs have been used to elucidate another aspect of early differentiation in vivo, namely

the loss of pluripotency and the concomitant morphogenesis of a blastocyst [135]. This process

of blastocyst formation is remarkably robust and entirely self-contained, receiving no external

maternal information. Rather than attempt to delineate every signal and interaction, the

authors of this ABM decided to define overarching rules in a top-down approach. The ques-

tion was simple: What is a minimalist set of rules that can adequately capture the complexity

of blastocyst formation? Extensive exploration of various ABM implementations suggested

that four rules, derived from four main regulatory events, were sufficient to recreate the struc-

turing of the blastocyst. The first rule targets polarity at E3.0, thereby establishing the inner cell

mass (ICM) with trophectoderm cells along the periphery. The second rule mimics FGF
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signaling at E3.5 and creates a salt-and-pepper distribution of epiblast (Epi) and primitive

endoderm (PrE) cells. The third rule causes lineage segregation of the Epi and PrE cells

through differential adhesion. Finally, the fourth rule causes apoptosis of any PrE cells that

were not segregated properly from the Epi cells. The model was defined as lattice-free and

implemented in 2D, in which the success rate for achieving correct blastocyst formation using

these four rules was 79%. In a slight modification, the model was also validated in 3D with

minor changes to account for differences in the number of nearest neighbors.

Several biological insights related to the FGF/extracellular signal–regulated kinase (ERK)

pathway emerged from this work. First, the specification of Epi and PrE cells in a salt-and-pep-

per pattern resembles a Turing-like mechanism. Second, FGF4 is secreted by ICM and Epi

cells and inhibits Nanog. Third, Nanog and Gata6 mutually inhibit each other, which effec-

tively creates a positive feedback loop outside the steady state. The consequence is a local intra-

cellular amplification mechanism which, in conjunction with a global inhibitor, produces a

spot pattern. Furthermore, the initiation of FGF/ERK signaling appears to be invariant to the

number of cells within the embryo and is instead dependent on the time since fertilization. As

experimental validation, scaling experiments were conducted whereby mouse embryos at the

Fig 5. Overview of the analysis of spatial features using a combination of network analysis and dimensional reduction techniques. A set of metrics

is calculated or extracted from a series of pattern classes that depict typical cell organizations within the system—here, using the defined pattern classes

from [133, 134]. The selected metrics should be equally represented in the simulated and experimental systems. Dimensional reduction techniques

allow the multivariate data to be condensed to a few axes, ideally separating the defined pattern classes into distinct regions of the latent space. A

transform function trained on the pattern class data can then be applied to metrics calculated from experimental and modeling results, mapping both

into latent space and compared to the locations of the pattern classes. PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor

embedding.

https://doi.org/10.1371/journal.pcbi.1006577.g005
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8-cell stage, before trophectoderm specification, were merged into 16-cell and 24-cell embryos.

Blastocyst formation proceeded normally in these double- and triple-embryos, albeit with

approximately 2- and 3-fold more final cells, respectively. Of important note, the ratio of PrE

to Epi cells was maintained within the ICM despite the scaling, indicating that the patterning

mechanism does not rely on—nor is sensitive to—the quantity of cells within the ICM. Experi-

mental evidence of the time dependence was provided by the response to transient inhibition

of ERK: the PrE/Epi ratio decreased in proportion to the duration of inhibition. The model

predicts that the time dependence of these initial fate decisions is due to a necessary accumula-

tion of FGF or a similar signaling component from the onset of fertilization to the point of

activation.

Multiphenotypic tissue models. As a representative ABM in this category, we return

again to crypts but focus here on intestinal crypts, which share the same physiological structure

with the colon crypt but contain an additional cell type, called Paneth cells [136]. In the previ-

ous colon crypt models, cell types were not explicitly defined beyond their proliferation capac-

ity. Here, the individual cell types are considered along with their type-specific interactions;

they include undifferentiated (stem-like) cells, secretory progenitors, secretory goblet cells,

secretory Paneth cells, and enterocyte progenitors. The model has some similarities with the

second crypt model discussed before in that it is a centroid model in which each cell experi-

ences adherence forces to the basement membrane. In addition, the model here includes active

migration, extracellular signaling, intercellular signaling, and differentiation. Migration is

implemented as a constant upward movement for all cell types, except for Paneth cells that

migrate downwards. The extracellular signaling molecule Wnt is considered to be a function

of local crypt curvature. As a consequence, Wnt exhibits a constant gradient, with the highest

concentrations at the bottom of the crypt. Intercellular signaling is defined to be a function of

Notch, where undifferentiated and enterocyte progenitor cells produce the receptor, and secre-

tory lineage cells produce the ligand. In addition, Notch signaling acts as an inhibitory signal

for secretory cell differentiation in neighboring cells. Therefore, the secretory cells inhibit the

differentiation of nearby cells into secretory cells in a process termed lateral inhibition [4]. The

various lineage progressions between cell types, including dedifferentiation, are summarized

in Fig 4c. The complex model is capable of replicating numerous biological phenomena

reported in the literature, such as recuperation of the undifferentiated cell population after

ablation, and predicts that a similar recovery is possible for each functional cell type within the

crypt. This prediction reflects the primary focus of the model to emphasize the role of cell–

environment interactions in establishing the functional phenotype of a cell. Specifically, it

stresses that fate decisions are fluid and progenitors are capable of interconverting or dediffer-

entiating if exposed to the right set of cues.

Many morphogenetic events include populations with diverse sets of transitioning pheno-

types and cell type–specific interactions. As the number of interactions expands, it becomes

more difficult to intuit the role of any single interaction within the system. The capability of

ABMs to capture the emergence of system-level features in response to the addition or removal

of single interactions is a potent tool for probing developmental events. Indeed, other differen-

tiation-focused ABMs have explored a myriad of developmental processes, such as somite for-

mation [137], establishment of the germline in Caenorhabditis elegans [138, 139], and others

[140–145].

Manipulation of morphogenesis based on ABMs

Morphogenesis has been studied for over a century, but a modern goal of morphogenesis

research has become the manipulation of developmental mechanisms for purposes of targeted
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tissue engineering. Specifically, the short-term goal is to achieve functioning organ systems by

replicating environmental conditions that regulate the targeted morphogenetic events in vivo.

This modern line of research fundamentally asks questions regarding the number and charac-

ter of conditions that are sufficient to emulate the morphogenesis of any given tissue. ABM

provides a unique platform for mimicking realistic single-cell behavior at the tissue level in

response to spatially and temporally diverse signals. Indeed, agent-based modelers hope that it

is possible to derive the necessary conditions and interactions by iteratively simulating organo-

genesis from its inception under slightly altered rules and conditions. An excellent illustration

of this pursuit is the modeling work of Setty and colleagues on early pancreatic organogenesis

[146]. Their ABM consists of three main components: a reactive system engine for running

the model, a front-end animation, and a graphical user interface (GUI) for mathematical anal-

ysis. The reactive system engine permits user interactions during runtime, such as pausing a

simulation or adding or removing stimuli. In parallel, the front end provides a 3D animation

of the model during runtime, and the GUI analyzes the system. This implementation permits

real-time analysis and manipulation of the simulated system. The obvious advantage of this

approach is its ability to gauge the impact of specific conditions as they emerge.

The agents in this ABM consist of three interacting components: the cell itself, a nucleus,

and a membrane. The cell component makes growth and fate decisions, using information

from the nucleus and membrane. The nucleus contains a set of genes that may be expressed or

silent as a function of the environment and the cell state. The membrane responds to environ-

mental factors, such as the binding or releasing of extracellular molecules, which triggers cell

movement. The various features of the model are defined in a statechart, which designates the

cell types and their independent rules for cell–cell and cell–environment interactions. With

these methodological settings, the model is able to recapitulate 2D histological features of the

developing pancreas with high fidelity and generates results that are visually similar to 3D his-

tology samples. Although quantifiable validation is limited, the model is capable of creating tis-

sue-scale morphological features that depend solely on single-cell decisions in response to

environmental cues. Thus, with appropriate caution, this type of model can be a useful tool for

determining and fine-tuning conditions that are necessary for deriving complex tissue struc-

tures in vitro.

Limitations of ABMs for morphogenesis

Like all modeling approaches, ABMs have clear strengths but also germane weaknesses. The

description of ABMs in the previous sections has demonstrated that a particular strength of

ABMs is the relative ease with which specific hypotheses can be explored and tested. At the

same time, some modeling issues that might seem straightforward at first are actually quite dif-

ficult to assess for ABMs.

Inverse questions. A typical question for an ABM is, Is this hypothesized mechanism suf-

ficient to generate an observed pattern in time and space? Although such a question can often

be answered, a seemingly similar question is comparatively very difficult to assess with ABMs:

Is this hypothesized mechanism actually driving the biological phenomenon, and/or are there

other mechanisms that are operating in parallel? More generally, “forward simulations,” which

mimic “what-if” scenarios, are natural for ABMs, whereas it is difficult to address “inverse”

questions, which attempt to determine feature representations from high-level data. For

instance, it is difficult to infer the mathematical format of a mechanism, such as a growth or

migration process. It is similarly difficult to answer questions such as “how many steady states

can this system have?” or to characterize such steady states, especially if they are unstable.

Along the same lines, it is sometimes difficult to answer questions like “is it possible for this
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system to exhibit a particular behavior?” Nonetheless, it is not entirely infeasible to character-

ize ABMs with rigorous mathematical analysis. For instance, a very thorough analysis of CPMs

demonstrated some shortcomings with the depiction of cells with subcellular parts [147].

Although a significant portion of the analysis was dependent on the infrastructure of CPMs,

the approach itself highlights the potential for applying mathematical and model theory from

other fields to answer some of these questions on an individual model basis.

Parameter fitting. A second complex of challenges pertains to fitting parameters. In par-

ticular, the designation of rules does not always lend itself to parameters that can be directly

measured. In some cases, parameter values may be inferred from experimental data, if they are

independent of other parameters, but when multiple parameters are interdependent, they have

to be fit simultaneously. However, ABMs are not naturally amenable to parameter estimation

algorithms, and the typical steepest-descent methods or genetic algorithms face issues with

ABMs. Two factors that further complicate the situation are the stochastic nature of ABMs

and the phenomenon of emergence, which can lead to high parameter sensitivities—i.e., they

can lead to large fluctuations in system behaviors in response to small changes in parameter

values. As a consequence, typical parameter estimation techniques would require very large

numbers of iterations for each parameter set, which would incur significant computational

costs. Addressing these difficulties, new methods for parameter estimation in ABMs have

begun to appear [100, 148].

Model validation: Comparison to experiments. Specifically with respect to morphogene-

sis, the usual output from an ABM is a set of agent-objects that contain spatial and state infor-

mation at a cellular resolution. However, the patterns and morphological structures that are

being targeted are formed at the cell population level. It is quite easy to qualify similarities

between experimental observations and simulation results by visual comparison, but some

form of quantification is necessary for model validation and the ability to make definitive

claims. The derivation of such quantifiable metrics, especially those that characterize spatial

features, is a nontrivial task. Spatial metrics need to be able to classify the same types of often

irregular features and denote them with similar representative values for both experiments and

simulations. Because of difficulties associated with this task, the use of spatial metrics for vali-

dation has been relatively rare, which is surprising for models targeting morphogenetic events.

Instead, it has been more common to attempt model validation through easily quantified pop-

ulation-based metrics. Although population metrics do provide some connection between the

simulations and the true system, they are not optimal for models that are designed to explain

or predict pattern formation.

Two methods that are used most frequently for evaluating pattern formation are image

analysis and network analysis. In the former, the simulated agents are converted into images

that match the experimentally obtained images, whereas in the latter, the experimentally

obtained images are converted into digital networks that have the same format as the agents.

In both scenarios, representative features are extracted from data or calculated. For instance,

cell locations are determined by identifying nuclei in the experimental images. If the critical

features cannot easily be identified, customized algorithms are needed that allow pattern classi-

fication without the need of explicitly defined metrics [149, 150]. The acini model, for example,

demonstrates the use of image analysis for model validation, with images acquired at multiple

z-planes for 3D comparisons [66]. An excellent example of validation per network analysis can

be found in the ESC aggregate model [134]. Finally, the combination of a dimensionality

reduction technique, such as PCA, with either of these analysis methods can be an effective

way to visualize dynamic changes in patterning in addition to quantification [151].

Computational costs. The computational cost of ABMs can quickly become intractable

as the number of agents multiplies within a simulation. The most common approaches for
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overcoming the computational costs associated with ABMs center on the abstraction of agents.

For instance, the abstracted agents can represent clusters of cells within the biological system

but are depicted as individual agents in the simulation. This form of abstraction is usually static

over the course of a simulation, and all agents are scaled equally while maintaining the spatial

features of the target system, i.e., [72, 136, 146]. It is also possible to cluster agents dynamically

into larger “meta-agents” during a simulation [152]. This adaptable abstraction can decrease

the number of iterations at each time point and thus accelerate the computation time but

requires periodic checks of each meta-agent.

Other methods for improving the functionality of ABMs in morphogenetic research involve

technological improvements, with one example being graphical processing unit (GPU) paralle-

lization [153–155]. An evident advantage of parallelization is the ability to simulate much

larger cell populations without compromising computational time. Thus, more realistic tissue-

scale models can be produced even on regular desktop computers. An added benefit is that

models simulating fewer cells can run faster, thereby potentially eliminating some of the issues

regarding parameter estimation. However, parallelization requires certain constraints that can

either limit functionality entirely or reduce certain functionality, based on the user’s program-

ming knowledge. At this point, ABMs seem to be gaining the capacity to model tissue-level

morphogenetic events, but given the paucity of specific examples so far it is hard to predict

how the various interactions will translate into a parallel infrastructure.

Discussion

Morphogenesis is a paradigm for the benefits of merging traditional, reductionist biology with

some of the newer concepts of experimental and computational systems biology. Understand-

ing morphogenesis requires the very detailed elucidation of individual processes, but it also

depends critically on solid knowledge of the dynamic interactions among these processes.

ABMs are unique in their ability to investigate and integrate combinations of processes and

their respective dynamics. We demonstrated this flexibility here with the large diversity in

approaches for the various aspects of morphogenesis that have been analyzed with ABMs so

far. As a notable example, the three different crypt models addressed the same biological sys-

tem with three unique and genuinely different models that each answered a specific question.

The vasculogenesis model expanded upon the typical chemical models of branching morpho-

genesis by also considering the numerous mechanical cues that affect the direction and degree

of vessel growth. In contrast, the blastocyst model condensed the significant knowledge base of

early development down to four simple rules that were still able to accurately describe the

system.

ABMs are useful even for the exploration of poorly studied systems that lack sufficient data.

They can be developed initially with rather coarse, top-down, behavioral-driven rule sets that

ultimately generate hypotheses regarding those processes that are most influential for produc-

ing a given morphology or pattern. These hypotheses can in turn guide the design of labora-

tory experiments that increase the likelihood of identifying key events or pathways within the

system. Even if model predictions are not entirely correct, the insights gained can be used to

adjust, refine, or alter the model or a previously posed hypothesis, for instance, by accounting

for mechanistic features suggested by experimental data. In this alternation of experimental

and computational methods, one side informs and fertilizes the other, and iteratively both

often improve.

As with any computational modeling strategy, it is important to note that clear goals and

questions are needed up front, because they will determine the implementation details for

the ABM. As a case in point, some early ABMs in biology lacked a unique objective and
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emphasized the replication of a biological phenomenon rather than the discovery of new

characteristics or behaviors of a system. An early mesendoderm migration model, for

instance, was framed around the functional incorporation of various elements into a model.

These rather vague objectives can in retrospect be attributed to the fact that ABMs were

relatively new in the field and that it was necessary to gain experience with exploring

specific model features and the role of synergism among processes and rules. Since these

early days of ABMs in biology, the field has substantially matured, and most modern

ABMs are crisply focused on specific questions surrounding a particular application, as they

should be.

One of the primary advantages of designing models for a specific application is that it

becomes possible to simplify extraneous features. For example, in the first two crypt models,

phenotypes were generalized and associated with location in the crypt rather than intrinsic

fate decisions. This strategy was beneficial because the inclusion of phenotype would not have

improved their analyses but would have added significantly more complexity.

Although the history of ABMs is quite short, trends suggest that these models are quickly

becoming mainstream tools in biology. Not long ago, they simply tried to replicate what biolo-

gists were observing. In their next phase of development, they began to explain the roles of

hypothesized mechanisms and their interactions. The field is now at the threshold of using

ABMs for predictions of scenarios that had never been tested in the laboratory. Such predic-

tions will not only help with the formulation of novel, testable hypotheses but may become a

foundation for manipulating developing systems in a targeted manner, which will be funda-

mental to tissue engineering and regenerative medicine and possibly the creation of “tissue fac-

tories” that permit the production of pure, valuable organic compounds.
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