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Abstract

Inhibitory control is crucial for regulating emotions and may also enable memory control. However, evidence for their
shared neurobiological correlates is limited. Here, we report meta-analyses of neuroimaging studies on emotion regulation,
or memory control and link neural commonalities to transcriptional commonalities using the Allen Human Brain Atlas
(AHBA). Based on 95 functional magnetic resonance imaging studies, we reveal a role of the right inferior parietal lobule
embedded in a frontal–parietal–insular network during emotion regulation and memory control, which is similarly recruited
during response inhibition. These co-activation patterns also overlap with the networks associated with ‘inhibition’,
‘cognitive control’ and ‘working memory’ when consulting the Neurosynth. Using the AHBA, we demonstrate that emotion
regulation- and memory control-related brain activity patterns are associated with transcriptional profiles of a specific set
of ‘inhibition-related’ genes. Gene ontology enrichment analysis of these ‘inhibition-related’ genes reveal associations with
the neuronal transmission and risk for major psychiatric disorders as well as seizures and alcoholic dependence. In
summary, this study identified a neural network and a set of genes associated with inhibitory control across emotion
regulation and memory control. These findings facilitate our understanding of the neurobiological correlates of inhibitory
control and may contribute to the development of brain stimulation and pharmacological interventions.
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Introduction

One of the most influential cognitive theories of emotion reg-
ulation proposes that it is primarily supported by inhibitory
control (Ochsner and Gross, 2005; Gross and Thompson, 2007). A
potentially related cognitive process, memory control, is defined
as an ability to actively reduce the accessibility of memories.
Memory control is also thought to be supported by inhibitory
control (Anderson and Green, 2001; Anderson, 2004; Anderson
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and Hanslmayr, 2014). Recently, Engen and Anderson (2018) sum-
marized the conceptual link between emotion regulation and
memory control and raised the question of whether there is
a common neurobiological mechanism supporting these two
processes. Here, we set out to empirically demonstrate the neu-
robiological commonalities between the two processes by first
analyzing functional magnetic resonance imaging (fMRI) data
and then linking neuroimaging findings with postmortem gene
expression data.
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The idea that inhibitory control, as the fundamental cog-
nitive process, supports other higher-level processes such as
emotion regulation and memory control is supported by behav-
ioral and neural evidence. Behaviorally, a positive correlation
between emotion regulation and memory control performances
has been found (Depue et al., 2016). Human neuroimaging results
showed overlapping recruitment of right superior medial frontal
gyrus and right inferior frontal gyrus in both emotion regulation
(Ochsner et al., 2002; Buhle et al., 2014; Kohn et al., 2014) and
memory control (Anderson, 2004; Guo et al., 2018). Beyond these
frontal regions, the parietal cortex is another candidate region
that may play a critical role in both emotion regulation and
memory control. Starting from the idea of multiple-demand
system in the brain (Duncan, 2010), both the evidence from task
fMRI (Fedorenko et al., 2013) and resting-state fMRI (Dosenbach
et al., 2007; Power et al., 2011) suggest that a fronto-parietal
network supports the initiation of top-down control and control
adjustment in response to task goals and feedbacks.

No previous formal meta-analysis of human neuroimaging
studies has investigated the neural commonalities between
emotion regulation and memory control to pinpoint the overlap
in inhibitory control, although common neural correlates
between emotion regulation or memory control with response
to inhibition tasks (e.g. stop-signal and go/no-go task) have
been investigated in two recent meta-analyses (Guo et al., 2018;
Langner et al., 2018). Using activation likelihood estimation
(ALE), we aim to demonstrate that emotion regulation and
memory control evoke activation of similar brain regions with
a spatial pattern that is similar to the activation of typical
response inhibition paradigms, including stop-signal and go/no-
go tasks. Moreover, beyond overlapping regional brain activity,
we also are interested in overlapping co-activation patterns of
associated brain regions. We used meta-analytic connectivity
modeling (MACM) to test whether these brain regions act as
an interconnected functional network. We expected to find a
similar set of co-activated brain regions that are associated with
both emotion regulation and memory control, defining a core
‘inhibition-related’ network.

Identifying an underlying neural network is relevant
for potential brain stimulation interventions including but
not limited to transcranial magnetic stimulation (TMS) and
transcranial direct current stimulation (tDCS). However, further
dissection of molecular underpinnings is necessary to expand
our understanding of inhibition control, which in turn may
pave the way for pharmacological interventions. Therefore,
we reasoned whether emotion regulation and memory control
are not only related to a common neural network defined by
activity and connectivity, but also by associated similarities in
spatial transcriptional profiles. Conventional imaging genetic
methods including candidate gene methods and genome-wide
association approaches cannot reveal the relationship between
localized gene transcription and task-related brain activity, even
though they already showed the association between multiple
common gene variants and neuroimaging measures (Hariri
et al., 2002; Elliott et al., 2018). Thus, to explore the relationship
between spatial transcriptional profiles and emotion regulation
or memory control-related brain activity, we adopted a recently
developed approach to associate spatial maps of gene expression
in postmortem brain tissues with brain activation measures
(Gorgolewski et al., 2014; Kong et al., 2017). Spatial pattern
analysis of gene expression maps of the Allen Human Brain
Atlas (AHBA) together with neuroimaging revealed fundamental
features of transcriptional regulation (see review by Fornito et al.,
2019) and related disruptions in brain disorders (Romme et al.,

2017; Grothe et al., 2018; McColgan et al., 2018; Romero-Garcia
et al., 2019). However, the correspondence between spatial
transcriptional profiles and neural functionality has not yet
provided full insight into how genetic correlates are linked to
core cognitive abilities (e.g. inhibitory control in this study).
Based on the assumption that spatial transcriptional profiles not
only co-vary with the connectional architecture but also support
the task-evoked, synchronous brain activity (Gorgolewski et al.,
2014; Kong et al., 2017; Berto et al., 2018; Shine et al., 2019), we
expected to find similar spatial transcriptional profiles between
emotion regulation, memory control and response inhibition.

To investigate the neural and transcriptional commonality
of emotion regulation and memory control, we combined task
fMRI data, neuroimaging meta-analytic approaches and post-
mortem gene expression data. First, we used the ALE method to
generate the task activation map for each paradigm of interest
(e.g. emotion regulation or memory control) based on 95 pub-
lished task fMRI studies with in total 1995 healthy participants
(Figure 1A). Then, we used the brain regions identified by the ALE
as seed regions and estimated the meta-analytic connectivity
map (or co-activation map), using information from BrainMap
(Figure 1B). And to explore the behavioral relevance of these
findings, we examined the associations of these co-activation
patterns in a data-driven way via Neurosynth with behavioral
domains (Figure 1C). Next, we calculated the spatial associa-
tion between task activation maps and human gene expression
maps to identify their common spatial transcriptional profiles
(Figure 1D). Finally, we performed a systematic and integrative
analysis of the resulting gene list to gain an in-depth under-
standing of putative biological functions and disease associa-
tions of the identified ‘inhibition-related’ gene set (Figure 1E).

Materials and methods
Literature searches, selection and coordinates
extraction

In total, we performed literature searches for four task
paradigms (think/no-think, emotion regulation, stop-signal, and
go/no-go) and one network [‘default mode network’ (DMN)]. To
avoid biases, we used the following inclusion criteria during the
search:

(i) We only included data from studies on healthy adults with
no prior report of neurological, medical or psychiatric disor-
ders in the current meta-analysis, while results of patients
or specific sub-group effects (e.g. gender differences) were
not included. Articles including patients were only selected
if they reported results for a control group separately, and
only the control group was included here.

(ii) Only neuroimaging studies, which used whole-brain fMRI
and reported coordinates for brain activation or deactiva-
tion in standard anatomical reference space [Talairach/-
Tournoux; Montreal Neurological Institute (MNI)] were con-
sidered. Coordinates originally published in Talairach space
were converted to MNI space using the algorithm imple-
mented in GingerALE 3.0.2 (http://www.brainmap.org/ale/).

(iii) Only studies reporting results of general linear model con-
trasts were included, while studies focusing on functional
connectivity, structural, resting-state or brain-behavior cor-
relations were excluded.

(iv) Only studies reporting whole-brain analyses were included,
while studies based on partial coverage or employing only
region-of-interest analyses were excluded.

http://www.brainmap.org/ale/
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Fig. 1. Schematic of the pipeline for the investigation of neural and transcriptional commonality. (A) ALE meta-analyses of functional MRI studies. MRI coordinates of

reported brain activations from relevant studies were used to generate the activation map for each task of interest. (B) MACM of seed regions resulting from the ALE

analyses was conducted to search co-activated regions over all studies in BrainMap. Co-activation maps were estimated via ALE. (C) To generate behavioral profiles of

co-activation maps, we used Neurosynth to acquire a list of meta-maps, including the behavioral terms from low-level to high-level cognitive processes (total number

of terms = 23). Next, each co-activation map was compared to all meta-maps (e.g. inhibition, decision-making and social cognition) to compute the similarity index

for each meta-map. (D) The activation patterns were associated with gene expression maps from the AHBA. Each gene expression map was vectorized based on the

expression measures within the three-dimensional maps. The ALE values at the corresponding brain regions on the activation map were extracted and vectorized. To

identify the genes whose spatial patterns are similar to a specific activation map, the similarity between all vector pairs were quantified. ‘Inhibitory-related’ genes were

defined by identifying genes of which the expression patterns are correlated with the activation maps of four paradigms (ER, emotion regulation; TNT, think/no-think;

SS, stop-signal; GN, go/no-go). (E) ‘Inhibition-related’ genes were associated with biological functions (GO terms) and disease terms for the interpretation using gene

ontology enrichment analysis (GOEA).

Detailed search and extraction procedures were as follows for
each paradigm:

Think/no-think studies. A step-wise procedure was used to
search articles, published before February 2020, using functional
MRI to investigate brain activity during think/no-think paradigm.
First, we used standard search in PubMed and ISI Web of Science
to perform the search. More specifically, we used the combi-
nation of the following key words during the search: ‘memory
regulation’, ‘memory control’, ‘memory suppression regulation’,
‘memory inhibition’, ‘think/no-think’, ‘fMRI’, ‘neuroimaging’,
‘functional magnetic resonance imaging’ or ‘functional MRI’.
At the same time, we carefully exclude studies using the
‘directed forgetting’ paradigm, which targets at the memory
control during the encoding. Next, two lab members compared
the search results with a recent review article (Anderson and
Hanslmayr, 2014) to find additional relevant studies. The same
two lab members independently extracted the coordinates and
other essential information (e.g. sample size, type of stimulus)
extraction based on the identified think/no-think literature and
then cross-validated the coordinates. In summary, this search
and inclusion/exclusion criteria led to 15 think/no-think studies
(491 subjects and 256 foci).

Emotion regulation studies. We used the databases of previously
published meta-analyses on emotion regulation (Kohn et al.,
2014; Morawetz et al., 2017). We used the key words: ‘emo-
tion regulation’, ‘affective regulation’, ‘implicit emotion regula-
tion’, ‘explicit emotion regulation’, ‘interpersonal emotion reg-
ulation’, ‘extrinsic emotion regulation, ‘intrinsic emotion reg-
ulation’, ‘reappraisal’, ‘suppression’, ‘distraction’, ‘detachment’,
‘labelling’, ‘affective labelling’, ‘reinterpretation’, ‘rumination’,

‘fMRI’, ‘neuroimaging’, ‘functional magnetic resonance imaging’
or ‘functional MRI’. In the case that a study did not report the
contrast of interest for this meta-analysis, the corresponding
authors were contacted and asked to provide more information
on their data. The term ‘experiment’ refers to any single contrast
analysis, while the term ‘study’ refers to a scientific publication,
usually reporting several contrasts, i.e. experiments. This search
and the employed inclusion/exclusion criteria led to a total
inclusion of 107 studies from peer-reviewed journals on 31 July
2017 (385 experiments, 3204 participants).

Each experiment was manually coded by the authors of the
previous meta-analysis (C.M. and N.K) with terms that described
the experimental design with respect to contrast, stimulus type
utilized, emotion regulation strategy, goal of the strategy, valence
of the stimuli, tactics of the strategy and the task nature. To
achieve a more appropriate comparison between think/no-think
and emotion regulation, we restricted inclusion to ER studies
that used the ‘suppression’ or ‘distraction’ strategy. This led to
a similar amount of studies compared to memory control, and
most crucially suppression or distraction of emotions is concep-
tually also closer to the process of suppressing memories. These
criteria led to the inclusion of 15 emotion regulation studies (387
subjects and 165 foci).

Go/no-go and stop-signal studies. A similar procedure was used
to search published whole-brain functional MRI studies using
the ‘go/no-go’ and ‘stop-signal’ paradigm. To confirm the com-
pleteness of our search, we compared our results with used stud-
ies in a recent meta-analysis of motor inhibitory and memory
control (Guo et al., 2018). Again, two lab members (W.L and N.P)
performed the coordinates and study information extraction for
the go/no-go and stop-signal studies.
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Default mode network (task-negative network) identification. We
also performed a coordinated-based meta-analysis to identify
the DMN. Instead of manually searching related studies and
extracting coordinates, we used the BrainMap database (Fox and
Lancaster, 2002; Laird et al., 2005) to find peak coordinates of task-
independent deactivation reported in neuroimaging literature.
This method was used before by Laird et al. (2009b) to identify
the core regions in DMN. More specifically, we searched the
BrainMap for all contrasts that were labeled as ‘deactivation’
and ‘low-level control’ during submission. ‘Deactivation’ refers
to contrasts in which stronger signal was observed during a
baseline condition than during task condition (e.g. control task);
‘low-level control’ are conditions in which either fixation or
resting was defined as the baseline. Our search was further
limited to ‘normal mapping’, which means that participants who
are diagnosed with disease or disorders were excluded. In total,
105 studies (1588 foci) matched our search criteria and were used
in the following analyses.

Activation likelihood estimation analyses

The ALE analyses were based on the revised ALE algorithm
(Eickhoff et al., 2009) in GingerALE 2.3. Firstly, two separate meta-
analyses were conducted for the think/no-think (contrast, no-
think vs think) and emotion regulation (contrast, regulation
vs view) tasks using cluster-level inference (FWE cluster-
level correction P < 0.05, uncorrected cluster-forming threshold
P < 0.001, threshold permutations = 1000). Secondly, contrast
analyses (Eickhoff et al., 2011) were conducted between the
think/no-think and emotion regulation tasks. In these contrast
analyses, the thresholded activation maps from the two separate
analyses, as well as the pooled results from both tasks, were
used as inputs. Conjunction and contrast maps between the
conditions were given as output. For the output images, the
same cluster-level threshold correction was used (FWE cluster-
level correction P < 0.05, uncorrected cluster-forming threshold
P < 0.001, threshold permutations = 1000).

Additionally, meta-analyses of published fMRI studies using
the stop-signal and go/no-go paradigms were also performed.
The same software (GingerALE 2.3) and threshold (cluster-level
P < 0.05) was used to perform the analysis. Due to the unbalanced
number of studies and subjects included, no conjunction or
contrast analyses were performed for four tasks to identify the
overlap.

Co-activation analyses using BrainMap

We conducted the MACM analyses on the regions from the ALE
meta-analysis. More specifically, for each ROI, we used the Brain-
Map database (Laird et al., 2009a, 2011) to search for experiments
that also activated the particular ROI. Next, we retrieved all foci
reported in the identified experiments. Finally, ALE analyses
were performed over these foci to identify regions of signif-
icant convergence. Sequentially, raw co-activation maps were
corrected for multiple comparisons [voxel-wise false discovery
rate (FDR) < 0.05. All clusters sizes >200 mm3].

Functional profiles of the co-activation maps

To assess associated functional terms of the co-activation
maps generated by MACM, we used the Neurosynth meta-
analytic database (www.neurosynth.org) (Yarkoni et al., 2011).
We followed the methodology used in a previous study to assess
topic terms associated with the principal connectivity gradient

in the human brain (Margulies et al., 2016). More specifically,
we conducted a term-based meta-analysis for the same list of
Neurosynth topic terms as Margulies and colleagues did. This list
covered well-studied functional terms from low-level cognition
(e.g. visual perception and auditory) to high-level cognition
(e.g. language and rewarding). Sequentially, we examined the
association between these term-based activation maps with our
four sets of co-activation maps (emotion regulation, think/no-
think, stop-signal, go/no-go). For each co-activation map, a
spatial similarity index (r statistic) between each co-activation
map and each meta-map of the functional term was provided.
The terms were then ordered based on the average correlation
for interpretation and visualization.

Activation–gene expression association analysis

We used a recently developed activation–gene expression
association analysis to link the task-related brain activity to
gene expression in postmortem human brains. This analysis
can identify a list of associated genes based on the MRI-space
statistical map(s). This analysis presupposes that if certain
genes are associated with the cognitive task of interest, then
spatial distributions of their expression values and task-related
activation pattern measured by functional MRI should be similar.

The Allen Human Brain Atlas (http://www.brainmap.org)
was used in the gene expression decoding analysis. The atlas
provided genome-wide microarray-based gene expression data
based on six postmortem human brains (gene expression level
of over 62 000 gene probes for around 1000 sampling sites
across the whole brain were recorded) (Hawrylycz et al., 2012).
Additionally, structural brain imaging data of each donor was
collected and provided, which enable users to visualize gene
expression in its naive space and perform the registration to the
standard MRI MNI space.

Previous studies used slightly different statistical methods
to associate task-independent MRI-based brain measures (e.g.
cortical thickness, functional or structural networks) with the
gene expression data (Richiardi et al., 2015; Wang et al., 2015;
Seidlitz et al., 2018). We used the method developed by Gor-
golewski and colleagues implemented in the alleninfo tool (Gor-
golewski et al., 2014) (https://github.com/chrisfilo/alleninf). This
method was originally designed for the association analysis
between voxel-wise statistical maps and gene expression maps.
This method was also by default implemented in Neurovault
(Gorgolewski et al., 2015) (https://neurovault.org/). The method
has two important features: (i) nonlinear coregistration of the
donor’s brain with MNI space was allowed and (ii) the ability to
use a random-effects model makes it possible to generalize the
results to the whole population. The activation–gene expression
association analysis works as follows: (i) data from gene probes
were aggregated for each gene, resulting in 20 787 gene expres-
sion maps. (ii) For each gene expression map, MNI coordinates
of each sampling location (the locations in which brain tissues
were analyzed for the gene expression data) were extracted to
draw a spherical ROI (r = 4 mm). We used these ROIs to extract the
average values of the ALE statistical map within each ROI. Next,
the gene expression and meta-analysis vectors were correlated.
(iii) This extraction and correlation procedure was repeated for
each gene expression map to quantify the spatial pattern simi-
larity between the statistical maps and gene expression map. (iv)
Different thresholds (i.e. 500, 1000, 1500, 2000) were implemented
to generate the significantly associated gene list(s) among the
20 787 genes. We mainly presented results under the threshold of
2000 most significant genes, but results under other thresholds

www.neurosynth.org
http://www.brainmap.org
https://github.com/chrisfilo/alleninf
https://neurovault.org/
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can be found in the Supplementary Material. Since the negative
correlation between brain measures and gene expression is
difficult to explain, we only considered the positively correlated
genes. Additionally, because of fundamental differences in gene
expression between cortical and subcortical regions, we only
performed our analyses within the cortical regions.

The described association analysis takes MRI statistical
map(s) as input(s) and will output a list of significantly
associated genes. To investigate the common transcriptional
signatures (associated genes) of emotion regulation and memory
control, we used the unthresholded statistical maps from
the ALE analyses to identify the task-associated gene list via
the association algorithm. Next, the common gene list was
generated by overlapping the emotion regulation-associated
gene list and memory control-associated gene list. To further
investigate whether the two gene lists significantly overlapped
with each other, we generated the null distribution of the
number of overlapping genes by creating two gene lists (with
the same size as the real gene lists) from the 20 787 genes. To
control for autocorrelation, we generated 5000 lists in this way,
and for each we estimated the overall spatial similarity between
identified genes (i.e. emotion regulation-related and memory
control-related genes) for each donor (Supplementary Table S3).
Identified genes demonstrated modest spatial correlations
(mean = 0.063, s.d. = 0.27) across different thresholds and donors.
Based on these correlation values, 1718 out of 5000 pairs of
randomly generated gene lists with a similarity ranging from
0.05 to 0.07 and the standard deviation ranging from 0.25 to 0.29
were further selected. The significance of overlapping genes was
estimated by comparing the real number of overlapping genes
with the number of overlapping genes within these 1718 pairs.

An alternative method (i.e. ‘permutated’ statistical maps)
was also used to evaluate the significance of the overlap further.
We permutated the spatial distribution of the fMRI statistical
maps used in the activation–gene expression association anal-
ysis for 100 times. Voxel-wise statistical values that were stored
at the real maps (i.e. emotion regulation or memory control
map) were relocated to other locations, testing for spatial speci-
ficity of the original task-related spatial patterns, but containing
all voxel-wise values. It is notable that this relocation proce-
dure was restricted by the functional-defined brain parcellation
(Schaefer et al., 2018). In this way, intrinsic connectivity associa-
tions that might underlie functional networks and brain parcels
are retained. These ‘permutated’ statistical maps were used for
the activation–gene expression association analysis to generate
100 pairs of gene lists. Before the overlapping calculation, we
also calculated overall spatial similarity with each pair. Seventy-
two out of 100 pairs of these gene lists had a similarity ranging
from 0.05 to 0.07 (mean = 0.06) with a standard deviation ranging
from 0.25 to 0.29 (s.d. = 0.27). These results were used as the null
distribution to estimate the P-value of the overlap. To identify
the ‘inhibition-related’ genes, we first used the same activation–
gene expression association analysis to identify the stop-signal
and go/no-go-associated gene list and then defined the overlap
between four gene lists (emotion regulation, think/no-think,
stop-signal and go/no-go) as ‘inhibitory-related’ genes.

We aim to improve the specificity of our activation–gene
expression association analysis and safeguard the possibility
that these identified genes may only support the general func-
tional brain network architecture instead of particular cognitive
functions. To rule out this possibility, we performed a dedicated
control analysis: (i) An unthresholded DMN ALE map was used as
a comparison with four inhibitory control tasks because control
processes hardly take place in the DMN and the DMN has been

associated with homeostasis and undirected thought or mind-
wandering. (ii) A pair of ‘permutated’ statistical maps with com-
parable spatial similarity level (mean ranging from 0.05 to 0.07,
standard deviation ranging from 0.25 to 0.29) was also used to
calculate the transcriptional overlap with four inhibitory control
tasks.

We used a range of different numbers of genes (x from 1
to 2000, with step size 10) as thresholds to identify the top x
most similar genes. We calculated three kinds of overlap under
different thresholds: the first one is ‘within control’ overlap,
which is the overlap in gene expression association between
two inhibitory tasks (e.g. think/no-think and emotion regulation
or stop-signal and go/no-go); the second one is ‘inhibitory and
DMN’ overlap, which is the transcriptional overlap between one
of the control-related tasks and DMN (e.g. think/no-think and
DMN or emotion regulation and DMN). The third one is the
‘inhibition and permutation’ overlap, which is the overlap of
associated gene lists between one of the actual statistical maps
(i.e. emotion regulation or memory control) and one of the
permutated statistical maps. Finally, we averaged the percentage
of each kind of overlap for a certain threshold x and compared
the average percentages across all thresholds.

Gene ontology enrichment analysis

The gene ontology (GO) is a widely used bioinformatics tool to
interpret the complex gene list based on the knowledge regard-
ing functions of genes and gene products (Ashburner et al., 2000;
Huang et al., 2009). To systematically investigate the biological
meaning of the ‘inhibitory- related’ genes, we use GO to perform
a binary version of the overrepresentation test for biological
processes (BP), molecular function (MF) and cellular component
(CC). We did not use additional parameters to restrict the selec-
tion of GO categories. Currently, experimental findings from over
140 000 published papers are represented as over 600 000 exper-
imentally supported GO annotations in the GO knowledgebase.
For the input gene list, ‘gene ontology enrichment analysis’ can
identify relevant groups of genes that function together and
associate and statistically test the relationship between these
groups and GO annotations. In this way, it can reduce a big list
of genes to a much smaller number of biological functions (BP,
MF or CC) and make the input list more easily comprehendible.
This method has been applied successfully to understand the
output of many gene expression studies, including the study that
also used the Allen Human Brain Atlas (Richiardi et al., 2015).
More specifically, we used GOATOOLS (Ashburner et al., 2000) to
perform the GO analyses based on ontologies and associations
downloaded on 15 November 2018. All of the significant GO items
were corrected by FDR correction (P < 0.05). We further identified
the frequently seen words within all the significant GO items
by counting the frequency of the words after removal of not
meaningful words (e.g. ‘of’ and ‘the’).

Disease-related gene set enrichment

Although GO analysis can provide insights into the biologi-
cal functions (BP, MF or CC) of the overlapped gene list, the
approach does not provide sufficient information to identify
disease associations of the gene list. We leveraged ToppGene
(Chen et al., 2009) to explore the gene-disease associations. The
ToppGene platform can cluster groups of genes together accord-
ing to their disease associations and perform a statistical test as
well as the multiple testing error corrections. The latest version
of DisGeNET included associations between 17 549 genes and

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
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24 166 diseases, disorders or abnormal human phenotypes. In
this study, our analysis was based on one of the sub-databases
of DisGeNET, the DisGeNET Curated (expert-curated associations
obtained from UniProt and CTD human datasets). We did not
use additional parameters to restrict the selection of disease
items and performed a binary version of the overrepresentation
analysis. All of the significant disease items were FDR-corrected
(P < 0.05).

Data and code availability

All the data (excluding neuroimaging data) is stored in the
Open Science Framework (OSF). Open access data includes study
summary, extracted coordinates for ALE, significantly associated
genes for each task paradigm and overlapped gene list(s) (OSF
link: https://doi.org/10.17605/OSF.IO/6WZ2J). Neurovault was
used to store all the neuroimaging data (e.g. results of ALE from
Figure 2, MACM from Figure 3 and ‘Top Genes’ expression maps
from Figure 4) and provide 3D visualization of all the statistical
maps (Neurovault link: https://neurovault.org/collections/4845/).
Functional-defined brain parcellation can be found in https://
github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
brain_parcellation/Schaefer2018_LocalGlobal. Other research
data supporting reported findings are available from the authors
upon request.

For the neuroimaging meta-analysis, two software (Gin-
gerALE and Sleuth) (http://www.brainmap.org/software.html)
were used. The Neurosynth Tool (https://github.com/neuro
synth/neurosynth), a Python package that covered most of
the functions on the Neurosynth (http://www.neurosynth.o
rg/) website, was used in functional profile analyses and
co-activation analyses. Activation–gene expression association
analyses were based on alleninfo tool (https://github.com/chri
sfilo/alleninf) and web application of gene decoder within the
Neurovault (https://neurovault.org/). Nilearn (https://nilearn.
github.io/) was used to load, manipulate and visualize MRI
statistical maps.

GOATOOLS (https://github.com/tanghaibao/goatools), a
Python library, was used for gene ontology analyses and related
visualization. The ontology was downloaded from the gene
ontology website (http://geneontology.org/ontology/), and the
association data were downloaded from the National Center
for Biotechnology Information (ftp://ftp.ncbi.nlm.nih.gov/ge
ne/DATA/). ToppGene Suite (https://toppgene.cchmc.org/) was
used for disease-related gene set enrichment. The gene-disease
association database can be downloaded from http://www.disge
net.org/.

Anaconda (https://www.anaconda.com/) Python 3.6 version
for Win10 was used as the platform for all the programming
and statistical analyses. Custom Python scripts were written to
perform all analyses described based on the mentioned Python
packages and are released via the OSF.

Results
Regional brain activity associated with emotion
regulation and memory control

Taking data from 95 published studies including in total 1995
subjects, we used 15 emotion regulation studies to represent
emotion regulation and 15 think/no-think studies to represent
memory control. It is noteworthy that we explicitly only focus
on emotion regulation studies using the ‘suppression’ or ‘dis-
traction’ as the regulation techniques rather than the more

common ‘cognitive reappraisal’ because of the conceptual rela-
tion with memory control and equal statistical power between
contrasted conditions. Furthermore, 27 go/no-go studies and 38
stop-signal studies were used to represent response inhibition.
(A list of studies and coordinates are available via the Open
Science Framework; Search and inclusion criteria in Materials
and Methods.)

Regional brain activity of emotion regulation. The meta-analysis of
the emotion regulation studies revealed six brain regions that are
active during ‘regulation’ compared to a ‘passive viewing’ condi-
tion (FWE cluster-level correction P < 0.05, uncorrected P < 0.001,
threshold permutations = 1000). Emotion regulation task consis-
tently led to activation in right insula/inferior frontal gyrus (IFG),
left IFG, left insula, middle cingulate gyrus, right inferior parietal
lobule (IPL) and left supplementary motor area (SMA) (Table 1,
Figure 2A).

Regional brain activity of memory control. Memory control stud-
ies revealed five brain regions during the ‘no-think’ condition
compared to the ‘think’ condition (FWE cluster-level correction
P < 0.05, uncorrected P < 0.001, threshold permutations = 1000):
left insula/IFG, right dorsolateral prefrontal cortex (DLPFC), right
middle frontal gyrus, bilateral IPL/supramarginal gyrus, bilateral
precuneus and SMA (Table 1, Figure 2B).

Regional brain activity of response inhibition. We used the same
meta-analytical approach for all go/no-go and stop-signal stud-
ies and found similar significant clusters during the ‘control’
condition compared to ‘baseline’ condition (no-go vs go; stop vs
go) in the insula, IFG, middle cingulate gyrus, SMA, IPL and DLPFC
(Figure 2C and D; Supplementary Tables S1 and S2).

Analyses of convergence and divergence. To examine the spa-
tial convergence and divergence between emotion regulation
and memory control activations, we performed formal conjunc-
tion and contrast analysis (FWE cluster-level correction P < 0.05,
threshold permutations = 1000). The conjunction and contrast
analysis did not find any reliable clusters after correction. Infor-
mal overlap analysis of two thresholded maps (i.e. emotion
regulation and memory control) revealed a shared cluster of
right IPL (MNI:60/−42/42; BA40).

Co-activation maps of regions associated with emotion
regulation and memory control

To gain deeper insight into the co-activation profiles of brain
regions associated with emotion regulation and memory con-
trol, we used a large database of fMRI studies (BrainMap: http://
www.brainmap.org/) and applied MACM. This approach reveals
brain regions that are consistently activated together with the
seed regions resulting from the ALE meta-analyses. To control
for specific modeling methods and sizes of seed regions, we
also performed similar co-activation analyses using Neurosynth
(http://neurosynth.org/) based on peak voxel coordinates of each
seed region instead of the entire clusters. The two approaches
yielded similar co-activation maps for each ROI. In the main test,
we only report results from the BrainMap analysis (Results from
the Neurosynth can be found in Supplementary Figures S1 and
S2).

In total, we analyzed six ROIs from the meta-analysis of
emotion regulation studies. MACM analyses for the left IFG and
right IPL revealed co-activation patterns in the direct vicinity of
the seed regions. Co-activation analyses of other seed regions,
including the bilateral insula, SMA, MACC revealed co-activation

https://doi.org/10.17605/OSF.IO/6WZ2J
https://neurovault.org/collections/4845/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation/Schaefer2018_LocalGlobal
http://www.brainmap.org/software.html
https://github.com/neurosynth/neurosynth
https://github.com/neurosynth/neurosynth
http://www.neurosynth.org/
http://www.neurosynth.org/
https://github.com/chrisfilo/alleninf
https://github.com/chrisfilo/alleninf
https://neurovault.org/
https://nilearn.github.io/
https://nilearn.github.io/
https://github.com/tanghaibao/goatools
http://geneontology.org/ontology/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/
https://toppgene.cchmc.org/
http://www.disgenet.org/
http://www.disgenet.org/
https://www.anaconda.com/
http://www.brainmap.org/
http://www.brainmap.org/
http://neurosynth.org/
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
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Fig. 2. Brain activity underlying four inhibitory control tasks revealed by ALE meta-analyses. (A) Brain regions significantly more activated in the ‘regulation’ compared

to the ‘baseline’ condition during the emotion regulation task. (B) Brain regions significantly more activated in the ‘control’ compared to the ‘non-control’ condition

during the memory control task. (C) Brain regions significantly more activated in the ‘no-go’ compared to the ‘go’ condition during the go/no-go task. (D) Brain regions

significantly more activated in the ‘stop’ compared to the ‘go’ condition during the stop-signal task.

between these ROIs and with the cerebellum, IFG, IPL, thalamus
and DLPFC (Figure 3A). Similarly, we analyzed eight seed regions
from the meta-analysis of memory control studies. ROIs tended
to be co-activated with each other. Only the MACM analysis
for the left IPL ROI identified modest co-activation patterns
(Figure 3B). In addition, we investigated the co-activation profiles
of response inhibition tasks. The co-activation patterns of 11
ROIs from go/no-go meta-analysis and 10 ROIs from stop-signal
meta-analysis were estimated using the same method. We found
a brain network including bilateral DLPFC, insular, IPL, thalamus,
SMA and MACC across the co-activation patterns of ROIs from
response inhibition.

Behavioral profiles of the co-activation maps

To identify the cognition domains most strongly associated with
these co-activation maps, we created the behavioral profiles of
each co-activation maps using the Neurosynth database.

First, we quantified the behavioral profiles of co-activation
maps of emotion regulation and memory control. As expected,
these two sets of co-activation maps were both strongly char-
acterized by terms such as ‘inhibition’, ‘cognitive control’ and
‘working memory’. Then, the behavioral profiles of stop-signal
and go/no-go co-activation maps were estimated in the same
way. Finally, we investigated the commonalities of behavioral
characteristics of all co-activation maps across four paradigms
and revealed that these co-activation maps have the highest
correlations to terms including ‘inhibition’, ‘cognitive control’
and ‘working memory’, compared to other items (Figure 4).

Transcriptional signatures underlying the emotion
regulation and memory control

Next, to understand the transcriptional correlates that may be
associated with brain activity elicited by each task, we com-
bined the AHBA, a brain-wide atlas of gene expression of post-
mortem brains and spatial pattern correlation. More specifically,
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Table 1. Significant activated clusters during emotion regulation and think/no-think task

Task Brain region Hemisphere MNI coordinates Cluster size Peak voxel value

Emotion regulation Insula/IFG R 36 16 6 209 0.02056
IFG L −46 44 −4 138 0.02051
Insula L −34 16 12 156 0.02089
Middle cingulate
gyrus

L/R 10 22 44 215 0.0189

Inferior parietal
lobule

R 60–42 46 90 0.01688

SMA L −4 6 62 110 0.0217
Memory control IFG/insula L −36 20 –4 115 0.017

DLPFC R 36 48 24 221 0.018
Supramarginal
gyrus/IPL

R 56 −44 32 167 0.02

Supramarginal
gyrus/IPL

L −58 −52 38 125 0.025

Middle frontal gyrus R 42 20 42 126 0.022
Precuneus R 8 –56 54 140 0.021
Precuneus/SPL L −16 −64 56 114 0.017
SMA R 12 12 60 190 0.023

SPL, superior parietal lobule.

we aimed to identify the genes for which the spatial transcrip-
tional patterns are similar to the spatial pattern of brain activity
during a given task.

Common transcriptional correlates of brain activity. We used the
activation–gene expression association analysis to identify
two lists of genes whose spatial patterns correlate with
emotion regulation-related brain activity patterns or memory
control-related brain activity patterns separately. The top 10
genes with the highest spatial similarities are represented
in Figure 5A, and their expression patterns in the brain are
depicted in Figure 5B (Complete gene lists in the OSF repository).
We found a substantial overlap (Figure 5A) between the two
identified gene lists for the emotion regulation and memory
control activation networks: there are in total 1212 genes
(60.6% of all correlated genes) whose expression pattern
correlated with the brain activity pattern of both tasks. We
evaluated the significance of the overlap by generating a
set of null distributions of the overlapping genes under the
restriction of spatial similarity. Specifically, two gene lists
with identical sizes (list1 = 2531; list2 = 1529) were randomly
selected from all the genes (N = 20 787), and then overlapping
genes between the two random lists were identified. This
procedure was repeated 5000 times. 1718 out of 5000 pairs
of randomly sampled genes demonstrated a similar level of
spatial similarity as our gene lists of interests. We found
that the amount of overlapping genes between the memory
control and the emotion regulation was significantly larger
than the number of overlapping genes within these 1718
randomly sampled overlapping gene lists across different
thresholds (threshold = 2000, real overlapping = 1212, random
overlapping = 193.28 ± 12.3, P < 0.001) (results at different thresh-
olds are presented in Supplementary Table S4). Furthermore,
the significance of the overlap was estimated by generating 100
pairs of ‘permutated’ statistical maps. 72 out of 100 pairs of
genes that were associated with these ‘permutated’ maps were
used for the estimation because they showed a comparable
level of spatial similarity across genes. The amount of real
overlapping genes was significantly higher than the number
of overlapping genes within these 72 pairs of genes across

different thresholds (threshold = 2000, real overlapping = 1212,
permutated overlapping = 667.3 ± 147.39, P < 0.01) (Full results in
Supplementary Table S5).

Specificity of ‘inhibition-related’ genes. To test the specificity
of the ‘inhibition-related’ genes vs genes related to neuronal
activity and brain function in general, we first generated, also
using an ALE meta-analysis, the activation map of ‘default
mode network’ or ‘task-negative network’ (see Materials and
Methods; Supplementary Figure S3). Next, we identified a list of
genes associated with the DMN network and ‘permutated’ maps
emotion regulation and memory control via the AHBA and the
same activation–gene expression association analysis. Given
the fact that the DMN has been associated with homeostasis
and undirected thought or mind-wandering, we expected that
DMN-associated genes are different from inhibition-associated
genes. To test this, we calculated the number of overlapping
genes between all possible combinations of two out of the
seven reported gene lists (memory control, emotion regulation,
stop-signal and go/no-go, DMN, ‘permutated’ memory control,
‘permutated’ emotion regulation) across different thresholds. As
depicted in Figure 5C, genes associated with inhibitory control
tasks demonstrate more overlap between each other than the
associated genes between the inhibitory control tasks and the
DMN (mean within inhibition =41.24%, mean inhibition and
DMN =35.18%, t = 3.44, P = 0.0006). They also showed more overlap
compared to associated genes between inhibitory control
tasks and ‘permutated’ inhibitory control maps (mean within
inhibition =41.24%, mean inhibition and permutation =29.53%,
t = 6.97, P = 1.26 × 10−11).

Biological functions and disease associations of the
‘inhibition-related’ genes

Using GO (Ashburner et al., 2000), a widely used literature-based
gene-to-function annotation analysis, we generated a list of
biological functions related to the ‘inhibition-related’ genes.
Furthermore, due to the common finding of impairment in
inhibitory control in neurological and psychiatric disorders, we

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data


W. Liu et al. 531

Fig. 3. Co-activation maps of emotion regulation and MACM. (A) Co-activation

maps for regions of interest (ROIs) resulting from ALE analysis of the emotion

regulation. (B) Co-activation maps for ROIs resulting from ALE analysis of the

memory control. ALE-based ROIs are projected onto glass brains (left column),

and co-activation patterns are rendered on an MNI template second to ninth

column (right columns).

explored the human disease association of the identified gene
list.

Enrichment for biological functions. Gene ontology enrichment
analysis (GOEA) of 779 ‘inhibition-related’ genes identified 5
related BP, which are associated with information communica-
tions between neurons (Supplementary Table S6). More specif-
ically, 19 genes within the list are associated with the neu-
ropeptide signaling pathway, 30 genes with the chemical synap-
tic transmission, 17 genes with the potassium ion transmem-
brane transport, 38 with the cell adhesion and 60 with signal
transduction.

Enrichment for human diseases. Additionally, we used Topp-
Gene (https://toppgene.cchmc.org/) to perform the gene list
enrichment analysis of 708 ‘inhibition-related’ genes for human

diseases. Using DisGeNET (www.disgenet.org), a comprehensive
database on the relationship between human diseases and
genes, we found significant associations between our gene
list and 36 disease terms (Supplementary Table S7). Among
these diseases, seizures/epilepsy, chronic alcoholic intoxication,
depression, bipolar disorder, autism spectrum disorders and
schizophrenia were ranked top 10 of the list (i.e. most significant
associations) (Figure 5D).

We performed a preliminary investigation of the unique dis-
ease associations for inhibition, but not DMN. First, we calculated
the differences between ‘inhibition-related’ genes and DMN-
related genes under four different thresholds and included the
results into the ToppGene. Only under the threshold of 1500
genes, the algorithm identified a significant association between
103 ‘inhibition-unique’ genes and the risk for schizophrenia.
In other words, variance in these genes, which are associated
with inhibition, but not DMN, are reported to be associated
with an increased risk for schizophrenia. We also performed the
disease association analysis for ‘inhibition-related’ and DMN-
related genes separately. These two sets of genes were asso-
ciated with similar brain disorders (e.g. schizophrenia, autis-
tic disorder, unipolar depression, alcoholic intoxication) (see
OSF folder). One important difference between the two sets of
genes is that ‘DMN-related’ genes are uniquely associated with
Alzheimer’s disease and age-related memory disorders (Sup-
plementary Figure S4), which is consistent with our knowledge
regarding the relationship between DMN, aging and memory.

Discussion
Inhibitory control is a fundamental cognitive function support-
ing other processes like emotion regulation and response inhi-
bition. Here, we provided neurobiological evidence from human
neuroimaging and transcriptional mapping to support the
concept that there is one generic neural network of inhibitory
control with a set of ‘inhibition-related’ genes modulating
not only response inhibition but also emotion regulation and
memory control. Our meta-analysis of 95 neuroimaging studies
revealed a common role of the right IPL and related regions in
a frontal–parietal–insular network during emotion regulation
and memory control. These co-activation patterns were also
similar to the meta-analysis results of response inhibition
tasks and ‘inhibition-related’ network reported in the literature.
Additionally, we used the Allen Human Brain Atlas as an avenue
to link this neural network to common transcriptional profiles
and identified ‘inhibition-related’ genes, which are associated
with the neuronal transmission, and risk for major psychiatric
disorders as well as seizures and alcoholic dependency.

The idea that inhibitory control is the underlying core cogni-
tive function in emotion regulation was already suggested before
(Ochsner et al., 2002; Ochsner and Gross, 2005; Schmeichel et al.,
2008; Wager et al., 2008; McRae et al., 2012). Similarly, it was also
suggested that inhibitory control plays a fundamental role in
memory control (Levy and Anderson, 2002). A unified theory
proposed a central role of inhibitory control in various psy-
chological domains (e.g. motor inhibition, emotional response
and memory retrieval) depending on external task requirements
(Aron et al., 2004, 2014; Depue et al., 2016). Engen and Anderson
(2018) recently reviewed behavioral and neuroimaging studies in
this field and proposed the conceptual link between emotion
regulation and memory control. However, there has been little
empirical support for this link. Our multimodal analysis provides
rich evidence beyond neuroimaging supporting a conceptual link
and suggests that inhibitory control, as well as its underlying

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
https://toppgene.cchmc.org/
www.disgenet.org
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa073#supplementary-data
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Fig. 4. Behavioral profiles of co-activation maps across four inhibitory control tasks. Spatial similarity between Neurosynth meta-maps and co-activation maps across

23 topic terms. Terms are ordered by the mean r-values across the row(s) (all co-activation maps). ‘Working memory’, ‘cognitive control’ and ‘inhibition’ are located at the

top, suggesting the common stronger association. Domain-specific cognitive functions (e.g. autobiographical memory, emotion) are located at the bottom, suggesting

a limited association.

neural and transcriptional correlates, modulates both emotion
regulation and memory control.

Brain activation patterns of emotion regulation and mem-
ory control found here are in accordance with previous meta-
analyses (emotion regulation: e.g. Buhle et al., 2014; Kohn et al.,
2014; memory control: e.g. Guo et al., 2018). We found one over-
lapping region between emotion regulation and memory control,
the right IPL. Due to the central role of inhibitory control in both
tasks, only one overlapping brain region seems surprising at first
glance. However, MACM revealed that other regions (including
IFG, insula, preSMA/MACC, IPL) that lacked significantly over-
lapping activations across emotion regulation and memory con-
trol form a tightly integrated network. Our results suggest that
although these regions do not overlap strictly, they belong to the
same functional network. Our behavioral profile analysis corrob-
orated this interpretation: both co-activation maps of emotion
regulation and memory control, as well as stop-signal and go/no-
go paradigms, have comparable behavioral profiles and were
characterized by terms like ‘inhibition,’ ‘cognitive control’ and
‘working memory’.

We have demonstrated the neural commonality of emo-
tion regulation and memory control. Next, we proceeded to
investigate if transcriptional profiles overlap with activity pat-
terns in a similar way. Critically, this study adopted an imaging
genetic approach to investigate the common transcriptional
signatures across neural networks of emotion regulation and
memory control. Activation–gene expression association anal-
ysis revealed a largely overlapping gene list whose expression
patterns were similar to the activation patterns. Furthermore, we
identified a list of ‘inhibition-related’ genes and characterized
their biological function and disease associations. ‘Inhibition-
related’ genes were primarily associated with the neuropeptide

signaling pathway, chemical synaptic transmission, the potas-
sium ion transmembrane transport and cell adhesion. One com-
mon feature of these biological functions is that they are critical
for information communications between neurons. Together
with our neuroimaging finding of frontal–parietal–insular net-
work, these genes may act as molecular correlates underlying
synchronous brain activity during inhibitory control. ‘Inhibition-
related’ genes were also associated with risks for several psychi-
atric disorders (e.g. depression, bipolar disorder, schizophrenia
and autism), seizures and alcoholic dependence.

Recently, neuroimaging (Goodkind et al., 2015; Sha et al., 2019)
and genetic studies (Cross-Disorder Group of the Psychiatric
Genomics Consortium., 2013; Anttila et al., 2018; Schork
et al., 2019) collectively demonstrated the potential common
biological roots across psychiatric disorders. However, common
phenotypes across disorders are less well understood. Thus, the
National Institute of Mental Health’s Research Domain Criteria
(NIMH’s RDoC) (https://www.nimh.nih.gov/research/research-fu
nded-by-nimh/rdoc/index.shtml) summarized several domains
of phenotypes, where inhibitory control is a central aspect. Here,
our results highlighted the critical role of inhibitory control
and its biological underpinning across psychiatric disorders.
Firstly, dysfunctional inhibitory control (e.g. impaired response
inhibition, lack of emotion regulation and compromised memory
control) is evident across different psychiatric disorders (Magee
and Zinbarg, 2007; Price and Mohlman, 2007; Tull et al., 2007;
Amstadter, 2008; Falconer et al., 2008; Ehring and Quack, 2010;
Erk et al., 2010; Joormann and Gotlib, 2010; Lipszyc and Schachar,
2010; Catarino et al., 2015; Yang et al., 2016; Sacchet et al., 2017).
Also, inhibitory control deficits can be further linked to some
disorder-specific symptoms [e.g. lack of inhibition of negative
thoughts (or rumination) in depression, lack of fear control in

https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/index.shtml
https://www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/index.shtml
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Fig. 5. Common transcriptional profiles revealed by activation–gene expression association analysis. (A) Transcriptional patterns of 1212 genes correlated with both

the emotion regulation- and memory control-related brain activity patterns. (B) Visualization and comparison of brain activation patterns and expression patterns of

‘Top Genes’; ‘Top Genes’ are 10 genes with the most similar expression patterns as the brain activation. (C) The gene lists of two inhibitory control tasks were more

overlap with each other (within inhibition) compared to one of the inhibitory control and DMN (inhibitory and DMN) or one of the real inhibitory control and one of

permutated inhibition inhibitory control (inhibition and permutation). (D) Disease associations of ‘inhibitory-related’ genes. ‘Inhibition-related’ genes are associated

with genetic risks for depression, bipolar disorder, autism spectrum disorders, schizophrenia, seizures/epilepsy and chronic alcoholic intoxication. Terms are ordered

by the percentage (left green) of hit counts in the query list to hit count in the genome. The hit count in the query list is the number of genes belonging to ‘inhibitory-

related’ genes (right dark blue). The hit count in the genome is the total number of genes associated with the risk for certain disease terms based on the DisGeNET

(right light blue).
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anxiety and failure to avoid retrieval of traumatic memories
in PTSD]. Secondly, our results suggest an overlap between
brain regions (frontal–parietal–insular network) involved in
inhibitory control and regions whose structural abnormalities
were observed consistently in a variety of psychiatric diagnoses
(Goodkind et al., 2015). Thirdly, ‘inhibition-related’ genes, which
we identified by spatial transcriptional profiles that overlap
with activation patterns of inhibitory control tasks, were also
associated with the risks for a variety of psychiatric disorders.
Furthermore, although brain disorders such as epilepsy and
alcoholic dependence may involve different neurobiological
underlying correlates compared to psychiatric disorders,
impairment of inhibitory control seems to also be a critical
behavioral aspect of epilepsy (Helmstaedter, 2001; Elger et al.,
2004) and alcoholic dependence (Lawrence et al., 2009; Courtney
et al., 2013; Papachristou et al., 2013).

Our study has two limitations that should be mentioned.
First, our neural commonality analyses were based on fMRI
studies only. However, overlap in fMRI activation or co-activation
patterns lacks temporal information of the underlying cognitive
processes. Electroencephalography or magnetoencephalography
in humans could provide further confirmatory evidence for the
idea of a common cognitive process. Recently, Castiglione and
colleagues reported that memory control elicited an electro-
physiological signature, increased right frontal beta, which was
seen in the stop-signal task (Castiglione et al., 2019). Follow-up
electrophysiological studies or even a meta-analysis of them
might confirm the idea of a common electrophysiological signa-
ture. Second, the current activation–gene expression association
analysis is still preliminary (e.g. low sample size and spatial
resolution of the postmortem data) and without the possibility
of testing the specific relationship between expression maps
and cognitive function. For example, although our preliminary
results demonstrated that ‘inhibition-specific’ genes are associ-
ated with the risk for schizophrenia, while DMN-related genes
are more closely linked to Alzheimer’s disease, we also identi-
fied considerable transcriptional overlaps between ‘inhibition-
related’ genes and DMN-related genes. The latter may sug-
gested that ‘inhibition-related’ genes, as defined in our study
may include both ‘inhibition-specific’ genes and other genes
supporting general brain function. However, it is challenging to
separate them using methods currently available. Nevertheless,
the method already showed great potential when helping to
understand basic molecular principles of both the structural
and functional connectome (see review by Fornito et al., 2019),
and it identified molecular mechanisms underlying changes in
brain structure or function associated with brain disorders [e.g.
autism spectrum disorder (Romero-Garcia et al., 2019), Hunting-
ton’s disease (McColgan et al., 2018), schizophrenia (Romme et al.,
2017) and Alzheimer’s disease (Grothe et al., 2018)]. Results from
these studies are consistent with the genetics of neuropsychi-
atric disorders using conventional methods like genome-wide
association studies or animal models. Taken together, although
preliminary, neuroimaging-gene expression association analy-
sis has demonstrated its potential to bridge brain structure–
function associations and to reveal its underlying molecular
processes. To detect more specific associations between spatial
transcriptional profiles and neuroimaging data, large sets of
postmortem gene expression data with higher spatial resolution
need to be collected. Also, more dedicated analytical meth-
ods need to be developed and validated (Arnatkevic˘iūtė et al.,
2019) with new methods that may better control for the effects
of domain–general genes that are supporting brain function
in general and the bias in gene set enrichment analyses of

brain-wide gene expression data, probably induced by the gene–
gene co-expression or autocorrelation (Fulcher et al., 2020).

In summary, our multimodal analysis identified a frontal–
parietal–insular neural network and a set of genes associated
with inhibitory control across emotion regulation, memory con-
trol and response inhibition. The integrative approach estab-
lished here bridges between cognitive, neural and molecular
correlates of inhibitory control and can be used to study other
higher-level cognitive processes. Our findings may deepen our
understanding of emotion regulation and memory control in
health and pave the way for better emotion regulation and
memory control by targeting the core inhibitory-related network
or related molecular targets in patients with such deficit at issue.

Supplementary data
Supplementary data are available at SCAN online.
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