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Abstract

Maintenance of a functional proteome is achieved through the mechanism of proteostasis that involves precise coordination 
between molecular machineries assisting a protein from its conception to demise. Although each organelle within a cell has 
its own set of proteostasis machinery, inter-organellar communication and cell non-autonomous signaling bring forth the 
multidimensional nature of the proteostasis network. Exposure to extrinsic and intrinsic stressors can challenge the proteostasis 
network, leading to the accumulation of aberrant proteins or a decline in the proteostasis components, as seen during aging and 
in several diseases. Here, we summarize recent advances in understanding the role of proteostasis and its regulation in aging and 
disease, including monogenetic and infectious diseases. We highlight some of the emerging as well as unresolved questions in 
proteostasis that need to be addressed to overcome pathologies associated with damaged proteins and to promote healthy aging.
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Defining the need to understand the role of 
proteostasis
Proteins need to be maintained in their native structures at 
required cellular concentrations and specific locations. Deviations  
lead to aberrant enzyme activity, binding, stoichiometry in  
complexes, or aggregation, all of which may impose a penalty  
on cellular fitness, finally leading to ailing pathophysiological 
states or cell death. Proteostasis is the homeostasis of maintain-
ing the proteome by regulating protein synthesis, translocation  
(if required), post-translational modifications (if required 
for stabilizing folded states), folding, and degradation or 
conversion of toxic oligomers into benign and less toxic  
amyloid aggregates1. An effective interplay between compo-
nents of the proteostasis network consisting of chaperones  
(protein and chemical), co-chaperones, degradation machin-
ery, translation control machinery, and adaptor proteins  
take cares of the balance in proteostasis. Hence, a thorough 
understanding of proteostasis will allow us to not only tackle 
the protein folding problems at hand but also open gates  
to a healthy aging paradigm.

Proteostasis components, problems, and regulation
Components of the proteostasis network
Proteins are translated on ribosomes that also act as scaf-
folds to assemble protein chaperones, which aid the nascent  
chains to reach their final functional structure. Protein chap-
erones recognize and bind nascent chains or folding interme-
diates that exhibit exposed hydrophobic patches2. Binding 
and unbinding of the substrate protein with its chaperone fol-
low a cycle dictated by either the ATP-hydrolysis rate of the  
chaperone/co-chaperone system (like Hsp70, Hsp90, and 
Hsp60 chaperone systems)3,4 or the dissociation and association  

rate of the substrate on ATP-independent chaperones (small  
heat shock proteins)5 (Figure 1). Ribosome-associated chap-
erones are called the CLIPS (chaperones linked to protein  
synthesis), which act as guardians of the nascent chains and 
comprise the Hsp70, Hsp40, Hsp110, and Hsp60 group of  
chaperones6. However, the Hsp70 system can perform 
diverse functions, including disaggregation of amyloid fibrils 
owing to its binding to a myriad of Hsp40s and Hsp110s as  
co-chaperones7–9. After protein translation, translocation is 
mediated by cytosolic and compartment-specific chaperones.  
Many of the proteins destined for cytosol, nucleus, and per-
oxisomes are folded in the cytosol by a cycle of binding and  
unbinding to the protein chaperones10. For proteins destined 
to the endoplasmic reticulum (ER) and mitochondria, the  
nascent chains are maintained in an unfolded state at the 
site of translation, targeted to the appropriate compartment, 
and subsequently folded inside either post-translationally or  
co-translationally using the chaperone machinery present in  
the targeted organelle11.

Each organelle that handles non-native protein chains has its 
complement of protein chaperones to aid folding. ER, which  
handles most of the membrane and secretory proteome, con-
tains specialized chaperones that help in N-glycosylation and  
disulphide bond formation along with ER-localized forms 
of the canonical Hsp70 and Hsp90 chaperone machineries12.  
The mitochondrial matrix (MM), on the other hand, handles a 
large number of metabolic enzymes and proteins involved in 
oxidative phosphorylation; it has chaperones that are homolo-
gous to the Hsp70, Hsp90, and Hsp60 class of chaperone  
systems. Mitochondrial intermembrane space (IMS) resembles 
ER in terms of oxidative folding and has disulphide-forming  

Figure 1. Components of proteostasis helping in protein folding. From its conception on the ribosome, a protein molecule folds to its 
native functional state with the help of two major proteostasis components. The left panel shows some of the representative components of a 
chaperone-based protein folding arm. In the right panel, we show metabolite-assisted folding of a protein. The folding landscape of a protein 
has been shown in the presence of three metabolites A, B, and C. On the extreme right, possible molecular mechanisms of metabolite-based 
protein folding are depicted. Gray represents solvent and green represents metabolite. CLIPS, chaperones linked to protein synthesis; HSP, 
heat shock protein.
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chaperones along with other small chaperones. This space 
is thought to be devoid of the canonical Hsp70, Hsp90,  
and Hsp60 chaperoning machineries13.

Protein chaperones have diverged and specialized for organelle-
specific proteostasis. Although the protein chaperones in the  
different compartments play a central role in protein quality 
assurance, recent reports have shown that the cellular milieu  
comprising the different metabolites also plays an important 
role in assisting proteins to their native states14–17. The exact 
mechanism of metabolite assistance is unknown, but metabo-
lites may change the solvent structure or interaction of the  
nascent chain with the solvent or also aid the process of fold-
ing directly or indirectly through protein chaperones18–20  
(Figure 1). More importantly, these reports have opened new  
avenues by placing metabolites into the proteostasis network.

Problems in proteostasis
A hitch in any of the steps of proteostasis can lead to its dis-
equilibrium. It may start when one or more proteins take  
more than their allocated time to reach its folded state. 
Although this timer mechanism is important to ensure that the  
proteins are given sufficient time to fold to their native struc-
ture before tagging it as a non-foldable protein, evidence 
for such a mechanism is prominently established only in 
the ER21. A protein that has a problem in folding can be 
degraded either by the collaboration of chaperones, C-terminal  

Hsp70-interacting protein (CHIP), BAG3, ubiquitin ligase, 
and proteasome or by the chaperone-dependent autophagy22,23. 
In some cases, when both are unable to take care of the mis-
folded protein, it may sequester essential chaperones and  
other proteins to form small soluble aggregates that confer cel-
lular toxicity as seen for multiple neurodegenerative diseases24.  
Alternatively, the misfolded protein may be packaged into vesi-
cles to form harmless molecular aggregates25,26. These small 
aggregates can also be detoxified by cellular processes that  
coagulate them to form larger seemingly harmless aggregates27.

Proteostasis problems can also start with an incompletely trans-
lated nascent chain resulting from a damaged mRNA or an 
mRNA with base misincorporation, faulty editing, or splicing  
(Figure 2). These nascent chains are actively degraded by 
the ribosome quality control (RQC) system that couples  
protein and damaged mRNA degradation28,29. Mistranslated 
proteins are ubiquitinated and transported to the nucleolus for  
degradation30. Mislocalization of the proteins can also precipi-
tate problems; if ER proteins are mistargeted to mitochondria  
(or vice versa) during stress, incompatibility between the chap-
erone systems and the mistargeted proteins leads to the loss  
of proteostasis31,32.

Even folded proteins may initiate proteostasis disequilib-
rium due to environmental insults that result in protein  
damage and aggregation33 (Figure 2). These aggregates need  

Figure 2. Problems in proteostasis and regulation of proteostasis. The left side of the cell shows the molecular origins of problems 
in protein folding. Errors at various steps in the life cycle of a protein leading to protein degradation and protein aggregation, resulting in 
imbalance of proteostasis. On the right, a few of the different organelle-specific cellular responses to the imbalance of proteostasis are shown. 
They include inter-organelle and inter-cellular responses. Cyto-UPR, cytosolic unfolded protein response; DRiP, defective ribosomal product; 
ERAD, endoplasmic reticulum–associated degradation; GRAD, Golgi apparatus–related degradation; Mito-UPR, mitochondrial unfolded 
protein response; UPRam, unfolded protein response activated by mistargeting of proteins; UPRER, endoplasmic reticulum–associated 
unfolded protein response.
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to be disaggregated or cleared while damaged proteins need to  
be degraded to prevent aberrant interactions and signaling events.

Regulation of proteostasis machinery
Problems in proteostasis are sensed in the different compart-
ments by specialized sensors. Heat shock factor 1 (HSF1) is 
the canonical eukaryotic sensor in the cytosol for proteostasis  
disequilibrium and is maintained in an inactive state by the 
Hsp70 and Hsp90 chaperones. When misfolded proteins  
accumulate, they titrate out the chaperones and free up HSF1, 
which then is free to translocate to the nucleus to signal 
cytosolic unfolded protein response (cyto-UPR)10,34. HSF1 acti-
vation upregulates chaperones, degradation machinery, and 
metabolic and stress response–related genes. More recently,  
heme-regulated kinase (HRI) was discovered as an addi-
tional cytosolic sensor of protein aggregation arising because 
of blocked protein degradation, which attenuates protein  
translation to decrease the intracellular protein concentration35.

In the ER, proteostasis disequilibrium is sensed by IRE1 (the 
most conserved sensor among all eukaryotes), ATF6, and  
PERK (the last two branches are currently known to be present 
only in metazoans). These sense proteostasis problems in the 
ER to elicit an integrated stress response that increases ER  
chaperones, components of ER-associated degradation (ERAD) 
(clears misfolded proteins of ER) or autophagy, and ER vol-
ume (to decrease protein concentration)36. This concerted 
response decreases global protein translation and alters metab-
olism among a host of other pathways that are still being  
investigated37. Although IRE1 and ATF6 seem to be redun-
dant in the pathways that they regulate, PERK primarily pre-
vents protein translation by phosphorylating eIF2α and  
inactivating it. Recent studies of these signaling processes have 
shed light on the nuances that govern this complex integra-
tion of stress response38,39. Activation of the ER sensors also 
seems to follow the same titration model as HSF1, where the  
ER-resident Hsp70 (Bip/GRP78) prevents activation of the 
sensors as long as it is not titrated away by the accumulation  
of the client proteins40.

Whereas regulation of proteostasis machinery in the ER is well 
studied, little is known about proteostasis regulation in the  
mitochondria. Mitochondria, being a double-membrane-bound 
organelle, creates additional complexity with different com-
partments vis-à-vis MM and IMS having different redox  
environments. Proteostasis stress due to mitochondrial DNA 
damage is sensed by ATFS-1, first discovered in Caenorhab-
ditis elegans to upregulate mitochondrial chaperones in  
response41. Subsequently, ATF5 was found to play a similar  
role in mammalian cells42. However, mitochondria respond  
differently to misfolding inside the MM (ROX1)43 and prote-
ostasis imbalance due to overburdened protein translocation  
machinery44. The MM along with the nucleolus45,46 plays an 
important role in clearing cytosolic misfolded proteins. Nucleoli  
and promyelocytic leukemia protein bodies act as clearance  
hubs for defective ribosomal products as well30. Currently, 

there is limited knowledge regarding proteostasis disequi-
librium in the two sub-compartments and whether they can  
report the compartment-specific problems back to the nucleus. 
Given the importance of mitochondria in global misfold-
ing stress, sensors and signaling mechanisms of the two  
sub-compartments are of immediate interest. In a recent study, 
Rao et al. showed sub-compartment-specific stress-response  
pathways in MM and IMS during proteotoxic stress-induced  
by misfolded proteins, where upregulation of TOM com-
plex mediates the IMS response while Vms1 is important in  
MM stress response47.

As stress may disturb organellar membranes, reorganiza-
tion of some membrane-bound organelles is also reported dur-
ing stress. For example, Golgi apparatus–related degradation 
is aided by 26S proteasome in the cytosol and controls Golgi  
dispersal48. Another study reported the shuttling of mam-
malian ubiquitin ligase CHIP from chaperones to the mem-
branes during acute stress. CHIP then acts on its organelle  
specific substrates leading to reorganization of that organelle49. 
Remarkably, the stress-response pathways of the different 
compartments seem to communicate intracellularly: ER-UPR  
activation can clear cytoplasmic aggregates50,51, and down-
regulation of cytosolic chaperones can upregulate ER stress 
response in specific cells52 (Figure 2). Similarly, mitochondrial 
proteostasis can take care of cytosolic misfolded proteins45,  
whereas ER can act as a hub for protein quality control when 
mitochondrial proteostasis is perturbed53. Also, mitochondrial 
precursor proteins, when accumulated in the cytosol, result 
in the activation of another type of stress response, referred  
to as UPRam (UPR activated by mistargeting of proteins), 
which was found to be beneficial for cells54. Another study  
discovered similar mitochondrial precursor over-accumulation  
stress (mPOS) in Saccharomyces cerevisiae disturbing 
cytosolic proteostasis55. Response to mPOS includes upregula-
tion of ribosome-associated proteins, ultimately leading to cell  
survival55. Thus, the stress-response pathways in organelles are 
interconnected and this connection extends to inter-organelle  
contact sites as well. For example, contact sites of mitochon-
dria with lysosomes and ER are quite important for mitochon-
drial quality control (reviewed elsewhere56). Organisms not  
only have intracellular stress sensors and response mecha-
nisms but the response pathways are also regulated by cell  
non-autonomous signaling57. Intercellular communication  
(Figure 2) of this sort is seen in C. elegans, where the 
upregulation of mitochondrial unfolded protein response  
(Mito-UPR) in the brain seems to activate the HSF1-dependent  
pathway in the intestinal cells58,59. ER-UPR upregulation 
in the glial cells of C. elegans leads to the upregulation of  
ER-UPR in distal cells using neuropeptide signaling confer-
ring ER stress tolerance and longevity60. In a striking discov-
ery, a tyrosine phosphatase that negatively regulates HSF1 
activity was found to be downregulated by endogenous small 
interfering RNA (endo-siRNA) in germline-less C. elegans61.  
This suggests that in metazoans multiple pathways upregu-
late the proteostasis network even when intracellular signals  
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are missing, thus opening new avenues to modulate proteos-
tasis using hormonal or neurotransmitter-based signaling in  
organisms62–64.

Although we have a large catalogue of proteostasis mem-
bers and pathways that regulate it, the knowledge is by no 
means exhaustive. New members of the proteostasis network  
are being identified not only in complex metazoans but also 
in simple and well-studied model organisms like Escherichia 
coli and S. cerevisiae65,66. There are many unknowns in the  
way that proteostasis network members are regulated. For 
example, we have only started to understand whether dif-
ferent types of misfolded proteins in the same compartment  
would signal similar or different pathways and how the 
amplitude and the spectrum of response would depend on 
the number of misfolded molecules and their type67. The  
regulation of these members is being studied, and quantita-
tive models have been developed to simulate the proteostasis 
network of different organisms68,69. The ever-increasing knowl-
edge in this field contributes immensely to our understanding  
of the role of proteostasis in health and diseases.

Aging and proteostasis
Multiple pieces of evidence suggest that aging leads to a pro-
gressive decline in proteostasis70–72. Unstable transgenic proteins 
are found to form punctate structures in aged C. elegans, and 
a large fraction of the endogenous proteome aggregates in an  
age-dependent manner73–75. In an interesting short-lived ver-
tebrate model, Nothobranchius furzeri, protein aggregates  
comprising primarily ribosomal subunits increased with age, 
indicating a loss of ribosome stoichiometry, aggregation, and 
proteostasis imbalance76. Another comprehensive proteomics  
study reported that mice showed only minimal change in pro-
teome with age77; however, the authors focused only on the 
soluble proteome and its alteration with age. Hence, it is pos-
sible that the aggregated proteome changes with age. Direct  
correlation of protein aggregation with age was shown by an 
aggregated protein fraction from the brain of young mice hav-
ing enhanced ability to seed Aβ aggregation in aged mice,  
underlining their compromised proteostasis78. Supporting this, 
in humans, amyloid-type aggregates show an age-dependent  
increase in plasma79. Environmental and genetic conditions  
that lead to delayed aging also delay age-associated protein  
aggregation in C. elegans74. However, the connection between 
aging and proteostasis is not simple; rather, aging in metazo-
ans is a complex process involving multiple cell types, and 
each cell type may have a different rate of molecular aging  
determining their dependence on proteostasis80. Although 
aging leads to a decline in proteostasis, a decline in proteostasis 
may also contribute to aging: expression of aggregation-prone  
proteins in worms and mouse decreases their life span and 
accelerates aging-associated phenotypes24,74. Other conditions  
that perturb proteostasis, like the mismatch between  
mitochondrial and nuclear genotype, can also accelerate  
aging81. Evidence from the “anti-aging” program in stem 
cells also suggests that aging is partially governed by the  
maintenance of proteostasis82–84. Proteostasis decline makes 

up for the primary hallmarks of aging along with genomic  
instability, epigenetic modifications, and telomere attrition.  
Secondary hallmarks or antagonistic hallmarks—deregulated  
nutrient sensing, cellular senescence, and mitochondrial  
dysfunction—arise after that, leading to tertiary hallmarks  
which are seen as phenotypes when homeostasis is not  
restored85. Since these hallmarks can occur simultaneously 
and continuously during aging, the connection between aging 
and proteostasis is two-way: proteostasis decline acceler-
ates aging while aging accelerates the decline of proteostasis  
(Figure 3).

The reasons behind the age-dependent decline of proteosta-
sis are not clear since many factors can dictate proteostasis  
collapse: (1) accumulation of age-dependent damage to pro-
teins, (2) deregulation of protein synthesis causing aberrant  
accumulation of proteins involved in functional complex  
formation86, (3) the inability of aged cells to respond to 
altered proteostasis demands87,88, and (4) alterations in cellular  
milieu because of age-dependent changes in metabolism and 
hence impairment of the metabolite-dependent folding arm  
of proteostasis17,58,89. Any of these factors either alone or in 
combination could lead to the age-dependent collapse of  
proteostasis. The major focus has been on the age-associated  
accumulation of damaged proteins and the age-dependent  
loss of responsivity of stress-response pathways that maintain  
proteostasis (Figure 3).

Protein damage
Proteins accumulate damage during aging90. Modifications 
such as carbonylation, oxidation, glycation, and deamidation 
can change protein structure, function, and aggregation pro-
pensity of the folded proteins, thereby causing global protein  
aggregation91,92. Pathways nullifying this damage can delay 
aging, indicating that this damage may have a significant con-
tribution in increasing the load on the proteostasis network  
during aging93. Interestingly, pathways that alleviate this 
damage are thought to play an important role in life-span  
extension when organisms are treated with sub-lethal stresses 
early in life (a phenomenon termed hormesis)51. Although  
damage to proteins may play a crucial role in determining 
the load on the proteostasis network, error in mRNA edit-
ing, mRNA splicing, and translation fidelity can also increase 
the load on the proteostasis network by producing faulty  
proteins that are unable to fold94–96.

Protein misfolding may escalate during aging if damaged pro-
teins are not cleared efficiently. Supporting this, increasing 
protein degradation by enhancing autophagy97 or proteasomal  
pathway98 enhances life span99. Although chemically induc-
ing autophagy by rapamycin increases life span100, it also  
represses protein translation, a well-known modifier of 
aging101. The specific role of autophagy was substantiated by  
upregulating the adaptor protein, p62, which increases 
autophagy and hence life span in both C. elegans102 and Dro-
sophila melanogaster103. The link between life span and the  
capacity to clear the damaged proteins is further validated  
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by the observations that long-lived mammals tend to have 
enhanced protein degradation pathways104. However, it is impor-
tant to understand whether there is a threshold above which  
the increase of the degradation pathways, particularly autophagy, 
causes deleterious effects105. Given the benefit of upregu-
lating these pathways and the threshold, these studies are  
really helpful for designing therapeutics wherever needed.

Age-dependent loss of proteostasis network–restoring 
pathways
Some of the stress-response pathways that regulate prote-
ostasis exhibit an abrupt programmed decrease with aging,  
specifically during the reproductive phase of worms, partially  
explaining the age-dependent loss of proteostasis88,106,107. 
Experiments with mammals have shown conflicting results  
including decrease or no change in heat shock response  
(HSR) with aging108,109. Even while this is being investi-
gated, the consensus is that proteostasis-restoring pathways 
decline with age. For example, protein turnover through the  
autophagic flux marginally decreases with age110, and in 
a vertebrate model, killifish, a decrease in expression of  
proteasome components could predict the life span of the 
organisms with high confidence76. Similarly, in humans, lyso-
somal function and particularly autophagic flux and proteos-
tasis are compromised in T cells with aging111. Corroborating  
the loss of proteostasis with aging, upregulation of prote-
ostasis restorative pathways has shown promising results in 
aging: an increase in the HSR pathway by upregulating the 

transcription factor itself increases life span in yeast (chrono-
logical aging)112 and C. elegans113. An increase in Mito-UPR  
in a tissue-specific manner also increases life span114. Activat-
ing the ERAD arm through IRE1 mitigates the age-dependent  
collapse of proteostasis51,115. This suggests that there is a  
loss of proteostasis restoration pathways with aging.

If an age-dependent decline in stress-response pathways 
decreases protein clearance and increases the concentration  
of damaged proteins, we expect to see a decrease in protein 
turnover during aging. Autophagic flux in C. elegans seems  
to follow this trend; it decreases with aging and its attenua-
tion works as a mode of rescue in the long-lived mutants116.  
However, protein degradation seems to show a confusing 
trend: whereas some of the proteins show muted degradation, 
many others show an increase in degradation, arguing against  
a general loss of degradation capacity with age117. Decreased 
activity and dysfunction of the proteasome are associated 
with many late-onset disorders. Furthermore, enhancement in  
proteasome activity not only extends life span but also increases 
stress resistance. Thus, a decline in proteasome functional-
ity is an important determinant of aging98. The chaperones may 
be unable to recognize and engage specifically with defec-
tive proteins in aged organisms because of post-translational  
modifications118–121. In summary, forced upregulation of quality  
control branches increases life span. Nevertheless, it remains 
to be seen whether aging is indeed associated with the  
muted clearance of defective proteins.

Figure 3. Association between hallmarks of aging and collapse of proteostasis. Despite decades-long research, it is still difficult to 
pinpoint to a definite cause-and-effect relationship between hallmarks of aging and collapse of proteostasis. On the left, a few important 
cellular hallmarks of aging are shown. On the right, age-associated global changes to proteostasis are shown. ERAD, endoplasmic  
reticulum–associated degradation; Mito-UPR, mitochondrial unfolded protein response.
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Thus, the role of proteostasis in governing aging and associ-
ated phenotypes is still an active field. Given the complex  
connection between stress-response pathways and the breadth  
of the response, it is hard to pinpoint a single reason for  
the age-associated decline in proteostasis and vice versa; 
most likely, it does not depend on only a single pathway. 
Because aging depends on multiple pathways, obtaining their  
quantitative contribution would require quantitative genetic 
tools that can measure the contribution of each pathway and 
their epistasis, as has been developed in yeast122. This needs  
to be supplemented with biochemical experiments to allow 
a holistic understanding of organismal proteostasis and its  
regulation with aging.

Role of proteostasis in diseases
Role of proteostasis in monogenetic diseases
The role of proteostasis is well documented in neurodegen-
erative diseases123, but little is known about its role in mono-
genetic recessive diseases. Monogenetic recessive diseases 
linked to protein malfunction are caused by mutations that  
lead to loss of function of a protein. This can happen if 
the mutation (1) causes loss of the protein, (2) inactivates  
the protein by changing its active site, (3) disturbs the  
normal maturation of the protein, or (4) causes production  
of a different protein124. The majority of the recessive  
diseases that have been mapped to protein-coding regions do  
not occur in proteins’ active sites. Although these alterations 
may still affect protein function by altering allosteric sites or 
affecting macromolecular interactions125, many of them have 
the potential to affect protein folding and maturation126,127.  
Although its role in the first two cases is not as important,  
proteostasis may play a major role in the last two cases. HSR 
activation can cause a maladaptive response primarily for  
loss-of-function mutations and cause the degradation of mutant 
proteins128. On the same line, some of the disease-causing  
mutations in Fanconi anemia resulted in mutant proteins that 
had a stronger association with Hsp70 chaperone machin-
ery than the wild-type (WT) proteins, causing degradation of  
mutant variants129. The work also predicts that mutations that 
predispose a patient to severe forms of recessive diseases  
may generally associate more with the Hsp70 chaperone  
system whereas mild mutations generally tend to associate  
strongly with the Hsp90 chaperone system129. This corrobo-
rates nicely with a recent finding which shows that Hsp70  
prevents aggregation at the cost of preventing folding of 
mutant proteins but Hsp90 may relieve this brake and ensure 
proper maturation130. Similarly, cystic fibrosis causing  
mutations in the channel protein CFTR (cystic fibrosis trans-
membrane conductance regulator) shows the alleviation of  
phenotype when the mutant protein is dissociated from its 
cognate chaperone Aha1131,132. However, opposing trends 
where the upregulation of Hsp70 machinery helped protein  
maturation have also been observed. Arimoclomol, a  
proteostasis regulator that amplifies HSR, can decrease 
the lysosomal dysfunction in cells derived from Gaucher  
disease–affected patients133. Treatment with the drug, as 
expected, upregulated HSR but interestingly also enhanced the  

levels of Bip (an ER-resident Hsp70) and helped in the 
maturation of the mutant GCases (beta-glucosidases) that  
represented the different mutations found in the patients133. So  
it is difficult to predict the outcome of altering proteosta-
sis on the function of mutant proteins: whereas some mutants  
may fold more efficiently and regain activity upon induction  
of proteostasis network members, other mutants may be  
rendered inactive by the degradation machinery. Nonetheless,  
proteostasis contributes significantly to the phenotypes of 
recessive diseases. Large-scale testing with deep mutational 
scanning of proteins has opened up avenues to understand  
the role of proteostasis in specific mutations17,20,134 and may 
help in designing tools to efficiently predict the effect of 
proteostasis modulators on mutants of proteins that cause  
loss-of-function diseases.

Monogenetic dominant diseases can result from a mutation 
that either leads to dominant loss of function or forms toxic 
species. Among the dominant loss-of-function mutations,  
the most prevalent in cancer is on p53. p53 is stabilized upon 
DNA damage and ceases cell proliferation135. Cells harbor-
ing mutations in p53 proliferate and accumulate mutations  
in the genome. Since p53 forms a tetramer in vivo, the mutant 
proteins are thought to act dominantly by forming oligom-
ers with WT copies of p53. Although many of the p53  
mutations have problems binding to DNA muting its transcrip-
tion factor activity, recent evidence shows that mutant p53  
aggregates into amyloid-like fibrils, spreads to neighbor-
ing cells, and depletes WT p53 using a prion-like conforma-
tional switch mechanism136. Thus, if proteostasis alteration 
modulates protein quality control and aggregation, it is likely  
to play an important role in the process of p53 amyloidogenesis.

The latter class of monogenetic dominant diseases, that 
result from a toxic gain of function, includes Huntington’s  
disease and different classes of spinocerebellar ataxia. These 
share features of amyloid-like protein aggregation with  
complex neurological disorders like Alzheimer’s disease (AD)  
and Parkinson’s disease123. For the purpose of this commen-
tary, we are treating both of them as one group comprising 
diseases showing evidence of amyloid-like protein aggrega-
tion. Nevertheless, there is no common pathophysiological  
background for these diseases; also, different HSPs have 
been associated with them137. For example, each of these  
diseases has a distinct barcode of HSPs which can rescue 
the aggregation. Furthermore, these age-related diseases are  
presented with extracellular or intracellular amyloid  
aggregates75. The aggregated proteins, except for polyglutamine 
(polyQ)-associated diseases, are divergent in sequence. Gener-
ally, repetitive sequences—for example, repeating sequences 
of amino acids like glycine-alanine dipeptide in amyo-
trophic lateral sclerosis138,139—are more prone to aggregation.  
Aggregation may also proceed in the absence of any repeat 
sequences, as in the case of α-synuclein and Aβ. Even for 
the canonical polyglutamine-containing protein Huntingtin  
(Htt), recent evidence suggests that toxicity can arise from the 
regions flanking the polyQ tract140 or from repeat-associated  
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non-ATG (RAN) peptides generated by alternate transla-
tion frames of CAG repeats141. However, the transgenic mice 
model of Huntington’s disease exhibited toxicity only due  
to the aggregation of polyQ peptides and not due to RAN trans-
lated repeats142. Thus, identifying the toxic species in aggre-
gation-associated diseases is still an active field. The target  
organs with different mutant proteins are different. For exam-
ple, mutant Htt with polyQ extension in exon 1 aggregates 
in the cortex and striatum region of the brain while islet 
amyloid polypeptide (IAPP), an aggregate associated with  
type II diabetes, is found in the pancreas. For many of these 
diseases, the mutant protein is ubiquitously expressed in 
different regions of the body but the puzzling feature is  
the specificity of the site of aggregation. Although the  
late-onset nature of aggregation seems to be explained by 
the failing proteostasis, there is no consensus on the spatial  
specificity of aggregation72.

Many amyloid aggregates that are naturally found are not  
toxic143. Then why do some mutant protein aggregates show 
pathology associated with them? One possibility is that the 
aggregated proteins are not toxic but the soluble misfolded 
proteins, in either monomeric or oligomeric form, are toxic  
for the cells144. Misfolded proteins may sequester chaperones 
and make them unavailable for other essential substrates27,145.  
Mutant proteins like Htt form toxic soluble oligomers and 
seed further aggregation146–148. Thus, soluble oligomers extend-
ing to form large intracellular protein aggregates seem to  
be a recurrent feature of many late-onset aggregation-prone  
diseases. Although soluble aggregates play a major role in 
toxicity, both insoluble and soluble aggregates are toxic for 
the cells ex vivo in many of the canonical diseases75. Aggre-
gates can also cause toxicity by permeabilizing membranes149  
or sequestering other macromolecules150. Recent evidence also 
suggests that a large-scale metabolism change due to toxic 
misfolding in cells results from mitochondrial dysfunction151.  
Thus, toxicity seems to be multipronged and may depend 
partially on the aggregating protein, the spatial location of  
aggregates, and environmental stimuli.

Why do these toxic species accumulate? This may happen if 
these species are either overexpressed or hoarded by block-
ing the clearance pathway. Many of these aggregates are  
known to inhibit proteasomal activity, thereby inhibiting 
their clearance. For example, soluble aggregates of differ-
ent pathological aggregation-prone proteins have similar struc-
tural features that enable them to target proteasome and block  
their activity with high affinity152. Some mutant proteins, like 
toxic oligomers of mutant Htt that bypass chaperone-mediated  
autophagy, may avoid clearance153. PolyQ expanded pro-
teins may also block autophagy by decreasing Beclin-1 that is  
essential for autophagy. Beclin-1 (a key regulator of autophagy) 
interacts with the polyQ tracts of Ataxin-3 that prevents  
its degradation154. Expression of other proteins with polyQ 
tracts compete this interaction in a polyQ length-dependent  
manner, thereby causing Beclin-1 to be degraded by the  
proteasome. This leads to a decline in autophagic flux in 

cells harboring polyQ tracts in mice as well as human brain  
cells154. Proteotoxicity is resolved when autophagy block is 
relieved artificially, suggesting that the clearance arms of  
proteostasis are key to prevent the accumulation of these toxic 
proteins. As a corollary, conditions that compromise clear-
ance mechanisms should precipitate the disease. Indeed, viral 
infections that block autophagy have been shown to precipitate  
α-synuclein aggregation155. However, the interdependence 
between autophagy and proteasomal degradation and between 
different branches of the autophagy pathways warrants more 
careful studies in unraveling the role of specific branches in 
the clearance of misfolded proteins, diffusely aggregated pro-
tein, insoluble protein aggregates, or organelles burdened  
terminally with proteotoxicity156–158.

Protein misfolding is known to induce an appropriate response 
by increasing the clearance capacity of the cells. Then why 
does it fail in these diseases? Failing response with age,  
as discussed above, could be the clue making these dis-
eases late-onset diseases. However, these oligomers them-
selves have been found to perturb the proteostasis network  
and blunt cellular response, leading to a faster collapse of  
proteostasis with aging. Aggregates of α-synuclein found in  
patients with Parkinson’s disease can facilitate degradation 
of HSF1, thereby diminishing the sensory mechanisms that 
can mount a defensive response159,160. Aggregates of mutant  
Htt interact with the TIM23 translocase of mitochondria, 
thus perturbing mitochondrial proteostasis and possibly pre-
venting its degradation through the MAGIC pathway45. Per-
turbed mitochondrial homeostasis may be a common crucial  
mediator in these diseases as even in sporadic cases of AD 
(without mutations in the known modulators), mito-UPR  
genes were found to be upregulated, attesting to the gen-
eral role of mitochondrial proteostasis in AD161. These studies 
provide us with valuable knowledge of the underlying prob-
lems in these diseases, which have set forth new avenues that  
might lead to therapy.

Role of proteostasis in infectious diseases
Many intracellular pathogens use host cellular machinery for 
the efficient maturation of their proteins. This is particularly 
true for viruses that use the host chaperones to create their pro-
teostasis network that aids viral replication. For example,  
ER-resident chaperones are important for the efficient matu-
ration of viral surface proteins, and cytosolic chaperones 
are important for the folding of many of the non-structural  
proteins162,163. Large polyproteins made by viruses need to  
be processed and folded correctly. Mounting evidence shows 
that the maturation of large proteins is dependent upon the  
host chaperones like Hsp90162,164. The autophagy pathway 
is also crucial for generating replication sites for different  
viruses165. Interestingly, some of the viral protein aggregates  
are known to increase autophagy in the infected cells  
whereas others block the process of autophagy. Given the 
importance of the proteostasis machinery of the host in viral 
replication, the ER proteostasis inhibitor Castanospermine 
has shown pan-antiviral activity against many enveloped  
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viruses166, and Hsp70 inhibitor has been shown to have strong 
anti-viral activity against the Zika virus163. Drug resistance  
in many viruses emerges fast as they can accumulate muta-
tions rapidly. Many of the coding missense mutations can 
likely compromise protein folding, causing their evolution  
dependent upon the host proteostasis machinery. It has been 
shown that the mutations accumulated on the Influenza  
virus are regulated by the host proteostasis134 and inhibiting  
proteostasis prevents the emergence of drug-resistant Zika  
viruses163. Given the different networks present in differ-
ent compartments, compartment-specific host proteostasis can 
show different effects on viral evolution167. Interestingly, a  
mutation (Pro283 nucleoprotein variant) fixed in the human 
Influenza virus strain, which provided immune tolerance, was 
found to be inactivated upon inhibition of HSF1 at febrile  
temperatures168. This proved that the proteostasis network 
may play an important role in buffering mildly deleterious  
mutations that have some functional advantage. However, 
HSF1, as mentioned earlier, controls many pathways, includ-
ing the chaperone network. Thus, it remains to be seen whether 
this mutant takes the help of chaperones to fold in vivo.  
Intracellular bacteria communicate with the host cells through 
their secretory proteome. Deubiquitninases (DUBs) are among  
the prominent classes of enzymes secreted by bacteria  
that rewires the host proteostasis network to deubiquitinate  
proteins preventing the growth of intracellular pathogens169.

For extracellular pathogens like bacteria, proteostasis net-
work members are major targets for the development of  
anti-microbial drugs. CLPP activators that constitutively activate  

CLPP protease and cause proteostasis imbalance are inter-
esting candidates for antibiotics170. Bacteria can tolerate  
anti-microbials and evolve anti-microbial resistance (AMR).  
AMR can be affected by bacterial dormancy, which in turn 
results in persistence. In an intriguing study, Fan Bai’s 
group showed that protein aggregates determine bacterial  
dormancy and stress tolerance linking the role of proteos-
tasis to stress-based cellular memory and possibly AMR171. 
Given that proteostasis members, chaperones (protein and  
chemical), can buffer mutations, it is tempting to specu-
late that alteration in the concentration of these members  
assists in the evolution of AMR. Intriguingly, metabolic altera-
tions associated with osmotic shock have been shown to 
alter mutational buffering17. Thus, changes in metabolism  
either due to change in the niche of a microbe or due to the 
metabolic rewiring can potentiate genetic variations that 
may culminate in AMR. A summary of the above-mentioned  
diseases is shown in Figure 4.

Outlook
Long-term quests in the field have been to understand the role 
of proteostasis in regulating different physiological or patho-
logical processes and to identify proteostasis-modulating  
strategies to alleviate problems associated with these proc-
esses. This would require the painstaking effort to catalogue 
the dependence of the different pathways on proteostasis.  
A specific problem that requires attention is the way that pro-
teostasis is perturbed to investigate the dependence. Genetic 
deletion of chaperones or other members of the proteostasis  
network is often used to investigate the dependence, but 

Figure 4. Proteostasis in diseases. A summary of proteostasis-related diseases is presented. Many of the proteostasis-related diseases 
we know of have a genetic component. There has been considerable progress in deciphering the molecular mechanisms of many of these 
diseases. Still, a better understanding of eukaryotic stress-response pathways will take us a long way in the direction of treatment and cure.
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their deletion most often upregulates other pathways of pro-
teostasis that do not optimally complement the loss of the 
deleted pathway but rather increase the clearance processes172.  
The results obtained upon chaperone deletions in S. cerevi-
siae are hence convoluted; they could be an outcome of the 
loss of the pathway or a dominant effect of the upregulated  
pathways. So it is important to devise strategies to effec-
tively downregulate functions of chaperones without complete  
deletion, a strategy that has already produced interesting results173.

To identify novel proteostasis modulators, we need to have 
comprehensive knowledge of pathways regulating proteosta-
sis. There is a large gap of knowledge in our understanding  
of the pathways that regulate proteostasis in higher eukaryo-
tic systems. For example, although we know that the dele-
tion of some of these pathways (like certain branches of  
ER-UPR) can cause specific effects in certain tissues, we do 
not understand the reason that these pathways show tissue  

specificity although these are expressed ubiquitously in  
different tissues174,175. We do not know whether there is a 
threshold load of misfolded proteins that activate the differ-
ent branches differentially. It is also possible that each of  
these pathways has a tissue-specific difference in their thresh-
old of activation, a phenomenon that can change the way 
we target the pathways in different diseases. In fact, we 
understand little about how the response to proteostasis  
perturbations is guided in a cell type–specific manner.

However, the cumulative knowledge generated in this field 
has allowed the development of multiple therapeutic candi-
dates that can be used to ameliorate human suffering176–179.  
As we unravel the role of proteostasis in different biologi-
cal settings and close the gaps in knowledge, we hope that 
the excitement of discovery will be surpassed only by the 
usefulness of the discoveries in making our planet far more  
livable.
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