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Breast cancer (BC) is a malignant tumor with high morbidity and mortality, which seriously
threatens women’s health worldwide. Pyroptosis is closely correlated with immune
landscape and the tumorigenesis and development of various cancers. However,
studies about pyroptosis and immune microenvironment in BC are limited. Therefore,
our study aimed to investigate the potential prognostic value of pyroptosis-related genes
(PRGs) and their relationship to immune microenvironment in BC. First, we identified 38
differentially expressed PRGs between BC and normal tissues. Further on, the least
absolute shrinkage and selection operator (LASSO) Cox regression and computational
biology techniques were applied to construct a four-gene signature based on PRGs and
patients in The Cancer Genome Atlas (TCGA) cohort were classified into high- and low-risk
groups. Patients in the high-risk group showed significantly lower survival possibilities
compared with the low-risk group, which was also verified in an external cohort.
Furthermore, the risk model was characterized as an independent factor for predicting
the overall survival (OS) of BC patients. What is more important, functional enrichment
analyses demonstrated the robust correlation between risk score and immune infiltration,
thereby we summarized genetic mutation variation of PRGs, evaluated the relationship
between PRGs, different risk group and immune infiltration, tumor mutation burden (TMB),
microsatellite instability (MSI), and immune checkpoint blockers (ICB), which indicated that
the low-risk group was enriched in higher TMB, more abundant immune cells, and
subsequently had a brighter prognosis. Except for that, the lower expression of PRGs
such as GZMB, IL18, IRF1, and GZMA represented better survival, which verified the
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association between pyroptosis and immune landscape. In conclusion, we performed a
comprehensive bioinformatics analysis and established a four-PRG signature consisting of
GZMB, IL18, IRF1, and GZMA, which could robustly predict the prognosis of BC patients.

Keywords: pyroptosis, gene signature, breast cancer, survival, tumor immune microenvironment

INTRODUCTION

Breast cancer (BC) is the most prevalent malignancy and most
common cause of cancer-related mortality in women, seriously
endangering women’s health and life. The GLOBOCAN2020
reported that BC surpassed lung cancer as the first cause of
global cancer incidence in females, with 2,261,419 new cases and
nearly 680,000 deaths in 2020 (Hyuna et al., 2021). At present, the
common therapeutic methods of BC include surgery,
chemotherapy, radiotherapy, and traditional Chinese medicine.
With recent advances in medical technology, the diagnosis and
treatment of BC is enhanced substantially along with prolonged
survival, while long-term survival remains low. In addition, BC is
highly heterogeneous and the occurrence and progression are
complicated involving multifactorial mechanisms. Therefore, it is
essential to carry out an in-depth study of the molecular
mechanisms of BC to find the appropriate biomarkers for BC
diagnosis and therapy.

Pyroptosis is described as certain programmed cell death induced
by inflammasomes and executed via the gasdermin protein, and
characterized as releasing inflammatory cytokines, which is involved
in various types of cancers, such as colon, liver, and breast (Jianjin
et al., 2017). GasderminD (GSDMD) is a key downstream effector in
cell pyroptosis. The average expression level of GSDMD in gastric
cancer (GC) tissues was lower than that in normal tissues.
Knockdown of GSDMD could activate JAK/STAT3, PI3K/AKT,
and ERK/MAPK pathways, resulting in the tumorigenesis of GC (Jie
et al., 2018). Meanwhile, GSDMD silencing promoted cell
proliferation and mediated malignant biological behaviors
through inhibiting PKA signaling pathway (Dan et al., 2019).
Similarly, induction of pyroptosis could suppress the proliferative
capacity of hepatocellular carcinoma (HC) cells. Studies revealed that
NLRP3 expression was significantly lower in tumors compared with
normal tissues, which was positively correlated with the histological
grade of HC patients (Qing et al., 2014). Moreover, the expression of
caspase-1, IL-1β, and GSDMD was negative correlation with
increasing tumor grade, clinical stage, and poor clinical prognosis
in BC, indicating pyroptosis played a central role in BC
tumorigenesis and progression (Xia et al., 2020). Based on a close
correlation between pyroptosis and cancer progression and
prognosis, multiple pyroptosis gene-based studies of prognostic
biomarkers have been identified and used for the construction of
a gene signature with prognostic predictive power. For instance,
seven-gene score, which reflects tumor cell proliferation, is both a
prognostic and predictive biomarker for ovarian cancer (Ying et al.,
2021). Besides, a “pyroptosis gene regulatory signature” was derived,
consisting of nine genes whose expression best predicted skin
cutaneous melanoma patient outcome (Anji et al., 2021).
However, the prognostic value of pyroptosis gene signature in BC
has not yet been fully elucidated.

In summary, we performed a comprehensive analysis of the
expression pattern of pyroptosis gene between normal tissues and
tumor tissues, and constructed a predictive pyroptosis gene-based
risk model, subsequently investigating the correlation between
pyroptosis and clinical features, immune microenvironment and
immunotherapy responsiveness, providing accurate and efficient
diagnostic and prognostic biomarkers of BC.

MATERIALS AND METHODS

Data Collection
The RNA expression profiles, somatic datasets of BC patients,
and the corresponding clinical data were obtained using the
TCGA database (https://portal.gdc.cancer.gov/), GEO (https://
www.ncbi.nlm.nih.gov/geo/), and International Cancer Genome
Consortium (ICGC. https://dcc.icgc.org/). Detailed clinical
information of the BC patients is displayed in Table 1.

Identification of Differentially Expressed
PRGs
A total of 52 PRGs were retrieved from preliminary studies, which
are listed in Table 2. To better screen the differentially expressed
genes, the “sva” package was performed to normalize the RNA-Seq
data to fragment per kilobase million (FPKM) values from the
TCGA and GEO datasets to eliminate the batch effect via batch
effects correction before comparison. The “limma” package was used
to identify differentially expressed genes (DEGs) between BC and
normal tissues with the p-value < 0.05. Besides we conducted a
protein-protein interaction (PPI) network for the DEGs to figure out
the interaction via Search Tool for the Retrieval of Interacting Genes
(STRING v11.5, https://string-db.org/), in whichminimum required
interaction score was set as 0.4, representing the degree of the
interactions including co-expression, co-occurrence, etc.

Mutation Analysis of PRGs
The somatic mutation spectrum of 52 PRGs from VARSCAN in
BC patients was generated by the “maftools” package based on the
MAF in TCGA dataset, which was illustrated in several
waterfall plots.

Consensus Clustering
Consensus clustering is a method that provides quantitative
evidence for determining the number and members of possible
clusters in a dataset, which uses agglomerative pam clustering
with a 1-Pearson correlation distances and resampling 80% of the
samples for 10 repetitions, gaining a consensus on an
observation’s cluster assignment based on their assignments in
all the iterations of the clustering algorithm. R packages “limma”
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and “ConsensusClusterPlus” were performed to classify the
patients based on the DEGs via the suitable clustering variable
(k). Besides, R package “survival” and “survminer” were utilized
to analyze the correlations between clusters and OS, subsequently
presenting the results as Kaplan-Meier (KM) curves.

Construction and Validation of PRGs-Based
BC Prognostic Model
Based on the expression level of theDEGs and theOS of each patient,
Cox regression analysis was used to evaluate the correlations between
each gene and survival status to select candidate key genes in the
TCGA cohort (p < 0.05). Meanwhile, the LASSO Cox regression was
performedwith 10-fold cross-validation and a p value of 0.05 for every
1000 cycles to prevent overfitting. SVM (R package “e1071”) and
random forest (R package “randomForestSRC”) were then utilized to
identify and develop the prognostic model. Ultimately, the risk model
was established and calculated by the expression of four genes and
their coefficients, which are listed in Table 3. Risk Score =∑(Xi × Yi)
(X: coefficients, Y: gene expression). Based on the median risk score,
patients were classified into low- and high-risk groups, and the
survival outcomes were investigated between the two subgroups via
KM analysis. Besides, principal component analysis (PCA) and t-SNE
based on the 4-gene signature were performed via the “t-SNE” R
package. The “survival,” “survminer”, and “timeROC” R packages
were employed to performa 1-, 3-, and 5-year ROC curve analysis. For

the external validation studies, a BC cohort from the GEO database
(GSE20685) was obtained. Following the formula in TCGA, the risk
score was calculated and the patients in the GSE20685 cohort were
applied to verify the risk model.

Independent Prognostic Analysis
The clinical information of patients in the TCGA cohort and the
GEO cohort was analyzed in combination with the risk score. We
performed univariate and multivariable Cox regression to
evaluate whether the risk model was a predictive prognostic
factor (Table 4). Moreover, we also developed a nomogram to
predict patients’ survival prognosis, which consists of clinical
parameters and risk score.

Functional Enrichment Analysis
The DEGs between the low- and high-risk groups were filtered
according to specific criteria (|log2FC| ≥ 1 and FDR < 0.05) and
were carried out with GO and KEGG analyses via the
“clusterProfiler” package.

Immune Infiltration, Tumor Mutation
Burden, and Microsatellite-Instability
Analysis
We performed the ssGSEA and CIBERSORT to evaluate the
correlation between the scores of infiltrating immune cells and

TABLE 1 | The clinical characteristics of BC patients from the TCGA and GEO databases.

Characteristics Detailed data IGGC cohort (n = 107)

TCGA
cohort (n = 1076)

GEO cohort (n = 327)

Status Dead 150 (13.94) 103 (25.38) 4 (3.74)
Survival 926 (86.06) 244 (74.62) 103 (96.26)

Age at diagnosis (years) ≤65 773 (71.84) 305 (93.27) 85 (79.44)
>65 303 (28.16) 22 (6.73) 22 (20.56)

Gender Female 1064 (98.88) 327 (100) 107 (100)
Male 12 (1.12) — —

Stage 1 183 (17.01) — —

2 608 (56.51) — —

3 242 (22.49) — —

4 24 (2.23) — —

NA 23 (1.76) — —

T T0 — 3 (2.80)
T1 281 (26.12) 101 (30.89) 34 (31.78)
T2 621 (57.71) 188 (57.49) 59 (55.14)
T3 133 (12.36) 26 (7.95) 6 (5.61)
T4 38 (3.53) 12 (3.67) 1 (0.93)
NA 3 (0.28) — 4 (3.74)

M M0 895 (83.18) 319 (97.55) 103 (96.26)
M1 22 (2.04) 8 (2.45) —

NA 159 (14.78) — 4 (3.74)

N N0 504 (46.84) 137 (41.90) 50 (46.73)
N1 361 (33.55) 87 (26.61) 37 (34.58)
N2 120 (11.15) 63 (19.27) 11 (10.28)
N3 74 (6.88) 40 (12.22) 5 (4.67)
NA 17 (1.58) — 4 (3.74)

NA, not available.
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the activity of immune-related pathways and the risk score. Besides,
Estimation of Stromal and Immune cells inMalignant Tumor tissues
using Expression data (ESTIMATE) was conducted to calculate the
immune scores which determine stromal score, immune score,
estimate score, and tumor purity. In TMB and MSI analysis,
Spearman’s correlation analysis was performed to investigate the
correlation between TMB and MSI score and gene expression level.
Ultimately, we utilized the tumor immune dysfunction and

exclusion (TIDE) algorithm to predict potential ICB response of
patients in ICGC, which used several gene expression markers to
evaluate two different mechanisms of tumor immune escape,
including the dysfunction of tumor infiltrating cytotoxic T
lymphocytes (CTL) and the rejection of CTL via
immunosuppressive factors. The higher the TIDE score, the
poorer the efficacy of ICB, the shorter the survival time after ICB
treatment.

Validation of the Expression of the Genes in
Risk Signature
All the specimens were from thyroid and breast surgery in
Renmin Hospital of Wuhan University. All the patients
provided informed consent and were approved by the Ethics
Committee of Renmin Hospital of Wuhan University to collect 9
cases of BC tissues and corresponding paracancerous tissues. The
clinicopathological parameters of patients are shown in
Supplementary Table S1. Total RNA from breast cancer and
paracancerous tissue samples was extracted and real-time PCR
analysis was performed to validate the expression of the
prognostic genes in the risk signature, where GAPDH was
used as an internal control.

Cell Culture
MCF-7 cells were grown in high glucose Dulbecco’s Modified
Eagle’s media with 10% fetal bovine serum and 1% penicillin/
streptomycin at 37°C and 5% CO2. MCF-7 cells were plated on
the 6-well plate and grown to 60%. After incubation of different
concentrations of LPS (0, 5, 10, 20, 40, and 80 ug/mL), the cell
lysate of MCF-7 was extracted and RT-PCR was performed.

Statistical Analysis
All statistical analyses were conducted with R (v3.6.1). To
compare the PRGs expression between the normal and BC
tissues and the immune infiltration levels between the high-
and low-group, the Wilcoxon test was applied, while the log-
rank test was utilized to compare the OS between subgroups.

RESULTS

The Potential Association Between
Pyroptosis and BC
We compared 52 PRGs expression levels between 113 normal
and 1109 tumor tissues from TCGA, and identified 38 DEGs

TABLE 2 | 52 pyroptosis-related genes.

Genes Full-names

AIM2 Absent in melanoma 2
BAK1 BCL2 Antagonist/Killer 1
BAX BCL2 Associated X
CASP1 Cysteine-aspartic acid protease-1
CASP3 Cysteine-aspartic acid protease-3
CASP4 Cysteine-aspartic acid protease-4
CASP5 Cysteine-aspartic acid protease-5
CASP6 Cysteine-aspartic acid protease-6
CASP8 Cysteine-aspartic acid protease-8
CASP9 Cysteine-aspartic acid protease-9
CHMP2A Charged multivesicular body protein 2A
CHMP2B Charged multivesicular body protein 2B
CHMP3 Charged multivesicular body protein 3
CHMP4A Charged multivesicular body protein 4A
CHMP4B Charged multivesicular body protein 4B
CHMP4C Charged multivesicular body protein 4C
CHMP6 Charged multivesicular body protein 6
CHMP7 Charged multivesicular body protein 7
CYCS Cytochrome C, Somatic
ELANE Elastase, neutrophil expressed
GPX4 Glutathione peroxidase 4
GSDMA Gasdermin A
GSDMB Gasdermin B
GSDMC Gasdermin C
GSDMD Gasdermin D
GSDME Gasdermin E
GZMA Granzyme A
GZMB Granzyme B
HMGB1 High mobility group box 1
IL18 Interleukin 18
IL1A Interleukin 1 alpha
IL1B Interleukin 1 beta
IL6 Interleukin 6
IRF1 Interferon Regulatory Factor 1
IRF2 Interferon Regulatory Factor 2
NLRC4 NLR family CARD domain containing 4
NLRP1 NLR family pyrin domain containing 1
NLRP2 NLR family pyrin domain containing 2
NLRP3 NLR family pyrin domain containing 3
NLRP6 NLR family pyrin domain containing 6
NLRP7 NLR family pyrin domain containing 7
NOD1 Nucleotide binding oligomerization domain containing 1
NOD2 Nucleotide binding oligomerization domain containing 2
PJVK Pejvakin/deafness, autosomal recessive 59
PLCG1 Phospholipase C gamma 1
PRKACA Protein kinase cAMP-activated catalytic subunit alpha
PYCARD PYD and CARD domain containing
SCAF11 SR-related CTD associated factor 11
TIRAP TIR domain containing adaptor protein
TNF Tumor necrosis factor
TP53 Tumor Protein P53
TP63 Tumor Protein P63

TABLE 3 | The four prognosis-associated PRGs identified by univariate and
multivariate Cox regression analysis.

Univariate Cox analysis Multivariate Cox
analysis

— HR HR.95L HR.95H p-value Coefficient
GZMB 0.847 0.744 0.964 0.012 GZMB −1.318733
IL18 0.759 0.626 0.921 0.005 IL18 −0.543479
IRF1 0.752 0.614 0.922 0.006 IRF1 −0.722430
GZMA 0.825 0.725 0.939 0.004 GZMA −1.040392
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(p < 0.05). As shown in Figure 1A, 17 genes (IL6, TP63,
ELANE, NLRP1, PJVK, GSDME, NLRP3, NOD1, IL1B, CASP1,
CASP4, CHMP3, SCAF11, GPX4, IRF2, TIRAP, and PLCG1)
were downregulated while 21 genes (CASP8, CHMP6, GSDMB,
CHMP4C, CHMP2A, CHMP2B, CYCS, CASP3, IRF1, CASP6,
BAK1, GSDMD, GZMA, BAX, IL18, NLRP6, NOD2, PYCARD,
AIM2, GSDMC, and NLRP7) were upregulated in tumor
tissues. PPI networks were constructed to further explore
the interactions of these PRGs, which were shown in

Figure 1B. The minimum required interaction score for the
PPI analysis was set at 0.4, and we determined that AIM2,
BAK1, BAX, CASP1, CASP3, CASP4, CASP8, GSDMD, IL18,
and IL6 were hub genes, which had been demonstrated by the
correlation network presented in Figure 1C.

Somatic Alteration of PRGs in BC
As shown in Figures 2A,B, 77 of 149 (51.68%) samples
suffered genetic mutations. When referring to variant type,

TABLE 4 | Univariate and multivariate analyses of different clinical characteristics in TCGA cohort and GEO cohort.

TCGA Univariate Cox analysis Multivariate Cox regression

— HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value
Age 1.034 1.019 1.048 <0.001 1.035 1.020 1.050 <0.001
M 6.414 3.604 11.415 <0.001 1.429 0.630 3.240 0.392
N 1.649 1.377 1.975 <0.001 1.187 0.892 1.579 0.239
T 1.570 1.270 1.942 <0.001 1.016 0.756 1.364 0.917
Stage 2.131 1.690 2.687 <0.001 1.616 0.973 2.684 0.064
Risk score 2.691 1.387 5.222 0.003 2.025 1.023 4.009 0.043

GEO Univariate Cox analysis Multivariate Cox regression

— HR HR.95L HR.95H p-value HR HR.95L HR.95H p-value
Age 0.992 0.971 1.014 0.483 1.003 0.983 1.024 0.759
T 1.863 1.440 2.412 <0.001 1.318 0.925 1.880 0.127
N 1.757 1.448 2.134 <0.001 1.665 1.338 2.072 <0.001
M 5.204 2.391 11.326 <0.001 1.367 0.496 3.770 0.546
Risk score 2.713 1.148 6.410 0.023 3.554 1.389 9.092 0.008

HR, hazard ratio.

FIGURE 1 | Identification of 38 differentially expressed pyroptosis-related genes and the interactions among them. (A) Heatmap of the differential pyroptosis-
related gene expression between normal and tumor samples (*: p < 0.05, **: p < 0.01, ***: p < 0.001). (B) PPI network showing the interactions of the PRGs (interaction
score = 0.4). (C) The correlation network of the pyroptosis-related genes.
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missense mutation was the most frequent variant
classification (Figure 2A). In addition, Supplementary
Figure S1 illustrated C > T ranked the top in the SNV
class. We also demonstrated that CASP8 was the highest
mutated gene accounting for 10%, followed by NLRC4 and
NLRP3 (Figure 2B).

Characterization of Different BC Clusters
Based on PRGs
Consensus clustering analysis was performed to explore the
correlation between PRGs and BC subtypes in the TCGA
cohort. To acquire the most suitable clusters that were

FIGURE 2 | Somatic alterations of PRGs in BC. (A) Summary of the mutation in TCGA. (B)Waterfall of the mutation in TCGA (the upper pane refers to the frequency
of somatic PRG mutations in each patient in the 149 patients; the lower pane refers to the somatic mutation frequency of one PRG in all 149 patients).

FIGURE 3 | Tumor classification based on the pyroptosis-related DEGs. (A) 1076 BC patients were grouped into two clusters according to the consensus
clustering matrix (k = 2). (B) Heatmap and the clinicopathological characters of the three clusters classified by these DEGs. (C) Kaplan–Meier OS curves for the two
clusters.
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characterized as distinct and overlapping, k = 2 were chosen. The
results demonstrated that the 1076 BC patients could be well
classified into two clusters (Figure 3A) (Supplementary Figure
S2). The clinical parameters including the T (T1-4), N(N0-3), M
(M0-1), stage (stage1–4), and age (≤65 or >65 years) and the
expression profiles of DEGs between the two subgroups (CASP1,
CASP4, GZMB, IL18, IL1B, IRF1, AIM2, GSDMB, GSDMC, IL6,
NLRC4, NLRP1, NLRP3, TNF, and GZMA) are displayed in a
heatmap (Figure 3B). Stepwise, the KM curves showed that
cluster 1 had a significantly poorer OS than cluster 2 (p =
0.028), suggesting that the PRGs were strongly connected with
patients’ survival (Figure 3C).

Construction of a Pyroptosis-RelatedModel
Through Computational Biology
Techniques
After integrating the gene expression and clinical information,
four candidate prognosis-related PRGs were identified via Cox
regression analysis (Figure 4A). Further performing the least
absolute shrinkage and selection operator (LASSO) regression
analysis, SVM, and random forest, a 4-gene signature was
constructed, which consisted of GZMB, IL18, IRF1, and
GZMA (Figures 4B,C). Eventually, the risk-score equation was
as follows: risk score = (−0.024* GZMB exp.) + (−0.139* IL18
exp.) + (−0.079* IRF1 exp.) + (−0.143* GZMA exp.). The risk
score of the patients was calculated and ranked according to the

above formula, where 1076 patients were divided into low- and
high-risk subgroups (Figure 4D). The principal component
analysis (PCA) and t-SNE showed that patients with different
risks were well separated into two clusters (Figure 4E). High-risk
patients showed the significantly lower OS, which was observed
via the KM curve (Figures 4F,G). Besides, a total of 327 BC
patients from a GEO cohort (GSE28065) were applied to assess
the reliability and robustness. Based on the same risk score in the
TCGA cohort, 327 patients in the GEO cohort were divided into
the high- and low-risk group, respectively (Supplementary
Figure S3A). Supplementary Figure S3B shows satisfactory
separation between the two subgroups via PCA and t-SNE.
Besides, the distribution of risk score and OS of patients was
exhibited in Supplementary Figure S3C. What is more
important, survival analysis indicated that there was
remarkable difference between the low- and high-risk groups,
demonstrating good predictive accuracy (p = 0.045,
Supplementary Figure S3D). Eventually, we compared the
predictive value between the risk model and other established
signatures, which demonstrated that our risk model had a higher
C-index and better prognostic efficiency (Figure 5E).

Independent Prognostic Value of the Risk
Model
To evaluate the independence of the risk model, univariate and
multivariable Cox regression analyses were applied. The

FIGURE 4 | Establishment of a risk model based on TCGA cohort. (A) A forest plot consists of four OS-related genes via univariate Cox analysis. (B–F) Four OS-
related genes signature was constructed through LASSO, SVM, and random forest. (G) The distribution andmedian value of the risk scores. (H) PCA and t-NSE plots for
patients based on the risk score. (I) The distributions of OS status in each patient. (J) Kaplan–Meier curves for the OS of patients in the high- and low-risk groups.
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univariate Cox analysis revealed that age, T stage, N stage, M
stage, and risk score were independent factors affecting the
prognosis of BC patients, multivariate analysis demonstrated
that age and risk score were independent factors in the TCGA
cohort (Figure 5A,B). In the GEO cohort, both univariate and
multivariate analysis implied that the risk score was a prognostic
factor (Figures 5C,D). Meanwhile, we generated a heatmap of
clinical features for the TCGA cohort, but there was no significant
difference between clinical parameters and survival (Figure 5E).
Based on the clinicopathologic features and the risk score, we
constructed a predictive nomogram to predict the survival
probability. The predictive nomogram was applied to predict
1-year, 3-year, and 5-year survival probabilities of BC patients in
TCGA and GEO (Figures 5F,G). Furthermore, the calibration
and the C-index confirmed the promising ability to predict the
survival of patients (Figures 5H,I).

The Risk Model Implicated Strong
Association With Landscape of Immune
Microenvironment
To further understand the biological function of the DEGs
between the high- and low-risk groups based on the
prognostic risk model, we identified 179 DEGs via the
“limma” package (FDR<0.05). Of these DEGs, 177 genes were

downregulated, while another two genes were upregulated in the
high-risk group (Table 5). Gene ontology (GO) enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were then employed, demonstrating
that the DEGs were mainly associated with the regulation of
lymphocyte activation, external side of plasma membrane,
antigen binding, and tryptophan metabolism (Supplementary
Figure S4). According to the functional analyses, it was
interesting to observe that the biological processes were
enriched in immune functions and pathways, indicating the
risk model was closely associated with immune responses.
Therefore, we further conducted and compared the
enrichment scores of 16 types of immune cells and the activity
of 13 immune-related pathways between the low- and high-risk
groups via the single-sample gene set enrichment analysis
(ssGSEA). Compared with the high-risk group, the low-risk
subgroup generally had higher levels of infiltration of immune
cells, which included aDCs, B cells, CD8+ T cells, DCs, iDCs,
macrophages, mast cells, neutrophils, natural killer (NK) cells, T
helper (Th) cells, tumor-infiltrating lymphocytes (TILs), and
regulatory T (Treg) cells in TCGA cohort (Figure 6A).
Additionally, the low-risk group also exhibited higher activity
in immune pathways than in the low-risk group in the TCGA
cohort (Figure 6B). Similar conclusions were presented when
retrieving the immune status in the GEO cohort (Figure 6C).

FIGURE 5 | Independent prognostic value of the risk model. (A) Univariate analysis in the TCGA cohort. (B)Multivariate analysis in the TCGA cohort. (C) Univariate
analysis in the GEO cohort. (D) Multivariate analysis in the GEO cohort. (E) Heatmap for the connections between clinicopathological features and the risk groups. (F)
Construction of a nomogram to predict survival of patients based on clinical parameters and risk score in the TCGA cohort. (G) Construction of a nomogram to predict
survival of patients based on clinical parameters and risk score in the GEO cohort. (H) Calibration curves for the nomogram based on the TCGA cohort. (I)
Calibration curves for the nomogram based on the GEO cohort.
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TABLE 5 | DEGs between the low- and high-risk groups in the TCGA cohort.

Gene Low mean High mean logFC FDR

CORO1A 5.360104747 4.039533552 −1.320571195 1.4533E-102
ICOS 2.66870652 1.401707634 −1.266998885 6.0567E-99
ADAMDEC1 4.067634374 2.677191427 −1.390442946 1.58179E-61
UBASH3A 2.396795426 1.235868978 −1.160926447 4.8647E-113
SLPI 6.417742723 5.374261184 −1.043481539 2.82123E-15
IL2RG 5.381610354 3.590786963 −1.790823392 6.3889E-123
LTB 4.162616237 2.693823165 −1.468793072 1.12041E-83
KLHDC7B 3.641745108 2.602829947 −1.03891516 4.84572E-44
CD6 2.907802118 1.86808555 −1.039716568 2.6307E-108
GZMA 4.924957952 3.098356833 −1.826601119 6.4323E-129
CD247 3.313011386 2.175286145 −1.137725241 2.4537E-114
GBP4 4.608669232 3.234306381 −1.374362851 8.51808E-87
CYBB 4.794343167 3.677356315 −1.116986852 2.25184E-71
ZAP70 3.006312166 1.979412401 −1.026899765 4.3563E-100
LGALS9 5.115470076 4.114339016 −1.00113106 4.46913E-83
CCL18 3.924514642 2.60205151 −1.322463132 2.78856E-41
SLAMF8 4.366530125 3.086536589 −1.279993536 5.46533E-90
EEF1A2 4.563524061 5.738800508 1.175276447 7.28811E-16
GBP1P1 2.449571975 1.27318215 −1.176389825 2.69048E-88
IDO1 4.011478175 2.390257247 −1.621220928 1.22696E-94
APOE 8.128534974 7.095641377 −1.032893598 3.36347E-46
SPI1 4.725939757 3.587575922 −1.138363835 1.42452E-90
CPB1 2.939800849 4.193458095 1.253657245 3.63074E-08
CCL4 4.115440664 3.03068862 −1.084752045 3.2697E-93
C1S 7.307363861 6.222951045 −1.084412816 1.03439E-52
PTGDS 4.923081328 3.531880381 −1.391200948 1.16044E-55
RAC2 5.72871771 4.525700365 −1.203017345 3.91066E-91
IGHD 3.051991654 2.02802661 −1.023965043 4.26743E-34
BIN2 3.709266834 2.559470948 −1.149795886 2.8028E-109
CCR5 4.284251105 2.993071484 −1.291179621 1.0578E-116
GPR171 2.881081182 1.79534601 −1.085735173 6.2069E-100
S1PR4 2.787226885 1.7424426 −1.044784285 3.5729E-100
AOAH 3.513732239 2.494757235 −1.018975004 3.01337E-95
CST7 4.595045167 3.165546127 −1.42949904 8.5695E-104
HLA-DPB1 7.642577226 6.371570292 −1.271006934 9.7664E-101
TNFRSF17 2.95989884 1.840601865 −1.119296975 2.05885E-53
HCP5 5.290979401 4.240242684 −1.050736717 6.1271E-58
CD3E 4.527286876 2.861578069 −1.665708807 5.2271E-116
SPOCK2 4.154981604 2.896084803 −1.258896802 4.43455E-95
SELPLG 5.040260081 3.923229581 −1.1170305 5.03095E-93
NKG7 4.733281588 2.848564769 −1.884716819 2.8775E-122
S100A8 4.508000675 3.100904178 −1.407096498 3.4299E-31
LTF 7.30144272 5.734845084 −1.566597636 6.46878E-19
CARD16 3.450089988 2.437280475 −1.012809513 1.9148E-110
IGLV1-44 6.246509235 4.17187417 −2.074635065 1.66624E-49
IGHG1 7.350130441 4.929048971 −2.42108147 3.76055E-51
S100A9 6.939100023 5.333109776 −1.605990247 7.49594E-29
GZMB 3.70949304 2.070526724 −1.638966316 1.5122E-101
HLA-DRA 10.56132681 9.157501678 −1.403825133 7.2754E-108
S100A7 4.069054754 2.809805452 −1.259249301 1.11916E-12
CD79A 4.366519802 2.713664675 −1.652855127 6.25078E-67
FDCSP 4.642483781 2.985719615 −1.656764166 1.28725E-27
IGHV1-69 3.315959777 1.963011155 −1.352948622 3.55083E-37
HLA-DPA1 7.39906434 6.063546257 −1.335518083 1.13415E-93
TNFRSF1B 5.181175125 4.097575956 −1.083599169 7.1194E-103
TRAC 5.783767342 4.117421753 −1.666345589 1.2437E-105
ACKR1 4.484716745 3.392594695 −1.09212205 8.43227E-23
SELL 4.700846275 3.272053084 −1.428793192 1.31627E-82
GZMM 3.05536066 1.892536439 −1.162824222 7.4963E-92
LCK 3.944866286 2.52912373 −1.415742556 1.7523E-110
HLA-DQA1 6.247503546 4.076673578 −2.170829968 3.76188E-89
CXCL10 6.975795807 4.976685426 −1.999110381 1.686E-81
SIT1 3.28843416 1.882746759 −1.405687401 9.2293E-112
PRF1 3.668183558 2.442155392 −1.226028166 1.4193E-115

(Continued in next column)

TABLE 5 | (Continued) DEGs between the low- and high-risk groups in the TCGA
cohort.

Gene Low mean High mean logFC FDR

C1QC 7.845681197 6.675610114 −1.170071082 1.0383E-82
LAG3 3.106890931 2.086277781 −1.020613151 1.79066E-80
CCL2 5.46286324 4.337065426 −1.125797814 4.88778E-61
APOL1 6.050047347 4.908171095 −1.141876252 3.70502E-84
IL18 4.190789992 3.044475659 −1.146314333 9.6008E-126
HLA-F 6.106118877 4.956620172 −1.149498705 1.21661E-79
CTSW 3.397907205 1.869805587 −1.528101618 5.75927E-97
RARRES1 5.269708166 3.950770119 −1.318938047 5.39529E-42
IGKC 8.658650476 6.398117726 −2.26053275 1.0066E-54
LAMP3 3.99196859 2.679670854 −1.312297736 1.17868E-77
BCL2A1 3.920467154 2.715766402 −1.204700753 1.7772E-80
CD79B 3.002966686 2.001833894 −1.001132793 7.4998E-68
FERMT3 4.761586406 3.581359542 −1.180226864 1.5344E-99
IGHM 7.383651483 5.072475929 −2.311175554 6.47352E-53
IL2RB 4.231582771 3.018756424 −1.212826348 1.42754E-92
CXCL9 6.821303571 4.359150742 −2.462152829 2.06771E-90
C1QB 7.515156442 6.219815826 −1.295340615 4.79414E-89
NAPSB 4.233310224 3.091702908 −1.141607316 9.82202E-68
SIRPG 2.47922886 1.374519633 −1.104709228 1.4276E-113
IL32 5.59450272 4.310250032 −1.284252687 4.138E-78
SASH3 4.761827311 3.529669244 −1.232158067 4.8384E-116
TIGIT 3.018274307 1.869993222 −1.148281086 6.3794E-108
MS4A1 3.090610318 1.892911125 −1.197699193 5.40303E-69
CASP1 4.613143497 3.599216242 −1.013927256 1.9168E-100
CD7 3.141448175 1.968091019 −1.173357157 9.1813E-106
CXCR6 2.827605632 1.795738331 −1.031867301 3.9044E-108
HCST 4.46600762 3.295520384 −1.170487236 1.52549E-96
EBI3 3.018209859 1.925793352 −1.092416507 3.48739E-86
IL7R 4.438791573 3.031530025 −1.407261549 8.37936E-83
SLAMF7 3.839990058 2.377133193 −1.462856865 4.71716E-96
IRF8 4.377807761 3.327696457 −1.050111305 4.67308E-92
HLA-DQB1 5.839998886 4.356166276 −1.483832611 7.66425E-80
HLA-DMB 5.547993757 4.360576097 −1.18741766 2.0215E-108
EVI2B 5.153593436 3.938844092 −1.214749344 1.39392E-98
SPN 2.631629192 1.615489013 −1.016140178 1.73311E-97
HLA-DMA 6.717204277 5.498473069 −1.218731209 4.0656E-113
TAP1 6.638832453 5.48554722 −1.153285233 5.03798E-65
PLA2G2D 2.400055862 0.99788987 −1.402165992 6.14283E-83
CYTIP 4.182375059 3.049161213 −1.133213846 2.2841E-87
CXCL13 5.554707054 3.423637016 −2.131070037 1.90005E-64
CLEC10A 3.141723147 2.071571778 −1.070151369 4.2604E-67
WAS 4.161853167 3.138125438 −1.023727729 2.2478E-113
HLA-DQB2 4.483645366 3.346969498 −1.136675869 5.5854E-58
CD3G 2.782069722 1.633347888 −1.148721835 3.0213E-106
IL10RA 4.492164569 3.373913704 −1.118250865 2.8396E-102
HCLS1 5.365722359 4.240379245 −1.125343114 3.8519E-104
CCL21 4.486810762 3.239732148 −1.247078614 1.88152E-29
FPR3 4.942062247 3.926922957 −1.015139291 1.50175E-51
SRGN 7.136395383 5.906759073 −1.22963631 1.31748E-95
GPR183 4.741687685 3.523698318 −1.217989367 2.08636E-75
MAP4K1 3.200923701 2.039054283 −1.161869419 1.046E-102
CD5 3.367912498 2.097936429 −1.269976068 4.6643E-107
CD53 5.610501937 4.295049786 −1.315452152 3.241E-111
HLA-DOA 4.210149047 3.164637444 −1.045511603 1.03338E-83
CD3D 4.941889641 3.141417665 −1.800471975 6.9829E-123
GNLY 3.208806672 1.934835347 −1.273971325 7.82857E-97
GBP5 3.888090151 2.392565378 −1.495524773 5.19835E-98
CXCL11 4.77682554 3.035835962 −1.740989578 1.85212E-78
BIRC3 4.341237451 3.190572681 −1.150664769 2.20649E-78
C16orf54 3.415507471 2.285109419 −1.130398052 2.473E-103
CD69 3.663594833 2.634742101 −1.028852731 4.16642E-80
C1QA 7.688633915 6.330589492 −1.358044423 2.98309E-92
DOK2 3.688886573 2.617313807 −1.071572767 1.35046E-95

(Continued on following page)
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Except for the mast cells, the other immune cells were lower in the
high-risk group (Figure 6D). Furthermore, the R package
“estimate” was utilized to investigate the relativity between
tumor microenvironment and risk score in TCGA. These
results confirmed that the risk score was positively correlated
with tumor purity, while negatively with stromal score, immune
score, and estimate score (Figures 6E–H).

Low-Risk Patients PredictedMore Sensitive
Immunotherapies and Favorable Prognosis
Several studies have shown that patients with higher TMB were
associated with enhanced response, long-term survival, and long-
lasting clinical benefits when receiving immune checkpoint
blocking therapy (Bo et al., 2020). MSI was also identified as a
predictive biomarker for cancer immunotherapy (Liisa et al.,
2018). Pearson analyses were conducted to investigate the
correlation between PRGs and TMB, MSI, and ICB in BC,
thus investigating whether these PRGs could also serve as
biomarkers for immunotherapy. The results revealed a positive
correlation between TMB and GZMA (Figure 7A, p = 2.56e-5),
GZMB (Figure 7B, p = 2.45e−16), IL18 (Figure 7C, p = 0.003),
and IRF1 (Figure 7D, p = 0.004). More importantly, we also
deeply explore the relationship between TMB and risk in TCGA
cohort, indicating that patients in the high-risk group had a
poorer TMB than the low-risk group (Figure 7E p < 0.05).
However, there was no significant correlation between MSI
and GZMA, GZMB, IL18, IRF1, and risk score in MSI analysis
(Supplementary Figure S5). TIDE was used to evaluate two
different mechanisms of tumor immune escape, thus providing
predicted results about immunotherapy (Peng et al., 2018). The
higher the TIDE score, the worse the efficacy of ICB, subsequently
the shorter the OS. To better illustrate the predictive power of the
PRGs for immunotherapy, TIDE was applied in the ICGC cohort.
Surprisingly, the results indicated that the expression of GZMA,
GZMB, IL18, and IRF1 were negatively correlated with TIDE and
positively correlated with ICB (Figures 7F–I).

The Distinction of the Immune Status and
Immunotherapy Between the Two Groups
To further investigate the relationship between the immune status
and the risk groups, GSEA was employed to demonstrate
different biological functions and pathways between groups
(Supplementary Figure S6A). The KEGG results indicated
that “natural killer cell mediated cytotoxicity” pathway was
enriched in the low-risk group. Besides, “adaptive immune
response” was found to be enriched in the low-risk group,
which exhibited certain associations between immunity and
risk (Supplementary Figure S6B). Meanwhile, we compared
the enrichment of 22 kinds of immune cells between high-
and low-risk groups, which showed that the low-risk group
generally had higher levels of immune cells, such as
CD8+T cell, CD4+T cell, T helper cell, regulatory T cell,
gamma delta T cell, M1 macrophage, resting dendritic cell,
and lower levels of M0, M2 macrophages and resting mast
cells, than the high-risk group (Figure 8). Not only that, but
also the Kaplan-Meier curves with immune cells and immune
functions are listed in Supplementary Figures S7 and S8. To
illustrate the relationship between immunotherapeutic responses
and the risk, we explored the expression of several immune
checkpoints. As shown in Supplementary Figure S9, all
immune checkpoints were overexpressed in the low-risk
group, such as CD274, CTLA4, HAVCR2, LAG3, PDCD1,
PDCD1LG2, TIGIT, and SIGLEC15, indicating that patients in

TABLE 5 | (Continued) DEGs between the low- and high-risk groups in the TCGA
cohort.

Gene Low mean High mean logFC FDR

CD48 4.344626171 2.991797311 −1.35282886 1.8574E-117
FGL2 5.113359749 3.994426038 −1.118933711 1.55171E-76
TRAV12-2 2.127961852 1.03905828 −1.088903573 2.2292E-93
GIMAP4 5.464517511 4.410288234 −1.054229277 1.84947E-93
GBP1 5.840635431 4.424450267 −1.416185164 5.68627E-84
TRAT1 2.500318227 1.450122923 −1.050195304 3.3268E-104
C3 7.838554587 6.53817962 −1.300374968 1.50441E-66
CD37 3.979895154 2.860805383 −1.119089771 5.0979E-105
IGLL5 5.626926768 3.830681897 −1.796244871 2.14691E-51
IGLV6-57 4.440534612 2.603583196 −1.836951416 1.35126E-44
CCL8 4.013560591 2.961382408 −1.052178183 1.42265E-51
TYROBP 7.265365441 6.236943531 −1.028421911 3.18142E-82
FCER1G 6.731394543 5.710139026 −1.021255517 3.01917E-84
CD8A 4.139211436 2.692320927 −1.44689051 3.1195E-104
KLRB1 3.224712682 2.122700348 −1.102012334 6.13308E-89
CD27 4.109424689 2.714609904 −1.394814785 2.27118E-97
MMP7 5.712559584 4.574873337 −1.137686247 1.43786E-22
CD52 6.214804266 4.389171799 −1.825632467 2.4335E-105
APOC1 7.08329022 6.015604239 −1.067685981 6.72133E-52
GIMAP7 5.057493352 3.934627555 −1.122865798 2.75875E-78
CXCR3 3.322254993 1.927552465 −1.394702528 7.9032E-116
PLEK 4.988885801 3.71449876 −1.274387041 2.661E-99
CCR7 3.766279493 2.452475926 −1.313803567 2.67691E-90
GMFG 5.171020452 4.120109114 −1.050911339 4.5574E-101
CD2 5.421111687 3.538445918 −1.882665769 1.8373E-123
CD96 2.855881742 1.696207766 −1.159673976 5.8805E-111
TMC8 3.47037334 2.442798459 −1.027574881 1.1318E-108
HLA-B 10.5049036 9.455108846 −1.049794758 2.70117E-74
LYZ 7.517179112 5.747192503 −1.76998661 5.72105E-71
SLAMF6 3.41444143 2.202687773 −1.211753656 4.5438E-107
CHI3L1 5.21416871 4.140128252 −1.074040459 5.67107E-26
LGALS2 3.404502369 2.038701675 −1.365800694 1.60395E-76
ITGB2 5.286587731 4.082371297 −1.204216433 1.02151E-83
PTPRC 4.462383664 3.114560617 −1.347823047 2.42856E-89
GZMK 4.219947755 2.510364693 −1.709583061 3.1821E-105
CSF2RB 4.130809361 3.110874429 −1.019934932 4.88547E-79
IL4I1 3.931211922 2.677897202 −1.25331472 8.04983E-70
GZMH 3.385255319 1.994160798 −1.391094521 5.0674E-107
CCL19 5.997614042 3.970147578 −2.027466464 8.17781E-60
HLA-DOB 3.132584238 2.056886162 −1.075698075 2.7306E-84
SH2D1A 2.744864409 1.567963027 −1.176901382 4.9839E-110
CD38 2.881080346 1.829525409 −1.051554937 2.93629E-86
MPEG1 5.038123971 3.940072182 −1.098051789 1.1602E-76
CD4 4.726462006 3.613613486 −1.11284852 1.2146E-102
HLA-DRB6 5.062636453 3.814124126 −1.248512327 2.05324E-71
PSMB9 5.736704054 4.411715021 −1.324989032 1.83162E-95
IRF1 5.078369975 4.069631847 −1.008738129 1.8158E-107
CD74 9.735425117 8.383650479 −1.351774638 3.9705E-115
LAPTM5 7.783373879 6.703807082 −1.079566797 4.65831E-94
CTSS 6.315416511 5.053186817 −1.262229694 2.2885E-96
AIF1 5.469002536 4.38958142 −1.079421115 2.505E-103
CCL5 6.565983508 4.546408762 −2.019574746 3.34E-120
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the low-risk group were more susceptible to immunotherapy.
Then TIDE was utilized to assess the immunotherapy response of
patients in the two groups. TIDE, incorporating various gene
expression markers to evaluate tumor immune escape
mechanisms, could predict potential immunotherapy response.
The higher the TIDE score, the worse the efficiency of the

immune checkpoint blocking therapy, subsequently the shorter
the survival. In our results, the high-risk group had a lower TIDE
score, representing that high-risk group patients responded to
immunotherapy more effectively. Also, the results indicated that
the high-risk group had a higher MSI and T cell exclusion score,
while the low-risk group had a higher T cell dysfunction score.

FIGURE 6 | Immune microenvironment between high- and low-risk group patients in the TCGA and GEO cohorts. (A) Comparison of the enrichment scores of 16
types of immune cells between high-risk and low-risk groups in TCGA. (B)Comparison of the enrichment scores of 13 immune-related pathways between high-risk and
low-risk groups in TCGA. (C) Comparison of the enrichment scores of 16 types of immune cells between high-risk and low-risk groups in GEO. (D) Comparison of the
enrichment scores of 13 immune-related pathways between high-risk and low-risk groups in GEO. (E) The relationship between tumor purity and risk score in the
TCGA cohort. (F) The relationship between stromal score and risk score in the TCGA cohort. (G) The relationship between immune score and risk score in the TCGA
cohort. (H) The relationship between estimate score and risk score in the TCGA cohort.

FIGURE 7 | TMB,MSI, and ICB analysis of PRG in the TCGA and ICGC cohorts. (A) The correlation between GZMA and TMB in TCGA. (B) The correlation between
GZMB and TMB in TCGA. (C) The correlation between IL18 and TMB in TCGA. (D) The correlation between IRF1 and TMB in TCGA. (E) The correlation between risk
score and TMB in TCGA. (F) The distribution of immune response scores between high and low expression of GZMA in ICGC. (G) The distribution of immune response
scores between high and low expression of GZMB in ICGC. (H) The distribution of immune response scores between high and low expression of IL18 in ICGC. (I)
The distribution of immune response scores between high and low expression of IRF1 in ICGC.
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Eventually, we compared the prognostic values of the risk model,
TIDE, and T-cell-inflamed signature (TIS) (Figure 9A).
Interestingly, our risk model might have better sensitivity and
specificity than they do (Figure 9B).

The Expression Validation of the Candidate
Genes
We investigated the prognostic values of the four genes, higher
expression of GZMA, GZMB, IL18, and IRF1 indicated better
prognosis (Figure 10A). To further confirm the expression of the
four prognostic genes, we obtained BC and normal breast tissues
from patients including 9 Lumina A cancer samples and 9 normal

tissues. Consistent with our results in the database, GZMA,
GZMB, IL18, and IRF1 were decreased in tumor tissues than
normal tissues (Figure 10B). In addition, to further investigate
the role of IL18 in BC cells, we activated the NF-kB pathway via
lipopolysaccharide (LPS) in MCF-7 and then measured the
expression of IL18 in those cells using RT-PCR. The results
indicated that the expression of IL18 was significantly
increased when treated with different concentrations of LPS
(Figure 10C). Besides, IL18 was found to be increased in BC
samples than normal samples. In general, the above results
demonstrated a close relationship between inflammation,
pyroptosis, and BC , and further studies were needed to
elucidate the mechanism.

DISCUSSION

Pyroptosis, a form of programmed cell death, has a dual role in
tumorigenesis. On the one hand, normal cells go through
multiple inflammatory molecules released during pyroptosis,
which ultimately lead to their transformation into neoplastic
cells (Karki and Kanneganti, 2019). On the other hand,
pyroptosis stimulates the accidence of tumor cell deaths,
making pyroptosis a promising therapeutic target (Ruan et al.,
2020). Hence, it is essential to explore and establish a pyroptosis-
related diagnostic and prognostic signature to clarify the
significance of pyroptosis. Nevertheless, the specific risk model
has not been constructed, which will be accomplished in
our study.

In current study, we found that most PRGs are differentially
expressed in BC, suggesting the potential role in tumorigenesis,
which was consistent with the research by Zhang, that GSDME,
functioning as a tumor suppressor, suppressed tumor progression

FIGURE 8 | The enriched immune cells and immune functions between
high- and low-risk groups via CIBERSORT.

FIGURE 9 | Evaluation and comparison of the TIDE score between high- and low-risk groups. (A) The comparisons of the dysfunction, exclusion, MSI, and TIDE
scores between high- and low-risk groups. (B) The comparison of the predictive efficiency between the model and TIDE, TIS scores.
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via inducing pyroptosis (Ziwen et al., 2021). Subsequently, we
classified BC patients into two different groups based on the
expression of PRGs. More importantly, there existed a difference
between groups, further demonstrating the possibility of PRGs as
prognostic biomarkers.

Next, we performed LASSO Cox regression analysis to
construct a prognostic gene model based on four prognostic
PRGs (GZMB, IL18, IRF1, and GZMA), which could predict the
overall survival of BC patients.

Granzyme B (GZMB), a main member of a family of serine
proteases, is also a toxic granule secretase produced by cytotoxic
T lymphocytes and natural killer cells in the tumor
microenvironment. In addition, GZMB could cleave and
thereby activate downstream caspase-3 and promote apoptosis
of target cells owing to the hydrolytic activity. Similar with the
above site, GZMB cleaved gasdermin E (GSDME) to cause
pyroptosis instead of apoptosis, thus enhancing the patients’
anti-tumor immune response, which inhibits tumor growth
(Zhibin et al., 2020). A recent study found that GZMB was
highly expressed in higher infiltrating T lymphocytes, while
downregulated in CRC with vascular invasion, lymphatic
invasion, and lymph node positivity, indicating that the
downregulation of GZMB strongly correlated with early

metastasis in CRC (Paul et al., 2011). Meanwhile, the
prognostic gene model of CRC found that the higher the
expression level of GZMB, the longer the OS of patients,
suggesting that GZMB functioned as a promising tumor
suppressor in CRC. Enrichment analysis also demonstrated
that GZMB participated in the occurrence and development of
CRC via regulating immune-related signaling pathways (Yuanyu
et al., 2020). Intensive studies have been conducted and found
that LINC02474 restrained GZMB expression to suppress the
proliferation and metastasis of colorectal cancer cells (Tiantian
et al., 2021). This had also been reported in BC and the following
observations indicated that the expression of GZMB in invasive
BC was 4.910 times higher than that in normal tissues (Finak
et al., 2008). Interestingly, our study suggested that GZMB acted
as a tumor suppressor in BC, and its expression was significantly
decreased in the high-risk group, which was consistent with
previous results.

Inflammasome activation also initiates a programmed cell
death termed pyroptosis, then ends to the release of cell
contents and many inflammatory factors, such as IL-1β and
Interleukin-18 (IL-18). IL-18 is a pleiotropic pro-inflammatory
cytokine belonging to the IL-1 superfamily, playing an essential
role in inflammatory responses and cancers (Maryam and Abbas,

FIGURE 10 | The expression validation of the candidate genes. (A) The Kaplan-Meier curves of BC patients between high and low expression of the candidate
genes. (B) The expression of the four candidate genes between tumor and normal tissues. (C) ThemRNA expression of IL 18 after incubating via different concentrations
of LPS in MCF-7.
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2017). It was found that IL-18 released by inflammasomes
protected GC cells from apoptosis to stimulate the progression
(Virginie et al., 2018). IL-18 levels inversely correlated with
patient prognosis and lower IL-18 levels were observed in
surviving patients (Nakamura et al., 2018). Further study on
the mechanism of IL18 in PDAC showed that Pin1 promoted the
proliferation and progression of pancreatic cancer cells by
increasing the expression of IL-18 and continuously activating
NF-kB cell pathway (Sun et al., 2020). However, in this study, we
found that the expression of IL18 was significantly decreased in
the high-risk group, suggesting that IL18 might act as a tumor
suppressor to prevent the progression of BC, which was
controversial with previous research. Therefore, it was possible
that IL18 held multiple roles in different tumors, and our findings
provided an insight for the investigation of IL18-mediated
carcinogenesis and development of BC.

Interferon regulatory factor (IRF)-1, also called interferon
regulatory factor 1, is encoded by the IRF1 gene in humans
(Komatsu et al., 2016). IRF1 is the first member of the IRF family
of transcription factor and widely expressed in various tissues,
capable of activating or repressing the transcription of multiple
target genes (Martinović et al., 2015). In addition to the function
of transcription factor, IRF1 could also activate the expression of
tumor suppressor p53 and pyroptosis key factor GSDMD, and
regulate various types of cell death under different experimental
conditions, including apoptosis, pyroptosis, and necroptosis
(Ratana et al., 2016). It was found that the expression of IRF1
in CRC was significantly lower than that in normal tissues.
Overexpression of IRF1 could inhibit the proliferation,
migration, and metastasis of CRC cells. Further study on the
mechanism showed that IRF1 mediated the anticancer effect by
inhibiting the RAS-RAC1 pathway (Min et al., 2019). IRF1 also
played a role of tumor suppressor gene in non-small cell lung
cancer (NSCLC). The expression of IRF1 in NSCLC was
significantly lower than that in normal tissues, and the
expression level was positively correlated with prognosis which
inhibited the proliferation of NSCLC by negatively regulating the
expression of carcinogenic KPNA2 under growth stimulation and
hypoxia (Min et al., 2019). IRF1 also had a tumor inhibitory effect
in BC. The results showed that the low expression of IRF1 in BC
patients was closely related to the risk of recurrence and death.
Overexpression of IRF1 could significantly reduce the occurrence
of human BC xenografts (Cavalli et al., 2010). Although IRF1 was
currently involved in the occurrence and development of many
kinds of tumors, it was rare to promote or inhibit tumors through
the influence of pyroptosis. A study on CRC had found that IRF1
could mediate a variety of cell death modes such as apoptosis,
necrosis, and pyroptosis, which included that IRF1 could promote
the expression of GSDMD to induce cell pyroptosis and inhibit
CRC proliferation (Rajendra et al., 2020). Our study found that
IRF1 was in favor of good prognosis in BC, but the relationship
between IRF1-mediated cell death and the occurrence and
development of BC and other tumors had not been elucidated
in detail. Further research was needed to clarify the mechanism in
the future.

Similar with GZMB, GZMA is a member of the serine protease
family. GZMA cleavaged and activated GSDMB to induce target

cells pyroptosis produced by cytotoxic lymphocytes. This
immune effect mechanism promoted CTL-mediated tumor
clearance, which was traditionally considered to be an
antineoplastic drug (Zhiwei et al., 2020). However, contrary
results had been observed in CRC. The expression of GZMA
in CRC was positively correlated with inflammatory reaction and
malignance, which suggested that GZMA was involved in the
malignant progression of colorectal cancer. Further exploring the
mechanism showed that GZMA enhanced the inflammatory
response and mediated tumor progression by inducing the
production of IL6 in macrophages and activating pSTAT3
pathway in cancer cells (Llipsy et al., 2020). In our study,
GZMA functioned as a tumor suppressor, which was positively
correlated with the prognosis of BC, but whether it affected the
occurrence and development of BC through cell pyrolysis still
needs to be confirmed in vivo and in vitro.

Pyroptosis was found to play a dual role in tumor occurrence
and development, by participating in tumorigenesis and anti-
tumor immunity at all stages of tumor development. On the one
hand, long-term chronic inflammation can promote the
development of a tumor; on the other hand, the sudden
activation of pyroptosis will lead to the infiltration of a variety
of immune cells and inhibit tumor progression (Galluzzi et al.,
2017). Functional enrichment analysis of DEGs in high- and low-
risk groups, we also found that these DEGs were mainly involved
in inflammatory response and immune response, suggesting that
pyroptosis could regulate inflammatory response and immune
response. Based on the close relationship between pyroptosis and
tumor immunity, we found that the proportion of anti-tumor
immune cells in the low-risk group was significantly higher than
that in the high-risk group, suggesting that the immune function
of the high-risk group was impaired as a whole, while
surprisingly, the proportion of Treg cells in the low-risk group
was also significantly higher, which should be further studied on
the regulation of TREG cells in the tumor microenvironment of
BC. At the same time, the immune activation pathway in the low-
risk group scored more than that in the high-risk group, which
was also verified in the GEO dataset. Combined with the above
results, the poor prognosis of high-risk BC might be caused by
low anti-tumor immunity. Except for that, we also ranked the
immune score in the high- and low-risk group and found that the
immune score and matrix score in the low-risk group were
significantly higher than those in the high-risk group, while
the tumor purity in the low-risk group was lower. In line with
previous studies, patients with high-risk BC had higher tumor
purity, lower immune levels, and poor prognosis. It is worth
noting that tumor purity refers to the proportion of tumor cells in
tumor tissue, which is composed of immune cells, stromal cells,
and so on. Studies have found that tumor purity is significantly
related to the clinical characteristics, genome expression, and
biological characteristics of tumor patients. Ignoring the
influence of tumor purity can lead to systematic bias in the
process of tumor genotyping, risk of recurrence, and prediction of
curative effect (Dvir et al., 2015). Nevertheless, tumor purity
largely depends on the sampling procedures, and the purity of
standard tumor surgical samples is usually less than 70%. As a
result, tumor purity cannot be used as a good indicator of tumor
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classification and prognostic markers. In terms of our established
risk model, it was related to tumor purity to a certain extent, but
there were still great obstacles to applying it to the clinic and more
in-depth research and detection methods are needed in the
future. Therefore, our research results are only based on the
TCGA database, which can only explain the correlation between
each other to a certain extent and provide clues for further
research.

In recent years, major advances have been made in cancer
immunotherapy, thereby drastically improving the prognosis of
cancer patients. The combination that integrates
immunotherapy with chemotherapy, radiation therapy, and
targeted molecular therapy benefits from different molecular
types of BC. Nevertheless, biomarkers or models that provide
accurate prognosis predictions are still lacking. Currently
available biomarkers to predict immunotherapy efficacy
mainly include TMB and microsatellite instability. TMB is
referred to as a whole number of gene variants. Clinical data
demonstrated that patients with high TMB were more likely to
benefit from immune checkpoint inhibitor therapy, which
suggested that TMB should be an appropriate biomarker for
assessing the effect of immune treatment (Rizvi et al., 2015).
MSI is a condition of genetic hypermutability that results from
impaired DNAMMR function, which has been proven to be one
of the valuable biomarkers for the clinical efficacy of anti-PD-1/
PD-L1 immune checkpoint inhibitors (Dudley et al., 2016).
Therefore, in this study, we analyzed the relationship
between the four core genes in the risk model, risk score,
and MSI and TMB. It was found that the expression levels of
GZMA, GZMB, IL18, and IRF1 were positively correlated with
TMB, suggesting that these four PRGs might be potential
predictors of TMB. At the same time, we also found that the
level of TMB in the low-risk group was significantly higher than
that in the high-risk group, indicating that the benefit of
immunotherapy in the low-risk group was better than the
high-risk group. Then we observed that the high expression
of GZMA, GZMB, IL18, and IRF1 promoted the efficacy of
immune checkpoint blocking therapy and effectively improved
the prognosis of patients. Eventually, we verified the expression
of model genes in clinical samples and explored the link between
inflammation and pyroptosis in BC to a certain extent. In BC,
LPS was used to activate the NF-kB signaling pathway, causing
cellular inflammation, inducing the occurrence of pyroptosis.
Meanwhile, we detected the expression level of IL18 and found
that the expression level was significantly increased, and it had
also been verified to be overexpressed in BC tissue based on the
TCGA cohort, indicating that there was a close relationship
between cellular inflammation, pyroptosis, and BC, and further
studies are needed to clarify the mechanism.

In summary, we constructed a PRG-based prognostic model to
systematically evaluate the prognosis of BC patients, which had
robust predictive ability. We also proved that there was a strong
relationship between pyroptosis and the occurrence and
development of BC, and the expression of PRGs influenced
the progression of cancer. In addition, we also found that
PRGs were involved in regulating the composition of the
immune microenvironment and the efficacy of
immunotherapy in BC, which provided an important basis for
further study of PRGs and immune function and immunotherapy
targets of patients.
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