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Cancer is increasingly apparent as a systems-level, network happening. The central tendency of malignant alteration 
can be described as a two-phase procedure, where an initial increase of network plasticity is followed by reducing 
plasticity at late stages of tumor improvement. Cancer stem cells (CSCs) are cancer cells that take characteristics asso-
ciated with normal stem cells. Cancer therapy has been based on the concept that most of the cancer cells have a 
similar ability to separate metastasise and kill the host. In this review, we addressed the use of nanotechnology in 
the treatment of cancer stem cells.
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Introduction 

  Progress in preclinical and clinical cancer research has 
brought new diagnostic and therapeutic options for cancer 
patients that would provide significant improvements in 
the treatment and prevention of cancer (1). The most life- 
threatening aspect of the cancer is metastasis that spreads 

cancer cells from their original tissues to other ones (2). 
Cancerous tissues include collections of heterogeneous cell 
populations that are different in their apparent state of 
differentiation (3). These heterogeneous populations con-
tain particular types of “tumor-initiating” cells arisen from 
mutations of normal stem cells (4). Stem cells are undif-
ferentiated cells which were found in multi-cellular orga-
nisms. They have three main properties including differ-
entiation, self-renewal, and homeostatic control (3). Ac-
cordingly, tumor-initiating cells were called “cancer stem 
cells” that have the capacity for self-renewal, being able 
to differentiate into any cell, and the proliferative ability 
to expand malignant cells (4). Although the exact cause 
of cancer is unknown, the understanding of the balance 
between self-renewal and differentiation is an essential 
way to prevent cancer formation and the therapeutic uti-
lisation of stem cells in human diseases. Current cancer 
therapies including radiotherapy, surgery, and chemo-
therapy intend to destroy or kill every cell of the body (5). 
Cancer stem cells (CSCs) do not destroy easily with con-
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Table 1. Cancer stem cell markers in a variety of solid tumors

Type of cancers Markers References

Leukemia CD34＋/CD38−/CD96 (10, 15, 16)
Breast cancer CD44＋/ESA＋/CD24−/ALDH1 (10, 12, 17)
Brain cancer CD133＋ (18, 19)
Multiple myelomas CD138− (20, 21)
Pancreatic cancer CD44＋/CD24＋/ESA＋ (6, 22)
Colon cancer CD133＋ (23)
Liver cancer CD133＋/CD90＋ (24, 25)
Prostate cancer CD44＋/CD133＋ (26, 27)
Lung cancer CD133＋ (28)
Ovarian cancer CD133＋/CD44＋/CD117＋/

CD24＋
(29-31)

ventional methods of cancer treatment such as chemo-
therapy and radiation. Although, anticancer drugs can 
lessen tumor size, but do not kill cancer stem cells. 
Though CSCs might only create up a small part of a tu-
mor, their resistance to drugs lets them persist. Therefore, 
the identification of tumor-initiating cancer stem cells 
(CSCs) is of significant interest in cancer research and 
suggests varied approaches (6). In the last few decades, 
nanotechnology and nanomaterials have found essential 
roles in cancer diagnosis and treatment for better early de-
tections and also, more efficient drug delivery to the tu-
mor cells. This review aims to highlight the opportunities 
and challenges for integrating the nanoscience with cancer 
biology and thereby, researches regarding the advanced 
nano-based detecting systems for cancer stem cells.

Cancer Stem Cell

  Cancer is defined as a biological condition with an un-
controlled division of the natural body cells. Until now, 
the complete treatment of cancer as a disease is difficult 
and costly. One reason for this difficulty relates to the 
presence of specific receptors on the surface of the cancer 
cells that pump the drugs out of the cells. Therefore, it 
is difficult to find a drug to eliminate these cells. Howev-
er, all cells involved in tumor development are not equally 
dangerous. The leading cause of cancer is a group of di-
viding cells with high power and high resistance to the 
drugs that they called CSCs. CSCs are the cells in tumors 
or blood that are known particularly with the ability to 
turn into all cell types that are found in the host body. 
CSCs were identified and characterized in the 1990s, 
when a stem cell biologist, John Dick, said that his team 
had isolated scarce cells in the blood of people with leuke-
mia that seemed to have a crucial role in cancer (7). Most 
researchers believe that CSC, in addition to leukemia, ex-
ists in solid tumors such as prostate, breast, and pancreas 
cancers. They can renew and keep themselves in the tu-
mor masses (8-10). CSCs differentiate into several types 
of cells through the renewable process that can be the rea-
son for the tumor formation. Such tumor cells as a distinct 
population remain and cause the disease to recur, meta-
stasis and tumor development. 
  Some of the characteristics of the CSCs are similar to 
normal stem cells. These cells have extraordinary capa-
bility of self-renewal, differentiation and proliferative 
potential. The CSCs have been identified in tumor tissues 
and cell cultures by detecting the expressions of specific 
protein markers, such as CD133, CD44 and CD24 (11-13). 
Table 1 shows the markers of cancer stem cells in a variety 

of solid tumors (6, 10, 12, 14-31). The CSCs have the po-
tential to be adapted to different environments. Therefore, 
the high flexibility of the CSCs can be used as a high po-
tential for changing the plasticity and rigidity of their net-
work (32). Environmental changes would often be strong 
enough for increasing the tumorigenicity of cancer stem 
cells (33). Generally, studies and trials have shown that 
the CSC self-renewal potential is determined by the high 
proliferative potential with a loss of regular differentiation 
program and high efficiency in response to environmental 
changes. The CSCs have two main phenotypes include the 
proliferative and quiescent state that characterized by 
symmetric and asymmetric cell divisions. The cancer stem 
cells with proliferative phenotypes have symmetric cell di-
vision and are less aggressive and could be classified as 
a plasticity network (34). 
  On the other hand, the CSCs with the quiescent pheno-
type have asymmetric cell division with dynamic proper-
ties and are classified as a rigid network (35). The CSCs 
with quiescent phenotype may be the main factor in the 
metastasis that would appear years after surgical treat-
ment of a primary tumor. Protection of the CSCs against 
therapeutic agents and their resistance to the treatment 
process can be obtained by, quiescence, expression of ABC 
(ATP-binding cassette) drug pumps, increased expression 
of anti-apoptotic proteins and resistance to DNA damag-
ing agents (Fig. 1).
  It can be concluded that the tumor cells without the 
CSC marker would be killed by chemotherapy, resulting 
in tumor regression, but the cells with the CSC markers 
are resistant to the treatment and their number would be 
risen in a tumor (36-38). Surface markers of the CSC, in 
many types of cancers, are shown in Table 1.
  The percentage of CSCs are different in many types of 
cancers (39, 40) and there are relations between the num-
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Fig. 1. CSCs resistance to treatment can be obtained by, expression 
of ABC drug pumps, increased expression of anti-apoptotic pro-
teins, resistance to DNA damaging agents, and slow cycle kinetics.

Fig. 2. A schematic illustration showing targeted therapy against 
cancer stem cells and tumors bulk.

ber of CSCs and patient prognosis (41, 42). Studies have 
demonstrated that cancer therapy could target the tumor 
cell mass and create a partial regression of a tumor, but 
the CSCs could make and develop new tumor clones, 
therefore, identification and directed targeting against this 
kind of stem cells have been reported to be more effective 
(Fig. 2) (40, 43). Cancer therapy, based on this hypothesis, 
was reported to decrease mechanisms of resistance to con-
ventional chemotherapeutic drugs and radiation therapy. 
The new design of cancer therapeutic drugs could elimi-
nate the CSCs by interfering with the specific pathways 
(44-48).
  Scientists and researchers have suggested that compre-
hension of disorders in signal pathways or too much acti-
vation is one of the most vital importance for anticancer 
targeting of the CSCs. Wnt, Notch and Hedgehog signal-
ing pathways have critical roles in the reappearance and 
maintenance of cancer stem cells (49). Wnt marks a group 
of signaling proteins that bind to surface receptor mole-
cules on the target cells. Activation of Wnt target genes 
happens by β-Catenin. Also activated Wnt/β-Catenin 
signaling has been reported to be a key feature of epi-
thelial cancers, epithelial-mesenchymal transition (EMT), 
and maintenance of the CSCs of melanoma, breast, colon, 
liver and lung cancers (50).
  Notch signaling pathway has a critical role in the 
cell-fate decision, tissue patterning, morphogenesis (51), 
and maintenance of the glioblastoma and breast cancer 
stem cells (52). A reported study about Notch signaling 

pathway suggested that Notch inhibition in glioblastoma 
could decrease cancer stem cells via an endothelial cell in-
termediate (53). 
  Studies have suggested that the Hedgehog (Hh) signal-
ing can regulate many cancer stem cells including glio-
blastoma, pancreatic adenocarcinoma, breast cancer, mul-
tiple myeloma, and chronic myeloid leukemia (CML) (20). 
Hh signaling has been found to play multiple roles in de-
velopment, homeostasis and disease by activating the 
7-pass transmembrane protein Smoothened (Smo), to send 
an intracellular signal. Due to that, the most advanced 
types of Hh antagonists are Smo-targeted (54, 55). Target-
ing the signal pathways including the Wnt, Notch, and Hh 
may improve current strategies for cancer therapy. 
Although, anti-cancer treatment can reduce tumor size, 
survived CSCs would trigger tumor formation again. This 
type of relapse causes metastasis and more resistant to 
treatment. Therefore, most currently available cancer 
treatments such as hormone therapy, radiotherapy and 
chemotherapy, would not be useful in the elimination of 
cancer stem cells (5). Specific targeting of tumor stem 
cells has been suggested to be an efficient alternative for 
cancer treatment (10, 11).

Cancer Treatment with Nanotechnology

  Today, cancer mortality is one of the most common 
causes of death. The application of nanotechnology in 
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Table 2. Various nanomaterials for therapeutic applications

Nanomaterial Ligand Target
Refe-
rences

Quantum dot HER2/neusiRNA SKBR3 (60)
Quantum dot/Chitosan DNA aptamer A2780/AD (61)
Quantum dot HER2; RNase A MGC-803 (62)
PAMAM Tf and Tm glioma Dual-targeting (63)
PAMAM Biotin HeLa (64)
SPIONs-αv β3 Anti αv antibody RGD peptides αv β3 Integrin Breast cancer (65)
SPIONs-PEG-Ab Monoclonal Ab A7 Colorectal carcinoma (66)
Gold nanoparticle Folic acid Ovarian cancer (67)
Gold nanoparticle Bombesinpeptides Human prostate cancer cells (68)
Gold nanoparticle Transferrin Hs578T (breast cancer) and a nonmalignant cell lines (3T3) (69)
MWCNT Folate (biologically active targeting) and 

iron (magnetically passive) targeting
HeLa (70)

SWCNT Hyaluronic acid Salinomycin Gastric cancer stem cells (CSCs) (71)
Graphene oxide Rituxan (CD201 antibody) CEM.NK T-cell and Raji B-cell (72)
Nanoliposome Anti-HER2 HER2- overexpressing breast cancer (73)

medicine includes six areas including 1) detection of mo-
lecular changes in diseases; 2) diagnosis and imaging; 3) 
drug delivery; 4) combined therapeutic and diagnostic ap-
plications; 5) report of therapeutic agent efficacy; and 6) 
nanotechnology applications in scientific discovery and 
basic research (56). A variety of nanostructures from or-
ganic and inorganic materials have been recently used for 
cancer therapy and diagnosis in passive or active tumor 
targeting. A novel formulation of nanovesicles, liposomes, 
polymeric micelles, dendrimers, and polymeric nano-
particles can enter into the solid tumor site through the 
porous structure of a tumor vascular system, and then, se-
lectively deliver the therapeutic agents (57, 58). Nanoma-
terials with proper targeting ligands could bind to anti-
gens or receptors on the target cells. However, this power-
ful technology leads to a decreased toxicity in non-tar-
geted cells, and therefore, the distribution of nanomate-
rials will be increased in the target cells (59). Some of the 
nanomaterials shown in Table 2 (60-73) such as semi-
conducting nanoparticles or quantum dots (QDs), colloi-
dal nanoparticles, dendrimers, magnetic nanoparticles 
(MNPs), carbon-based nanomaterials (CBNs), and lip-
osomal nanoparticles systems have been constructed for 
utilization in therapeutic applications. Quantum dots 
(QDs) are semiconducting nanoparticles with the diameter 
ranging from 2∼10 nm, narrow emission and broad ab-
sorption profile, high photostability, long fluorescence 
lifespan, ability to be conjugated with proteins (74). Also, 
QDs have the potential of applications in molecular and 
cellular labelling, cell tracking, drug delivery and also, 
cancer detection and therapy (75, 76). Dendrimers are 

highly branched synthetic polymers (about 1.5∼13.5 nm) 
(77, 78) that have attracted considerable attention because 
of their hyper-branched structure, monodispersity, func-
tional surface groups, and symmetrical conformation (79). 
  Furthermore, they have various types of core molecules, 
such as ethylenediamine, cysteamine, diaminobutane, car-
bohydrate, calixarene, etc. and functional surface groups 
like amino, carboxyl, hydroxyl that give the opportunity 
to modify their surfaces with biomolecules (80). Polyami-
doamines (PAMAMs) are the most widely studied den-
drimer because of the polycationic properties that can 
have interaction with charged molecules (81). Gold nano-
particles (GNPs), with diameter size of 0.8 to 200 nm have 
been used for imaging, targeting, drug delivery, and ther-
apy applications. Biological molecules can be readily at-
tached to the surfaces of the GNPs. Binding of molecules 
including biotin, peptides or oligonucleotides enhances 
cell penetration efficiency of the nanoparticles. Surface 
plasmon resonance of GNPs is used to many applications 
such as hyperthermia (82). Superparamagnetic NPs (SPIONs) 
are small synthetic particles of iron oxides with a core size 
of 0∼10 nm. They show new magnetization behaviour to-
tally like standard paramagnetic materials, but with, high 
field irreversibility, high saturation field, additional aniso-
tropy contributions or shifted loops after field cooling (83, 
84). Also, after eliminating the magnetic field, they do not 
show magnetic interactions (85). The SPIONs well-dis-
persed in a liquid and especially in water have drastically 
increased their biological and medical applications in re-
cent years. Applications of SPIONs are diagnosis, therapy, 
and drug delivery system; Moreover, recent systems are 
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Fig. 3. The schematic representation of targeting cancer stem cell via functionalized nanomaterial.

used on stem cell differentiating/tracking (85, 86). Carbon- 
based nanomaterials (CBNs) are one of the most widely 
used tools in the fields of biomedicine, biotechnology, en-
vironment, and electronics (87, 88). CBNs with excellent 
physical, mechanical, electronic, and biological properties 
are engineered by using graphite, in different types of gra-
phene, fullerene, and single- or multi-walled CNTs (89). 
Besides, modification of CBNs with biomaterials have 
been utilized in imaging, delivery systems, targeted ther-
apy, tissue scaffold reinforcements, and bio-detection sys-
tems (90). Liposomes, as the most clinically established 
nano-scaled platforms, are merely formed from phospholi-
pids and cholesterol by a self-assembling method in aque-
ous media in a variable size distribution from 20∼1000 
nm (91). The most application of liposomes is in drug de-
livery systems in which encapsulated drugs could be pro-
tected and directly delivered to the cells within lipid bi-
layers (92). Fig. 3 demonstrates the various nanomaterial 
that targeted cancer stem cells. 

Targeting Cancer Stem Cells with Nanomaterials

  The CSCs are believed to drive tumor growth and be 
highly resistant to conventional therapies (e.g. chemo-
therapy and radiotherapy) and lead to disease relapse and 
the formation of metastases. Therefore, there is consid-

erable interest in the use of nano-sized materials for CSC- 
directed anti-cancer therapies. The surface of nano-
particles has been designed to accurately and effectively 
target the CSCs (93). Identification of the CSC is possible 
by some markers, e.g. ALDH, CD44, CD90, and CD133, 
and specific signaling pathways, i.e. Notch, Hedgehog and 
transforming growth factor-β (TGF-β) (94, 95) to im-
prove the treatment strategies and therapeutic outcomes 
(96). 

Aldehyde Dehydrogenases (ALDH) marker
  Aldehyde Dehydrogenases (ALDH) is a functional 
marker of the CSCs and also, the scavenger of reactive 
oxygen species (ROS) (97-99). Studies have been demon-
strated that ALDH activity of converting retinol to reti-
noic acid increases in many cancers (100, 101), such as 
cervical cancer (102), non-small cell lung cancer (103), 
melanoma (104), and also is considered as a specific mark-
er of BCSCs in breast cancer (105). Disulfiram (DS), is 
a specific inhibitor of the ALDH that have cytotoxic ef-
fects on a wide range of cancer cell lines including colon, 
breast and brain ones (106-112). However, its clinical ap-
plication is limited due to very short half-life in the 
bloodstream. A study revealed that encapsulation of the 
by poly (lactic-co-glycolic) acid (PLGA) nanoparticles 
(DS-PLGA) causes longer circulating time in the blood-
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stream, and also, DS-PLGA/Cu combination manifests 
very likely synergistic cytotoxicity effect with 5-FU and 
sorafenib. Finally, the results suggest that nano-based con-
trolled delivery system would make DS fast translation in-
to liver cancer cells (97). 

CD44 factor
  CD44 factor is one of the most popular and familiar 
surface biomarkers associated with cancer stem cells (113). 
Clinical studies have demonstrated the CD44 as one of the 
most critical proteins in tumor genesis, growth, metastasis, 
and chemo-resistant processes in a verity of tumors in co-
lon, breast, head and neck, and pancreatic cancers cancers 
(26, 114, 115). Antibody-based cancer treatments, over-
expressing CD44, represents the dominant anti-CSC ap-
proach specifically in BCSCs (116). In a study, active tar-
geting and drug delivery to the breast and colon cancer 
cell lines was evaluated by biodegradable poly[(D, L-lac-
tide co-glycolide)-co-PEG] (PDLGA-co-PEG) polymeric 
micelles loaded with paclitaxel (PTX) and functionalized 
with anti-CD44 antibodies. Evidence has shown that ac-
tive-targeted PLGA-co-PEG-PTX micelles increase the in-
tracellular concentration of PTX, and therefore, the effec-
tiveness of drug delivery to the CSC (117). Arabi et al. 
(118) have demonstrated the selective drug delivery poten-
tial of liposomal doxorubicin functionalized with an-
ti-CD44 and increased circulation time, biodistribution 
and therapeutic efficacies of CD44-Doxil compared to the 
non-targeted liposomal formulation and free drug. Mag-
netic NPs (MNPs) with anti-CD44 antibody have also 
shown the potential selective treatment of CD44 positive 
cancers such as pancreatic and breast cancers cell lines 
(119).

CD133 Marker

  As mentioned before, the CSCs can be identified by de-
tection of the CD133 expression as a stem cell marker and 
also, is explicitly regarded as a marker in osteosarcoma. 
The potential of CD133 targeting for drug delivery to the 
CSCs in osteosarcoma has been examined previously. It 
is illustrated in a study that Poly (lactic-co-glycolic acid) 
nanoparticles conjugated with CD133 aptamers would de-
liver salinomycin specifically and efficiently to the CD133＋

CSCs in osteosarcoma and kill them (120). In another new 
form of drug nanocarrier, mesoporous silica nanoparticles 
(MSNs) have been used to deliver both antitumor drugs 
and siRNA into CD133＋ cancer cells. This formulation 
significantly improved the efficacy of therapeutic drugs in 
laryngeal cancer cells (121). Curcumin and some other 

natural chemopreventive agents have recently been shown 
to inhibit the CSCs, but with low bioavailability. 
  Furthermore, various nanotechnology-based formula-
tions of curcumin have been recently evaluated as well. 
Preparation of the nanoscale drug delivery systems has 
been considered as an innovative approach to overcome 
the bioavailability and stability issues. For instance, it has 
been shown that a polymeric nanoparticle (made by mix-
ing N-isopropylacrylamide, vinylpyrrolidone, and acrylic 
acid in a molar ratio of 60：20：20) encapsulating curcu-
min, named ‘‘nanocurcumin’’, can inhibit brain tumor cell 
growth and deplete CD133＋stem-like cells (122, 123).

Notch Signaling Pathway

  Another major pathway involved in the CSC regulation 
isNotch signaling pathway that controls cell-fate determi-
nation during development and maintains adult tissue ho-
meostasis (124). This pathway could lead to the develop-
ment of many cancers including melanoma, medullo-
blastoma, rhabdomyosarcoma, basal cell carcinoma, breast, 
lung, liver, pancreas, and prostate cancers (125). Fan et 
al. (126) examined the effects of Notch pathway inhibition 
on the growth and xenograft formation of medulloblas-
toma. They found that Notch blockade results in the 
growth of tumor cells and tumor-forming capacity, due to 
the depletion of stem-like cells. Clinical application of 
Notch inhibitors, γ-secretase inhibitors (GSIs), is re-
stricted by severe side effects. Imagable mesoporous silica 
nanoparticles (MSNPs) have been developed as vehicles 
for targeted delivery of GSIs to block Notch signaling. 
GSI-loaded on biocompatible and biodegradable MSNPs 
enhanced therapeutic efficacy in tumor reduction and reg-
ulation of Notch driven stem cell fates (127). Specific 
functionalization of nanoparticles could be used to en-
hance targetability to specific cell populations. Mamaeva 
et al. (128) have demonstrated that breast CSCs display 
enhanced glucose uptake compared to normal breast can-
cer cells. This specific feature of the breast CSCs has been 
utilized to design functionalized mesoporous silica nano-
particles (MSNs). The MSNs were functionalized with 
glucose analogues to deliver Notch signaling inhibitors to 
the CSCs efficiently. The results have demonstrated a re-
duction in the CSC pool and suppression of tumor growth 
in vitro and in vivo.

CD 90

  CD90 is glycosylphosphatidylinositol (GPI) anchored 
glycoprotein that is expressed in leukocytes, bone mar-
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row-derived mesenchymal stem cells, hepatic stem/progen-
itor cells (HSPCs) and also, is identified in murine breast 
CSCs. Studies have shown that CD90＋ cells have tumor-
igenicity and metastatic potential (129). 90% of blood 
samples from liver cancer patients contained CD45−/ 
CD90＋ markers (25). Bakalova et al. (130) have utilized 
CD90 as a valid therapeutic target They have shown that 
photosensitizer trifluoperazine loaded in anti-CD90 anti-
body-mediated water-soluble CdSe core nanocrystals could 
be delivered directly to the CD90＋ leukemia CSCswhereit 
could cause leukemia CSCs sensitivity to UV irradiation 
and apoptotic cell death.

Hedgehog (Hh) Signaling Pathway

  It is known that the Hh pathway helps in controlling 
cell growth and morphogenesis. The components of the 
Hh signal transduction pathway can control embryonic de-
velopment and also, is expressed in postnatal and adult 
tissues. These components have assigned roles in the 
maintenance of stem cells and tissue repair (131). At least 
three Hh gene homologs have been identified in human: 
Sonic Hh (SHh), Desert Hh (Dhh), and Indian Hh (Ihh), 
among which SHh is the most widely used one (132). Hh 
ligand can bind to the 12-transmembrane receptor Patched 
1, which relieves seven-pass transmembrane receptor 
named Smoothened (Smo) from repression and allows 
downstream activation of the pathway through the trans-
location of GLI, where it acts as a transcription factor to 
the nucleus with the mediation of SUFU and KIF17. High 
expression and aberrant activation of Hh ligands present 
in the majority of human cancers including brain tumors, 
melanomas, leukemia’s, gastrointestinal, malignancies of 
the breast, ovary, prostate and, pancreas cancers (133). 
Therefore, targeting the Hh signaling pathway may pro-
vide a practical therapeutic approach in the treatment of 
various cancers. GLI inhibition through PLGA-PEG nano-
particles (NanoHHI) has illustrated tumor growth in-
hibition and antimetastatic effects in hepatocellular carci-
noma (HCC) models (134, 135). In another study, the ef-
fects of anthothecol-encapsulated PLGA-nanoparticles 
(Antho-NPs) have been examined on the behaviour of 
pancreatic cancer stem cells (CSCs). They have discovered 
that Antho-NPs inhibited the CSC proliferation and in-
duced apoptosis by disrupting GLI-DNA binding and al-
so, it acts as GLIinhibitor. Using PLGA nanoparticles of-
fers many benefits of appropriate stability in physiological 
environments, entering to a cancerous sphere without any 
auxiliary reagents, loss of toxicity towards human pancre-
atic normal cells and PLGA-NPs could cross the blood-tu-

mor barrier (136).

Transforming Growth Factor-β (TGF-β)

  TGF-β signaling is an important prognostic marker in 
various types of cancers including breast (137), colon 
(138), liver (139), lung (140) and ovary tumors (141). Also, 
its potential role in the CSCs has been recently reported 
in breast (142), colon (143), liver (144), and lung (145), 
cancers. Thus, selective targeting of TGF-β signaling 
would significantly improve therapeutic efficiency in tu-
mor models (146). For breast cancer treatment, poly-
ethyleneimine/polyethylene glycol-conjugated MSNPs were 
developed to load LY364947 as a TGF-β inhibitor (146). 
These polymeric nanoparticles and inhibition of TNF-β 

signaling pathway have been used in the delivery of 
siRNA to the breast CSCs. Nanoparticles could be accu-
mulated in tumors that in turn, increases siRNA concen-
trations in tumor tissues and notably, lower the pro-
portions of the CSCs (147). Gold NPs (AuNPs) with much 
application in therapeutic and diagnostic agents could se-
lectively deactivate the TGF-β signaling pathway. Tsai et 
al. have found that AuNPs could attenuate the im-
munosuppressive function of TGF-β1β signaling path-
way and also, increase the number and frequency of tu-
mor-infiltrating T lymphocytes (148).

Prospects

  The cancer treatment needs the improvement of ap-
proaches which can efficiently eliminate cancer and 
amend the application of this novel drug-delivery modal-
ity (nanomedicines) (149, 150). Recently, researchers have 
been interested in the nanotechnology-based drug because 
these drugs are most useful for developing anti-cancer 
therapies and CSCs targeting. There is some clinically ap-
proved nanomedicine include Pegylated liposome (Doxil), 
Albumin-bound paclitaxel particles (Abraxane), Iron oxide 
nanoparticles (NanoTherm), PEG-1 Asparaginase (Oncaspar), 
Methoxy-PEG-poly (d,l-lactide)- paclitaxel micelle (Gene-
xol -PM) and SMANCS (Zinostatin) (151). Considering 
these issues that mentioned the nanotechnology-based an-
ticancer drug helps treat and prevent various types of can-
cers because these drugs have excellent diffusion capacity, 
selective killing of tumor cells or CSCs. Also, CSC-target-
ing with nanomaterials is in the early stages because these 
studies have done in vitro and in vitro phase only. So a 
vast amount of detail in vitro, in vivo and other relevant 
information, is essential that these nanomedicine products 
have a clinical practice. The other important issues are the 



234  International Journal of Stem Cells 2019;12:227-239

safety, effective dosages and side effects of nanomaterials 
used in drug delivery systems which should be given spe-
cial attention (152).
  Finally, the most important thing is that the treatment 
of cancer using nanotechnology is helpful approaches for 
cancer patients because most of them suffer from chemo-
therapy and radiotherapy. Moreover, CSCs targeting with 
nanomaterial may present a novel method for reducing the 
costs on the public health care system.

Conclusions

  The basic cause of cancer is a group of dividing cells 
with high power and high resistance to the drugs that they 
called Cancer Stem Cells (CSCs). CSCs were identified an 
characterized in the 1990s, in the blood of people with leu-
kemia that seemed to have a vital role in cancer. CSCs 
are markedly resistant to conventional cancer treatments, 
such as chemotherapy and radiation. Therefore, under-
standing tumor biology is critical for the development of 
successful therapies. Identifying and selectively targeting 
markers and signaling pathways of CSCs are new ther-
apeutic strategies for cancer treatment. The current suc-
cess in the fight against CSCs has been reported in studies 
that using nanotechnology-based therapeutics with using 
different surface markers and biochemical assays for 
identification. Based on nanomedicine studies mentioned 
in our review, it is shown that nanomedicine in the treat-
ment of CSCs can provide additional benefits for cancer 
patients with fewer drugs side effects such as, increasing 
their cellular uptake, prolonging systemic circulation, im-
proving biodistribution profiles, and resolving problems of 
poor stability and solubility. This review has shown bright 
prospects of cancer treatment by nanomaterials, and spe-
cifically nanoparticles with increased therapeutic potency 
in drug delivery, CSC specificity and fewer side effects.
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