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Abstract: The transpacific transport of mineral dust often occurs in spring, and a large amount
of aeolian dust is deposited in the Asian continent and north Pacific. Moreover, a heterogeneous
reaction occurs when dust particles are mixed with man-made pollution gases and particles. In the
present study, atmospheric PM10 and PM2.5 concentrations were investigated, and a scanning electron
microscope and an X-ray energy spectrometer were used to analyze the effects of dust resistance and
capture by forests. It showed that (1) the PM2.5 and PM10 concentrations during a dust storm, on
sunny days, and during light pollution periods, were higher in the non-forest covered area (NFC
area) than in the forest covered area (FC area), except during heavy pollution events; which suggests
that the forests have a strong effect on dust resistance; (2) the PM reduction efficiency of forests was
highest on sunny days, followed by light pollution periods, heavy pollution periods, and during the
dust storm; (3) after the dust storm, TSP captured by leaves significantly increased, especially for the
broadleaved tree species; and the particulates number in the grooves on leaves’ surface increased
particularly sharply. This study will help improve the dust resistance and retention efficiency of forest
shelterbelt projects during dust storms.
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1. Introduction

The annual dust emissions in East Asia account for approximately 25% of the total global dust
emissions [1]. These large emissions have a significant influence on the global radiation balance,
climate, ambient air quality, and human health [2–4]. The trans-Pacific transport of mineral dust from
East Asia to North America frequently occurs during springtime [3,5–7]. During spring, the Gobi
region is affected by the Mongolian cyclone, which is the main factor behind the severe Asian dust
storms [8]. The long-distance transport of dust plumes can alter the atmospheric conditions on regional
and global scales [9,10]. In the transmission process, dust particles can mix with a variety of man-made
pollution gases and particle emissions [11]. Many heterogeneous reactions can occur on the surface
of dust particles, and the moisture absorption ability of ageing dust particles is enhanced [12,13]. It
is possible to activate dust particles in the transport process, which then form cloud condensation
nuclei, and change the physical and chemical properties of aerosols [14]. A dust emission event
occurred between 3 May and 8 May, 2017. It was found to originate from the deserts of Central and
East Asia (including the Mongolian Gobi Desert, the Taklimakan Desert, and the Alxa Desert) [15,16],

Int. J. Environ. Res. Public Health 2020, 17, 478; doi:10.3390/ijerph17020478 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
http://www.mdpi.com/1660-4601/17/2/478?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph17020478
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2020, 17, 478 2 of 17

where many dust events occur. The Alxa Desert in western Inner Mongolia and the Gobi Desert of
Mongolia were found to be the main dust sources during this dust storm event, and the degraded
air quality could have affected more than 700 million Chinese people living in the path of the dust
storm [15]. Simulations by the Weather Research and Forecasting with Chemistry model indicated
approximately 29.7 Tg of dust was emitted from dust sources in Mongolia and China, subsequently,
20.4 and 5.3 Tg of aeolian dust was deposited across continental Asia and the North Pacific Ocean,
respectively [15]. The dust storm transported north-eastward to southern and eastern Russia and the
Bering Sea, eastward to the Korean Peninsula and Japan, and southward to south-central China [16].

Vegetation can effectively improve air quality by reducing the pollution caused by atmospheric
particulate matter (PM) through dust resistance, dust retention, and dust reduction [17–23]. It has been
shown that increasing the surface coverage, leaf area, and the vegetation community vertical levels can
enhance the ability of vegetation to reduce PM [24–27]. The resistance effects of vegetation on PM are
not only related to leaf surface properties, canopy morphology, structure configuration, branch and
leaf density, leaf surface inclination, and other factors, but are also affected by natural environmental
factors, such as precipitation, strong wind, and dust storms, and human factors, such as traffic flow
and heating [18,25,28–30]. Vegetation resistance has a positive effect on the removal of PM. Previous
studies have mainly focused on the extent to which vegetation can reduce PM levels, and the processes
and mechanisms underlying this reduction [31–37].

East Asian dust storm-prone areas are mainly in the 35–45◦ N region, and Beijing is just downwind
of this area with a population of 21 million [38]. Furthermore, it is an important channel for dust
aerosols that can transport dust across Asia in a downwards direction. Therefore, it is important to
study dust aerosols in Beijing. This study compared the variations in atmospheric PM10 and PM2.5

concentrations between the dust storm occurrence period (dust storm period) and the non-dust storm
period (non-dust storm period). Factors, such as sunny days, and light and heavy pollution periods,
were investigated in a forest-covered area and an adjacent non-forest-covered area to assess whether the
resistance effect of forests on different sized particles is the same during the dust and non-dust periods,
and to determine the extent of the forest resistance effect. The increase in the dust retention capacity of
the leaves from different tree species before and after dust storms and how the microstructure of tree
leaves affects the increase in dust capture capacity were also determined. The changes to the element
composition of the particles on the leaves before and after the dust storm and the source of the particles
during the two periods were also investigated. The purpose of this study was to provide a scientific
basis for the restoration and reconstruction of vegetation in dust source areas and to suggest ways of
alleviating PM pollution caused by dust storms. This study provides a database that can be used to
improve the dust resistance and dust retention efficiency of forest shelterbelt projects during the dust
storms that occur on dust transport paths across the world.

2. Data and Methods

2.1. Air PM Concentrations and Meteorological Data

The real-time monitoring data for PM2.5 and PM10 concentrations at 35 monitoring stations in
Beijing have been published since January 2013 (http://zx.bjmemc.com.cn/) [39]. The locations of these
35 monitoring stations are shown in Figure 1 [39]. Two monitoring sites, Beijing Botanical Garden
(forest-covered area, FC area, 9 in the Figure 1) and New Northern Haidian area (no forest cover
area, NFC area, 8 in the Figure 1), were selected for this study. The atmospheric PM10 and PM2.5

concentrations in the FC area and the NFC area were compared during the dust storm from 3 May
to 5 May, 2017. In order to better illustrate the dust removal efficiency of forests during dust storms,
a comparative study, based on the weather conditions and the real atmospheric particulate pollution
levels, was conducted between 16 April and 19 April (heavy pollution event), 6–8 May (sunny days
without pollution event), and 16–21 May (light pollution event). In April and May, deciduous tree
species in Beijing are in their leaf expansion period. Therefore, the forest growth conditions can
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be considered to be the same. The historical data provided for the websites has not been officially
downloaded, and we used webserver for automatically downloading 1 h intervals real-time data
from January to June 2017. Some transfer mistakes occurred during the data collection period, which
meant that some of the data were missing. Meteorological data, mainly wind data, were obtained from
the real-time weather collection data set for Haidian district and from the China Weather Network
(www.weather.com.cn) (Figure 2, Figure 3 and Figure 5). Approximately 41 days was the rainfall-free
period before the dust storm. The last rain fall before the dust storm was on 23 March, 2019, and
precipitation was merely 2 mm.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 4 of 18 

 

 

 
Figure 1. Transport path for dust event on May 2017 (a). The arrows show the dust transport 
directions, red arrows denote north-eastward transport, yellow arrows denote eastward transport, 
and blue arrows denote southward transport [16]. Location of air quality monitoring stations (b). 
Northern New Area stations is 8, and 9 is Beijing Botanical Garden station in Figure [39]. 
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The PM2.5 and PM10 reduction efficiencies were used to evaluate the dust resistance effect of
forests [27,35]. The particle removal efficiency shows the differences between the FC area and the NFC
area, and was calculated using Equation (1):

E =
CNFC −CFC

CNFC
× 100% (1)

where CNFC denotes the particle concentration for the NFC area (µg m−3) and CFC denotes the particle
concentration for the FC area (µg m−3).

2.2. Determination of Leaf Area

A scanner (Canon LIDE 110, Canon, Tokyo, Japan) was used to scan the leaves of broad-leaved
tree, and the images were turned into a black and white image. Then, Adobe Photoshop (Photoshop
CS2, Adobe, San Jose, CA, USA) was applied to obtain the black area, which represents the leaf surface
area of the broad-leaved trees.

Around 100 g of needles from Pinus tabulaefolius or Cedrus deodara were sampled, and their
diameters and lengths were measured. After needles were assumed as truncated cones, their average
surface area was calculated by using Equation (2) [25]:

Aneedle =
1
2
π·(D1 + D2)·

[1
4
·(D2 −D1)

2 + l2
] 1

2
(2)

where D1 is the average needle diameter at the upper tip; D2 is the average needle diameter at the
lower tip; and l is the average needle length (Figure 4). The total needles surface area was calculated
through multiplying the needles number by the average needles surface area.
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2.3. Leaves Dust Adsorption Abilities

Three evergreen tree species (Platycladus orientalis, P. tabulaefolius, C. deodara) and three deciduous
tree species (Ginkgo biloba, Acer truncatum, and Populus tomentosa) leaves were collected from the FC
area on 2 May (before dust storm), when it was known that the dust storm was going to start the next
day through weather forecast, and on 6 May (after dust storm), 2017, when the dust storm ended.
Overhead shears were used to collect about 100 g of leaves from each tree. The leaves were collected
from east, west, north, and south parts of the canopy, and from three positions (top, middle, and
bottom) in the canopy. The perennial leaves were collected from all three evergreen species (P. orientalis,
P. tabulaefolius, and C. deodara). The leaves were complete, and free from disease and insect pests. Three
trees with good growth statuses and mean diameters at breast height (DBH) were selected for each
species as duplicates. The collected fresh leaves were put into clean, anti-static, self-sealing bags and
brought back to the laboratory for using.

The fine particles on the leaves were disturbed and mixed to form aerosols according to the
principles behind wind erosion [40,41] (Figure 5). This process was replicated three times for each
tree species. The particle absorption amount of leaves was measured in a wind tunnel that was 0.5 m
wide, 0.5 m high, and 1 m in length [41]. Some leaves for measurement were cut freshly. To make sure
that most airflow went through the leaves, they were tiled and stacked evenly. Leaves and branches
occupy a total length of 1 m in the wind tunnel. The experiment was carried out at a wind speed of
20 m s−1, which meant that each leaf potential was able to be measured by dividing the total particles
quantities captured by the leaves number.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 6 of 18 
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Figure 5. A sketch of the wind tunnel experimental setup [41].

The filtered indoor air with fairly constant concentration (<1 µg m−3) was sampled by wind
tunnel, and the total volume is about 10 m3. Firstly, the leaves were put in the tunnel, and pure air
without any PM was introduced into the tunnel through a plenum with multiple openings. Secondly,
a fan which generated a wind speed of 20 m s−1 was switched on to blow through the leaves in the
tunnel, and it lasted for 6–10 min to ensure that all PM on the leaves surface was suspended in wind
tunnel [29]. Finally, a DustMate environmental monitor (DustMate, Turnkey, Cheshire, UK) was
applied to determine the particulate concentration in the tunnel air [42,43]. Equation (3) was used for
calculating the captured PM amount per unit of leaf area for the different tree species [30]:

Mi =
n∑
1

mi j/Si (3)

where M represents the leaves surface absorbed PM of different tree species (g cm−2), i represents the
different tree species, j represents the particulate sizes, n represents three replicates, S represents the
leaf surface areas (cm2), and mij represents the total suspended particulate matter (TSP), PM10, and
PM2.5 (µg) amount.
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2.4. Leaf Microstructure Observation, Leaf Surface Particle Morphology, and Element Composition Analysis

Small cubes (4 × 4 mm) from the middle of the fresh leaves were cut and fixed in 2.5% (volume
fraction) glutaraldehyde solution. Then ethanol was added to dewater the leaves, and the samples
were sprayed with a conductive coating. The surface microstructure and particle morphology of the
leaves were observed and analyzed by a scanning electron microscope (SEM) (S-3400, Hitachi, Tokyo,
Japan) and an X-ray energy spectrometer (EDS) (550i, IXRF, Texas, USA). The images were taken at
500×, 1000× or 8000× resolution. The leaf surface microstructure images were at 500× resolution,
the particle morphology images were at 1000× resolution, and the X-ray energy spectrum composition
analysis of the particles used an 8000× resolution. SEM-EDS can be used to observe the particles on the
leaf surface, and its energy spectrum electron probe can be used to analyze the particles, which meant
that the energy spectrum and element content of the particles could be obtained. The development
time for G. biloba leaves was relatively short. Therefore, the particles on the leaf surface of G. biloba were
mainly from the dust storm period. P. orientalis and P. tabulaefolius are evergreen species, which meant
that they could be used to analyze the source of the PM. The PM on P. tabulaefolius was greater than on
P. orientalis before the dust storm, and the PM >10 µm was also greater. Therefore, P. tabulaefolius was
used to compare the differences in element compositions of the PM before and after the dust storm and
to determine the source of the PM.

3. Results

3.1. Dust Resistance Effect of Forests during Dust Storms

The PM10 and PM2.5 concentrations in the NFC area were a little higher than in the FC area during
the dust storm (Figure 5). When the wind speed reached peak, the PM10 concentrations in both NFC
and FC areas rapidly exceeded 1000 µg m−3 (Figure 6b). However, the PM2.5 concentration gradually
rose and peaked (Figure 6a). At the end of the dust storm, due to the decrease in the transport of
exogenous particles, the PM10 and PM2.5 concentrations sharply decreased. Moreover, as the wind
speed peaked, there were little differences for the PM10 and PM2.5 concentrations between the NFC
and FC areas.
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3.2. Dust Resistance Effect of Forests during Non-Dust Storms Periods

During sunny days and the heavy pollution period, the PM10 and PM2.5 concentrations were
obviously lower in the FC area than in the NFC area. The forests had a strong dust resistance effect, and
the dust resistance towards PM10 was stronger than for PM2.5. During the light pollution period, the
PM10 concentration was lower in the FC area than in the NFC area. However, the PM2.5 concentration
was particularly higher in the FC area than in the NFC area on 17 April (Figures 7–9).
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The overall reduction efficiency for PM2.5 was higher than for PM10, except for during a heavy
pollution event. It can be seen that forests have a prominent effect on the reduction of fine particles,
such as PM2.5. The reduction efficiency results for PM10 under the different weather conditions showed
that forests were most efficient on sunny days, followed by the light pollution event, then the heavy
pollution event, and the dust storm period was the least efficient one; however, for PM2.5, the reduction
efficiency of the heavy pollution event was the least (Figure 10a).

Overall, there was little difference in the PM2.5/PM10 ratios between the NFC area and the FC
area. The PM2.5/PM10 ratios were lowest during the dust storm, and PM10 was the main component
of the dust storm. The PM2.5/PM10 levels on sunny days and during the light and heavy pollution
periods showed no obvious trend. The particulate concentration differences between the three weather
conditions were small, but they were all higher than during the dust storm (Figure 10b).
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Figure 10. Reduction efficiency for PM2.5 and PM10 (a) and PM2.5/PM10 ratio (b) in forest area and
non-forest area.

3.3. Forest Dust Capture Ability during Dust Storms

After the dust storm, the total PM amount accumulated on the leaves significantly increased.
The TSP increase for the three kinds of broad-leaved tree species (deciduous tree species) was, from
large to small, A. truncatum (4.65 µg m−2), G. biloba (4.01 µg m−2), and P. tomentos (2.73 µg m−2). The TSP
for these trees was 649%–1937% more after the dust storm than before the dust storm, especially there
accumulated more PM10 on leaves (Figure 11). The TSP order for the three conifer species (evergreen
species), from large to small, was C. deodara (4.05 µg m−2), P. orientalis (1.58 µg m−2), and P. tabulaefolius
(0.95 µg m−2) (Figure 12). The increase in TSP adsorption by the three conifer tree species was 19.63%
to 63.55% before the dust storm (Figure 12a).
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The quantity of PM10 deposited on the leaves was higher than the amount of PM2.5, which was
directly related to the fact that the PM10 concentration in the air was much higher than the PM2.5

concentration during the dust storms. The PM10 accounted for 84.99%–94.59% of the increase in total
PM on the leaves after the dust storm, whereas PM2.5 only accounted for 8.54%–33.11%.

3.4. Effects of Leaf Microstructure on Dust Retention

The PM numbers on the leaves of the P. orientalis, P. tabulaefolius, and G. biloba significantly
increased after the dust storm (Figure 13). The large-particle-sized dust was significantly greater than
the smaller-particle-sized dust. In particular, the number of particulates in the grooves on the adaxial
surface of the G. biloba leaves increased sharply, and the number of fine particulates in the grooves of
the P. orientalis leaves also significantly increased (Figures 12a and 13b,e,f). The increase in the fine
particulate levels on the leaf surfaces of the P. tabulaefolius leaves was slightly lower (Figure 13c,d).
This was consistent with the results that showed that there has been a continual increase in PM retention
on these tree species. There was no significant increase in the amount of PM on the abaxial side of the
G. biloba leaves (Figure 13g,h).
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Figure 13. Scanning electron micrographs of leaf surfaces before and after dust storm. Platycladus
orientalis, (a) before dust storm, (b) after dust storm. Pinus tabulaefolius, (c) before dust storm, (d) after
dust storm. Ginkgo biloba, adaxial surface, (e) before dust storm, (f) after dust storm; abaxial surface,
(g) before dust storm, (h) after dust storm.

The P. orientalis and P. tabulaefolius leaves, and the adaxial surface of the G. biloba leaves had
clearly retained dust after the dust storm, and they were uniformly covered with different sized
particles. However, the particle distribution on these leaves before the dust storm was more spatially
heterogeneous and irregular.

3.5. Differences in Particle Morphology and Element Composition Before and After the Dust Storm

Figures 14a and 15a are leaf surface SEM images of P. tabulaefolius before and after the dust storm,
and Figure 14b,c and Figure 15b,c show the EDS energy spectra for the elemental analysis of two
PM10 particles on the leaf surface. Table 1 shows the element contents of four PM10 particles—two
particles from leaves collected before the dust storm and two particles from leaves collected after the
dust storm. The main elements in the four PM10 particles were silicon (Si), oxygen (O), and aluminum
(Al). The four PM10 particles were all sialate particles.
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Table 1. Element content of four PM10 particles on Pinus tabulaeformis leaf surfaces before and after
dust storm (%).

Elements

Before Dust Storm After Dust Storm

Particle 1 Particle 2 Particle 3 Particle 4

Mass
Percent

Atomic
Percentage

Mass
Percent

Atomic
Percentage

Mass
Percent

Atomic
Percentage

Mass
Percent

Atomic
Percentage

N 0.73 0.78 0.96 1.1 1.85 2.38 1.92 2.5
O 25.55 24.09 19.88 19.93 44.12 49.53 25.46 28.94

Mg 0.32 0.2 0.21 0.14 0.27 0.2 1.3 0.98
Al 1.7 0.71 0.88 0.52 1.38 0.92 5.8 3.91
Si 20.71 11.13 32.38 18.48 34.52 22.07 11.61 7.52
K 0.48 0.19 0.26 0.11 0.42 0.19 2.49 1.16
Ca 0.32 0.12 0.42 0.17 0.34 0.15 0.9 0.41
Fe 0.81 0.22 0.49 0.14 0.88 0.28 18.42 6

4. Discussion

4.1. Dust Resistance Role Played by Forests during Dust Storms

Forests have a strong effect on dust resistance during the early stages of a dust storm. However,
due to the considerable wind speed and high concentrations of exogenous dust during the dust storm,
the dust resistance effect of forests is very weak during the outbreak of a dust storm. The atmospheric
PM10 and PM2.5 concentrations in the NFC areas were higher than in the FC areas. At the end of the dust
storm, the decrease in the quantity of exogenous dust and the increase in the wind speed meant that
the PM10 and PM2.5 concentrations in the FC and NFC areas decreased sharply. Furthermore, the wind
played a strong role in the diffusion of particulate pollution. In terms of PM reduction efficiency,
forests on sunny days have the highest reduction efficiency, followed by the light pollution and heavy
pollution periods, and dust storms. Therefore, forests can effectively reduce the PM10 and PM2.5

concentrations in the air during sunny and light pollution periods. During heavy pollution periods,
PM2.5 reduction efficiency can have negative values in the FC areas. This is what mainly happens
when heavy pollution occurs during the flowering season of some plants in Beijing Botanical Garden
(FC areas), such as Amygdalus triloba, Amygdalus persica L. var., and Prunus persicaf. The large amount
of pollen and biogenic volatile organic compounds (BVOCs) discharged during flowering directly
increased the primary PM levels and generated secondary organic aerosols, which is important because
BVOCs are precursors in a series of oxidation and gas/particle distribution processes that occur in the
atmosphere [32,44–47]. Therefore, the pollution due to fine particulates rises. Furthermore, studies
have shown that the higher the concentration of BVOCs released by plants, such as monoterpenes,
the higher the concentration of secondary organic aerosols generated by photooxidation, and, under
certain environmental conditions, the higher the concentration of PM formed by nucleation. These
factors lead to an environmental increase in PM2.5 concentration [48–50].

In this study, the variation trend for PM10 and PM2.5 concentration in the dust storm during
May 2017 in the NFC area was basically consistent with the trends reported by Zhuang et al. [38].
It was also very close to the Chengde station results reported by She et al. [16]. Furthermore, the peak
concentration for PM10 also exceeded 1000 ug m−3 [15,38], and the peak time was also similar to the
Chengde station results [16].

The overall reduction efficiency for PM2.5 was higher than for PM10. It can be seen that forests
have a prominent effect on fine PM reduction, which is mainly because tree leaves can improve air
quality by capturing PM. It has been shown that the tree PM capture efficiency mainly depends
on wind speed, particle size, and the physical and biological characteristics of the tree canopy [28].
The mechanism underlying the capture of fine PM by leaves depends on the size of the PM and its
floating speed. The deposition of particles smaller than 0.5 microns mainly depends on the Brownian
diffusion principle, whereas the deposition of particles larger than 0.5 microns mainly depends on
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retardation. The leaf microstructure has a considerable influence on PM deposition. It can be used to
explain the effect of wind speed on the capture of different sized particles [51]. When air flow pushes
PM2.5 against the tree, it gets intercepted by the roughness and wetness of its leaves and bark, and the
particles are fixed by the rough epidermis, cuticle, trichomes, gullies, and other leaf microstructures.
Furthermore, special secretions on the leaf surface embed or stick PM2.5 to the leaf surface [17]. These
secretions capture some of the PM2.5 in the air and retain them on the plant surface, which effectively
reduces the PM2.5 concentration in the air. The PM2.5/PM10 ratio is the smallest component in dust
storms, and PM10 is the largest particle component in dust storms, but its levels are far lower in
dust storms than in non-dust storms [38]. The PM2.5/PM10 ratios during sunny, and light and heavy
pollution periods do not seem to have obvious variation trends and the differences between the periods
are small. However, the levels are higher than during a dust storm, which indicates that the proportion
of coarse particles during dust storms significantly increases [52]. When there was a heavy pollution
event, the PM2.5/PM10 ratio in the FC area was much higher than in the NFC area, which was mainly
due to the pollen and BVOCs emissions from trees that are in flower during heavy hazy weather. These
promote the generation of secondary derivative particles and aggravate the fine particulate pollution
in the vegetation area [48]. In addition, the nitrogen oxidation ratio and the sulfur oxidation ratio
were much greater during hazy days than during non-hazy days. This implies that the formation of
sulfate and nitrate was greatly accelerated due to the heterogeneous or multiphase reactions of NO2

and SO2 with PM2.5 [35]. The cause of the rise in the PM2.5/PM10 ratio needs to be explored further.
The results showed that temperature was negatively correlated with PM2.5 and that relative humidity
was positively associated with PM2.5, which was consistent with the results of this study [23].

4.2. Effect of Tree Leaves on Dust Retention during a Dust Storm and Its Influencing Factors

After the dust storm, the increase in fine PM on the leaf surfaces of coniferous trees (Platycladus
orientalis, P. tabulaefolius, and C. deodara) was smaller than on broad-leaved trees (A. truncatum,
P. tomentosa, and G. biloba). The broad-leaved species were all deciduous species. In April, the
deciduous species in Beijing begin to germinate and spread their leaves, which means that the PM on
new leaves was low in May. However, the conifers are all evergreen trees, and the PM levels on their
leaf surfaces are high in May. In addition, the amount of PM that accumulated on the surface of the
leaves was close to saturation because none of the PM was washed off due to the lack of rainfall before
May. Therefore, the increase in PM accumulation on the leaves during the dust storm was far less than
on deciduous tree species. Although the three broad-leaved tree species showed a large increase in the
amount of deposited PM, the amount of accumulated PM after the dust storm was lower than that of
the three coniferous tree species, which was consistent with the results from previous studies [51].

In general, the PM10 amounts on the leaf surfaces of the six tree species were higher than the
PM2.5 levels. Similarly, the increase in the amount of PM10 captured by the leaves the after the dust
storm was greater than the increase in the amount of captured PM2.5. The reason is that the PM10

concentration in the air is much higher than the PM2.5 concentration during a dust storm. This is
because there are more PM10 sources that can contaminate the air [16]. The number of particles in the
grooves on the adaxial surface of the G. biloba leaves increased sharply, and the number of fine particles
in the grooves of P. orientalis also significantly increased. The grooves on the leaf surface play a more
significant role in capturing air particles when particle matter capture increases sharply. However,
it has been shown that the fine particles on the leaf surface that have a large diameter are unstable and
can be easily eluted by external forces (rain, wind, etc.) [18]. This means that leaves can repeatedly
capture the PM in the air and this improves their ability to ecologically purify the air of PM.

Approximate 2.85 × 107 t PM2.5 was removed from the atmosphere for the Three Northern Shelter
Forest during 1999 and 2010 [53]. It is projected to continue till 2050, and there will be more than
3 million hectares of trees planted every year [54], which will enhance continuously the PM2.5 uptake
by forest. Forest configuration, structure, height, and degree of forest belt fully should be paid more
attention to ensure that the project will play an increasingly important role in the improvement of
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the regional-scale air quality in the coming years, especially tree species selection. It should be paid
more attention on the selection of tree species with high particulate matter capture ability, meanwhile,
fast-growing species should be planted with slow-growing species, and evergreen trees should be
planted with deciduous trees, which will help improve the dust removal efficiency of forest shelterbelt
projects effectively during dust storms.

The dust storms in spring, during the leaf expansion time for deciduous broadleaf tree species, are
quite short. However, the potential amount of fine PM that could be deposited on leaves is considerable.
The effect of dust purification is strongest during dust storms. The fine particles captured by conifer
trees with leaves that have a grooved structure can easily fall off due to the action of external forces.
The repeated dust retention characteristics of the grooved structure improve fine PM retention when
a dust storm is combined with a severe air particle pollution event.

The known morphologies and energy spectra of typical particles show that the four PM10 particles
are all sialate particles. The PM in Beijing Botanical Garden before and after the dust storm was
composed of elements from the earth’s crust and natural sources of pollution. However, the impact of
human pollution sources was very small. The single particle mass spectrogram analysis of the dust
storms undertaken by Zhuang et al. [38] showed that the calcium, iron, aluminum, and silicate signals
were enhanced in the fine PM produced on a dust day. The dust also contained more crust elements,
such as silicate, sodium, and aluminum. However, dust that has been allowed to age contains more
secondary inorganic ions, such as sulfate and ammonium nitrate.

The results produced by this study are similar to the results reported by Zhuang et al. [38], which
showed that the dust levels (55.3%) were highest on dust days. However, the results from this study are
different for non-dust days. In the Zhuang et al. [38] study, the secondary inorganic sources accounted
for 24.6% of the dust particles, motor vehicle exhaust sources accounted for 21.1%, and other dust
sources accounted for 13.8% [38]. The main reason for the different results is that the sampling place in
this study was Beijing Botanical Garden, which is located in a northwest suburb of Beijing. Therefore,
the surrounding pollution sources are mainly natural dust. However, Zhuang et al. [38] chose Da Yang
fang, Anwai, Chaoyang district, which is mainly surrounded by traffic pollution sources. This study
shows that the particle size of the dust source increased significantly during a dust storm, and that the
source of these particles is mainly the long-distance transmission from a dust source area.

5. Conclusions

As simulated by the WRF-Chem model, approximately 25.7 Tg of dust was deposited over the
Asia-Pacific region, and 4 Tg of dust was suspended in the atmosphere during dust storm in May,
2017 [15]. The significantly deteriorated air quality affected people living in the path of the dust storm.
Forests can effectively remove particles through dust resistance, dust capture, and dust reduction. Dust
resistance of forest during dust storms on transport path was analyzed through paired comparison
analysis with non-forest area and forest area, and a scanning electron microscope and an X-ray energy
spectrometer were used to analyze the effects of dust capture by forests leaves.

The PM2.5 and PM10 concentrations during a dust storm, on sunny days, and during heavy
pollution periods were higher in the NFC area than in the FC area, except during light pollution events;
which suggests that the forests have a strong effect on dust resistance. The reduction efficiency of
larger PM for forests was highest on sunny days, followed by light pollution periods, heavy pollution
periods, and during the dust storm. It indicated that the effect of forest on dust reduction and dust
resistance was subtly small, which attributed to the fast wind speed during the dust storm. However,
in late dust storm, the forest roles in dust removal became significant. During heavy pollution periods,
PM2.5 reduction efficiency can have negative values in the FC areas. It confirmed that the higher the
concentration of BVOCs released by plants, the higher the concentration of secondary organic aerosols
generated under certain environmental conditions, which aggravated the fine particles pollution. After
the dust storm, TSP captured by leaves significantly increased, especially for the broad-leaved tree
species; and the particulates number in the grooves on leaves surface increased particularly sharply.
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Therefore, selection of tree species with high PM capture ability on leaves (Cypress with scaly leaves or
evergreen conifer species capable of secreting turpentine, mixed deciduous broad-leaved tree species
capable of spreading leaves in April, leaf surface with deep groove, large roughness, complex surface
texture) will help improve the dust removal efficiency of forest shelterbelt projects during dust storms
and should not be ignored.
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