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The overlap between Alzheimer’s disease and epilepsy
uncovered by transcriptome sequencing

Dear editor,

We conducted a combinated analysis of the hip-
pocampal transcriptome of Alzheimer’s disease (AD) and
epilepsy mice for the first time. Our study found that TNF-
a-HIF-1-NF-xB pathway axis and circadian rhythm path-
way are involved in the pathogenesis of AD and epilepsy.
Most importantly, FZD7 is remarkable upregulated in the
hippocampus of APP/PS1 mice and the temporal cortex of
humans, which suggests that FZD7 maybe an important
target in the early pathological process of AD.

It is believed that AD and epilepsy are two distinct neu-
rological diseases based on its main symptoms. More and
more clinical data show that there is interaction between
AD and epilepsy.! According to a retrospective study of
medical records of new-onset unexplained epilepsy and
myoclonus, the incidence rate of epilepsy is 13.4% for late-
onset AD patients (n = 1320).? In addition, In a 4-year
follow-up study in Taiwan, 4.7% of the 20 000 AD patients
showed seizure symptoms.® These are only clinical data,
and the number of subclinical epilepsy-like symptoms may
be higher.

It is recognized that Down syndrome (DS) may be
accompanied by seizures, and DS patients have typical
neuropathological changes in AD,* which further illus-
trates the overlap between epilepsy and AD in pathol-
ogy. Although there are clinical and pathological com-
monality between epilepsy and AD, it is still unclear how
and why epilepsy is associated with an increase in AD
pathology. Our previous research found that the circadian
rhythms pathway was significantly down-regulated in the
hippocampal CA3 region of AD and epilepsy patient.” In
this study, we attempt to investigate the core pathways and
genes of epilepsy and AD.

We analyzed the differentially expressed genes (DEGs)
in APP/PS1 transgenic mice (n = 3) and pentylenetetrazole
(PTZ) kindled epileptiform mice (n = 3) versus C57B6/J
mice (WT mice, n = 3) by transcriptome sequencing. As
shown in Figure 1A, the volcano map showed a total of 2184

DEGs were identified from APP/PS1 mice compared with
WT mice, with 1293 genes were upregulated. Meanwhile,
2574 DEGs were identified from epileptiform mice with
1447 genes were upregulated. The relationship between the
three groups of DEGs was intuitively shown by the Wayne
diagram (Figure S1A). DEGs clustering analysis illustrated
that the proportion of AD upregulated genes was more
than that of epilepsy mice (Figure S1B).

Figure 1C showed that the most enriched upregulated
GO terms in AD mice were cell adhesion, biological
adhesin, intracellular signal transduction, immune system
process, and immune response. While, cellular metabolic
process and metabolic process were the most enriched up-
regulated GO terms in epileptic mice (Figure 1D). In order
to determine the signal transduction pathways involved in
DEGs,° we conducted KEGG analysis. Figure 1E illustrated
that phagosome (corrected P = 0.0014) and antigen pro-
cessing and presentation (corrected P = 0.0014) pathways
were significant up-regulated in APP/PS1 mice. The circa-
dian rhythm pathway was downregulated in epileptic mice
(Figure 1F), which verified our previous research.’

In order to analyze protein protein interaction (PPI), we
input two sets of DEGs into NetworkAnalyst 3.0,” and the
results are similar to KEGG analysis (Figure 1G,H). See
the Supporting Information Materials for details. Through
the analysis of the pathway, we found that Alzheimer’s
disease pathway was significantly enriched in both AD
and epileptic mice (Figure S2A). Next, we further analyzed
the enrichment pathway of AD and epileptic mice with
GSEA. In GSEA analysis, 26 gene sets were significant at
FDR < 25% in epileptic mice. We were surprised to find
the gene set, Nagashima_ NRG1_ SIGNALING_ Up, was
the most significant enriched phenotype in epileptic mice,
its NES = 2.16, FDR g-val = 0 (Figure 1I). Neuregulin-1
(NRG]1) is a member of neurotrophic factors in the central
nervous system (CNS). It is closely related to normal phys-
iological functions such as neuronal growth, migration
and differentiation, and synaptic plasticity via activating
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ErbBs receptors.® NRG1 is also important for the trans-
lation of dopaminergic, glutamatergic, and GABAergic
neurotransmitters.” Our results suggest that NRG1 path-
way may be a bridge between AD and epilepsy. In addition,
Figure S2B showed that PHONG_TNF_TARGETS_UP
was enriched in epileptiform mice with NES = 1.92,
FDR g-val = 0.05. Combined with the analysis results
of HIF and NF-xB pathway enriched in previous PPI
analysis, it shows that TNF-a-HIF-1-NF-xB pathway axis
should be focused on in the pharmacological intervention

mechanism of epilepsy and AD.

As illustrated in Figure 2A,B, PPI analysis of AD and
epileptic mice mainly focus on neurodegenerative diseases
pathways. As there are few common differential genes, we
input these genes into the human AD database (Alzdata)'”
to investigate their expression levels in human samples.
We unexpectedly found that the expression of FZD7 in the
temporal cortex of AD patients was extremely upregulated
than that of healthy people (P = 0.00017). Moreover, FZD7
level was also significantly higher in entorhinal cortex than
that of healthy people (P = 0.012; Figure 2C). Using brain

single cell sequencing data in public databases (GSE67835),
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FIGURE 2 Functional analysis of core genes of AD and epilepsy. A, PPI gene network of APP/PS1 mice and epilepsy mice. B, PPI pathwa:
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network of APP/PS1 mice and epilepsy mice. C, FZD7 level in human sample. D, The distribution of FZD7 in brain single cell sequencing data
(GSE67835). E, Gene regulatory network of FZD7. F, Research route and the mechanism summary of FZD7

we found that FZD7 is mainly distributed in astrocytes and
neurons (Figure 2D). In the single gene analysis of FZD7,
we conducted a network analysis of FZD7’s PPI, acting
genes, related IncRNA, target miRNA, and indirectly act-
ing genes (Figure 2E). Figure 2F is the research route of
this study and the mechanism summary of FZD7. As a G-
protein coupled receptors, there are few studies on FZD7
that mainly focusing on cancer at present. In this study,
we found for the first time that FZD7 is remarkable upreg-
ulated in temporal cortex in AD patients. As an impor-
tant part of cognition, temporal cortex is very vulnerable to
attacks in the early stages of AD. These results suggest that

the inhibition of FZD7 in the early stages may prevent the
progression of AD pathology and further systematic bio-
logical experiments are needed to verify it.
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