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Alzheimer’s disease (AD) is an example of age-related dementia, and there are still
no known preventive or curative measures for this disease. Obesity and associated
metabolic changes are widely accepted as risk factors of age-related cognitive decline.
Insulin is the prime mediator of metabolic homeostasis, which is impaired in obesity,
and this impairment potentiates amyloid-β (Aβ) accumulation and the formation of
neurofibrillary tangles (NFTs). Obesity is also linked with functional and morphological
alterations in brain mitochondria leading to brain insulin resistance (IR) and memory
deficits associated with AD. Also, increased peripheral inflammation and oxidative stress
due to obesity are the main drivers that increase an individual’s susceptibility to cognitive
deficits, thus doubling the risk of AD. This enhanced risk of AD is alarming in the
context of a rapidly increasing global incidence of obesity and overweight in the general
population. In this review, we summarize the risk factors that link obesity with AD and
emphasize the point that the treatment and management of obesity may also provide a
way to prevent AD.

Keywords: obesity, insulin resistance, neuroinflammation, Alzheimer’s disease, mitochondrial dysfunction

INTRODUCTION

The population of the developed world is aging, and the incidence of age-related metabolic and
neurodegenerative diseases is increasing. Alzheimer’s disease (AD) is one of the most common
age-associated neurodegenerative diseases; it is characterized by the accumulation of extracellular
amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFTs; Jack, 2020; Sun et al., 2020).
Mutations in one or more of the genes that encode amyloid precursor protein (APP), presenilin
1 (PS1), or presenilin 2 (PS2) represent genetic risk factors for AD (Gaiteri et al., 2016) and are
typically associated with early-onset AD, but account for less than half of all cases. Conversely,
late-onset AD is associated with environmental factors (more specifically, lifestyle; Hohman and
Kaczorowski, 2020). Environmental risk factors that are associated with AD include vascular
lesions, atherosclerosis, hypertension, glucose intolerance, insulin resistance (IR), hyperglycemia,
hyperinsulinemia, appetite dysregulation, and obesity (Hayden, 2019). Despite these insights,
there are still, after decades of research, no disease-modifying or preventive treatments available.
Therefore, identifying modifiable risk factors and finding the mechanistic links with AD is of
significant interest.

Obesity is currently one of the most widespread health threats to have reached epidemic
proportions worldwide and is projected to reach 573 million cases by 2030 (World Health
Organization, 2020). The excess fat (adipose) tissue that accumulates in the body due
to a prolonged imbalance between calorie intake and expenditure can result in obesity
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(El-Mallah and Obeid, 2020). It has been reported that humans
have elevated susceptibility to obesity and an increased risk
of non-alcoholic fatty liver disease (NAFLD) and degenerative
diseases compared to nonhuman primates (Martins, 2012).
Aging-associated obesity causes decreased lean mass and
increased risk of obesity-related diseases (Pugazhenthi et al.,
2017). Moreover, the aging process may also link NAFLD,
another chronic disease whose global epidemic is expected
to reach between 20 and 40% by 2020, to obesity and AD
(Bellentani et al., 2010). Consumption of a high-fat diet (HFD)
is the prime cause of obesity and leads to various pathological
conditions, including poor mental health, sleep apnea, and
cognitive problems (Uranga and Keller, 2019). Although studies
emphasize that obesity could increase the risk of dementia
(Whitmer et al., 2007; Tezapsidis et al., 2009), the evidence is
mixed for obesity as a risk factor for AD.

The long-term effects of the obesity epidemic, coupled with an
aging global population, are severe and burdensome. Because of
the profound socio-economic impact of both AD and obesity, it is
imperative to understand the mechanisms that could connect the
two conditions. This review article aims to highlight the common
factors linking obesity with AD; currently, these include insulin
signaling pathways, oxidative stress, appetite dysregulation,
neuroinflammation, and mitochondrial dysfunction in the brain,
as summarized in Figure 1.

OBESITY AND PROGRESSION OF AD

According to the amyloid cascade hypothesis, AD-associated
neurodegeneration is triggered by APP processing through
the amyloidogenic pathway (Ow and Dunstan, 2014). The
production of Aβ plaques is generally regarded as influencing
neuronal activity by impairing synaptic function and inducing
cell death (Hong et al., 2016). Concerning obesity and its

FIGURE 1 | Common pathological mechanisms that link obesity with
Alzheimer’s disease (AD). Obesity leads to hyperglycemia, hyperinsulinemia,
insulin resistance, oxidative stress, appetite dysregulation, neuroinflammation,
and mitochondrial dysfunction. All these pathological conditions, combined
with aging, are contributory factors of AD.

influence on Aβ deposition, several studies have reported body
weight gain in APP transgenic mice in response to high-calorie
diets. Diets vary from high-fat and high cholesterol diets to
a diet rich in sucrose. Strangely, given the variation in the
nutrient content of the various regimens, diet-induced obesity
is consistently linked to a rise in cerebral Aβ pathology (Levin-
Allerhand et al., 2002; Fewlass et al., 2004; Ho et al., 2004;
Cao et al., 2007; Pedrini et al., 2009; Julien et al., 2010; Shie
et al., 2015). The only exception is a single study in which
the authors examined the acute effects (i.e., after 4 weeks) of
a ‘‘western’’ diet imposed on APP mice at 1−2 months of age
(before Aβ deposition; Studzinski et al., 2009). Similarly, a strong
association between weight loss and decreased levels of cerebral
Aβ plaques has been reported using several dietary regimens
including ketogenic and calorie-restricted diets (Patel et al., 2005;
Van der Auwera et al., 2005; Wang et al., 2005; Halagappa
et al., 2007; Mouton et al., 2009) in different APP transgenic
strains, providing evidence that body weight, diet, and obesity are
important modulators of Aβ pathology.

Another critical pathological feature of AD is NFTs, produced
by hyperphosphorylated tau (Bartos et al., 2012). Multiple studies
have demonstrated that tau pathology can be modulated by
obesity (Leboucher et al., 2013; Platt et al., 2016). In a study
to examine the dietary risk factors of AD, Julien et al. (2010)
found that an HFD causes Aβ and tau pathologies in the
frontal cortex of the 3xTg AD mouse model. The mitogen-
activated protein kinase (p38, MAPK) signaling pathway is
one of the major pathways disrupted in obesity (Katiyar
and Meeran, 2007; Roth et al., 2009). This pathway is also
linked with tau hyperphosphorylation and neuroinflammation-
mediated NFT generation (Kelleher et al., 2007), and the
association is further confirmed by the observation of increased
tau hyperphosphorylation in hyperinsulinemic rats (Freude
et al., 2005). Moreover, HFD-induced obesity in the murine
model results in Aβ plaques, NFTs, and inflammation in the
hippocampus (Puig et al., 2012).

Collectively, these data suggest that obesity influences
Aβ aggregation and tau phosphorylation, promoting the
pathogenesis of AD. Since insulin is an important mediator of
obesity-related pathologies, we will focus in the next section
on brain insulin and how elevated insulin levels may relate to
neurodegenerative disorders.

BRAIN INSULIN SIGNALING AND AD

Insulin mediates metabolic homeostasis by regulating glucose,
lipids, and energy (Cheng et al., 2010b). The role of insulin
in AD is currently of major interest (Arvanitakis et al., 2020;
Selles et al., 2020). Insulin regulates glucose metabolism, both
directly and indirectly. Insulin can be found in various brain
areas under physiological conditions, especially in the cortex,
hippocampus, and hypothalamus (Blazquez et al., 2014). The
insulin levels in these brain regions are much higher than
the insulin levels in plasma (Devaskar et al., 1994; Chiba
et al., 2009; Kuwabara et al., 2011). Insulin is primarily derived
from the blood and is transported to the brain via insulin
binding sites present on brain endothelial cells (Hersom et al.,
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2018). Insulin receptors are widely present in various brain
areas, especially those regions that regulate olfaction, cognition,
appetite, and autonomic activity (Marks et al., 1991; Pomytkin
et al., 2018). Of the glucose transporters (GLUT), GLUT-4
is particularly important for cellular glucose uptake in most
peripheral tissues and is mainly regulated by insulin (Mourelatou
et al., 2019). However, insulin fails to induce cellular glucose
uptake into neurons, nor are insulin receptors activated, since
insulin does not influence the translocation of GLUT-4 in the
brain (Talbot et al., 2012). Accordingly, other types of glucose
transporter, for example, GLUT-3, mediate neuronal glucose
uptake in an insulin-independent fashion (Nagamatsu et al.,
1994). Several studies have consistently shown that insulin is
linked to cognitive functions in the brain rather than neuronal
glucose uptake like in peripheral organs (Plum et al., 2005;
Cholerton et al., 2013).

Increasing evidence indicates that insulin affects the brain
in numerous ways: it exerts neuroprotective effects, works as a
neuromodulator, and also plays a role in memory and cognition
(Nampoothiri et al., 2017; Pitt et al., 2017). Various studies have
shown that either peripheral or central insulin administration
has beneficial effects on learning and memory (Lee et al.,
2016; Pearson-Leary et al., 2018), which have been linked to
insulin receptor activation and downstream signaling (Nelson
et al., 2008; Lin et al., 2010; Chambers et al., 2015). Insulin
receptor beta-subunit haploinsufficiency affects hippocampal
late-phase long-term potentiation (LTP) and memory processing
(Nistico et al., 2012), and also makes long-term depression
(LTD) more likely (Huang et al., 2003; Ahmadian et al.,
2004). In synaptic areas, insulin might also modulate the
release of neurotransmitters, particularly glutamate, which is
crucial for the maintenance of synaptic transmission (Ahmadian
et al., 2004). In summary, these findings indicate that insulin
plays an essential role in neuromodulation, neuroprotection,
and cognition.

As intimated earlier, insulin can cross the blood-brain barrier
(BBB) and competes with Aβ for the insulin-degrading enzyme
(IDE) in the brain, including in the hippocampus (Farris
et al., 2003). Besides, insulin is also produced in the brain,
which may have a favorable effect on amyloid clearance (Reger
et al., 2006). Hence, impaired or elevated levels of insulin
could have detrimental effects on the brain. For example,
impaired insulin signaling could increase, at least in part, Aβ

accumulation and phosphorylation and cleavage of tau. As
mentioned above, obesity is also a key contributor to metabolic
dysfunction involving impaired insulin signaling, which leads
to dysfunctional glucose metabolism. Hence, obesity-induced
dysfunctional glucose metabolism might be the first common
mechanism with relevance to AD.

GLUCOSE METABOLISM IN OBESITY AND
AD

Glucose metabolism and insulin signaling are essential for the
proper functioning of the brain. Increasing evidence suggests that
hypometabolism of glucose might be a key player in dementia
pathology (Kuehn, 2020). Remarkably, changes in glucose

metabolism are also associated with AD since imaging studies
typically show decreased glucose metabolism in the temporal
and parietal brain regions of AD patients and individuals at
risk of developing this disease (Small et al., 2000). Besides,
patients with AD may also have elevated fasting plasma insulin
levels, attenuated insulin and insulin-like growth factor (IGF)
receptor expression, and reduced cerebrospinal fluid (CSF)-to-
plasma insulin ratio relative to healthy individuals (Steen et al.,
2005). Moreover, intravenous administration of insulin (while
maintaining blood glucose levels) or glucose in AD patients
and healthy older adults, improves cognitive function (Watson
and Craft, 2004). These findings indicate that proper glucose
metabolism is necessary for optimal cognitive function and
that impairment of glucose metabolism leading to cognitive
dysfunction is one of the characteristic features of AD.

Insulin Resistance (IR)
IR is a pathological condition, often referred to as glucose
intolerance, in which target tissues are not physiologically
responsive to insulin. This may result in hyperinsulinemia
occurring with euglycemia (Kim and Reaven, 2008).
Hyperinsulinemia can interrupt the physiological function of
several vital organs by impairing insulin signaling and disrupting
intracellular signaling transduction (Zhang et al., 2007). Obesity
is the major contributor to the induction of peripheral IR (Bacha
et al., 2006; Jones et al., 2016; Fealy et al., 2018; Gao et al.,
2019), resulting in overproduction of free fatty acids (FFAs)
and causing oxidative stress (Tripathy et al., 2003). In rodents,
chronic HFD-induced obese-IR exhibited a cognitive decline
with impaired insulin regulation, increased inflammation,
mitochondrial dysfunction, increased oxidative stress, and
apoptosis in the brain (Porter et al., 2012; Sripetchwandee et al.,
2014). These results suggest that chronic peripheral IR can
induce brain IR and brain dysfunction.

IR also has relevance to AD because the metabolism
of Aβ is mechanistically linked to IR. As we described
earlier, insulin is important for amyloid clearance, while IR
reduces the clearance of Aβ and facilitates its aggregation
via sequestration of IDE (a key enzyme for Aβ degradation;
Qiu and Folstein, 2006). Insulin also affects the production
and removal of Aβ through the MAPK signaling pathway.
In brief, hyperinsulinemia or IR induces MAPK signaling
pathway activation and increases BACE1 expression, which
eventually triggers the excessive accumulation of Aβ peptides and
neuritic plaques. By contrast, IR inhibits the non-amyloidogenic
pathway by reducing the expression of alpha-secretase and
decreasing non-Aβ peptide production (Gasparini et al., 2001).
Increased Aβ levels potentiate the removal of insulin receptors
on the cell surface and further promote IR (De Felice et al.,
2009). Although disrupted MAPK signaling is linked to the
elevation of Aβ levels, it also results in the generation of NFTs
facilitated by tau hyperphosphorylation and neuroinflammation
by activating extracellular signal-related kinase (ERK) or direct
phosphorylation of transcription factor such as cyclic AMP
response element (CRE)-binding protein (CREB; Kelleher et al.,
2007; Hu et al., 2012). Furthermore, IR causes decreased
phosphoinositide 3-kinase (PI3K)/AKT pathway activation and
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facilitates activation of glycogen synthase kinase (GSK) 3β (one
of the kinases involved in tau phosphorylation). Hence, increased
GSK3β activation might cause hyperphosphorylation of tau and
neurofibrillary lesions (Jolivalt et al., 2008). Additionally, IR
blocks protein phosphatase 2A (PP2A) inhibition, which also
leads to tau hyperphosphorylation and accumulation of NFTs
(Gratuze et al., 2017).

These studies demonstrate that obesity-induced IR and
hyperinsulinemia cause brain dysfunction and facilitate NFT
and Aβ accumulation, as summarized in Figure 2. Thus,
obesity-induced IR or hyperinsulinemia represent a potential
mechanistic link between obesity and AD.

Advanced Glycation End Products (AGEs)
Advanced glycation end products (AGEs) are harmful
compounds in the bloodstream when protein or fat combines
with sugar during the glycation cycle (Yamagishi and Matsui,
2010). RAGEs are receptors of AGEs that seem to play a
significant role in response to an HFD, both in terms of
body mass regulation, macrophage content of adipose tissue,
and systemic metabolism (Tomino et al., 2011; Leuner et al.,
2012). Elevated AGE levels in both serum and tissues occur
in an animal model of obesity (Li et al., 2005). The literature
links AGEs to obesity via oxidative stress and inflammatory
processes (Ramasamy et al., 2005). Nevertheless, it is not clear
to what degree high levels of circulating AGEs are the cause
or a symptom of obesity or how AGEs and RAGEs can be
affected by body fat and lifestyle factors. Though, mechanistic
insights into how AGEs cause oxidative damage indicate
that this happens through RAGEs, which are expressed on a
variety of cells, including endothelial cells, smooth muscle cells,
fibroblasts, and neurons (Kalousova et al., 2005). Once an AGE
binds a RAGE molecule, various signal transduction pathways,
such as those involving NF-κβ or the MAPKs ERK and c-jun

N-terminal kinase (JNK), can be activated. Consequently, gene
transcription can be stimulated to increase the production
of adhesion molecules, i.e., intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule (VCAM-1) and
growth factors like interleukin 1 (IL-1), IGF-1 and tumor
necrosis factor (TNF-α). Moreover, it is also suggested that
glycation can occur in DNA: AGE modification of DNA
may thus have an effect on epigenetic regulation and other
regulatory processes at the genetic level (Ramasamy et al.,
2005). A low-AGE diet attenuates inflammatory profiles in
humans (Harcourt et al., 2011), and an AGE inhibitor reduces
glucose intolerance, hyperinsulinemia, loss of body weight,
and fat deposition (Hagiwara et al., 2009). Earlier research
focused on the effects of AGEs on visceral adipose tissue, but
we suggest that ongoing and future work should probe whether
and to what degree AGEs and expression of RAGEs influence
brain function.

AGE formation also leads to oxidative damage, which is often
referred to as glycoxidation (Rabbani et al., 2016). Glycoxidation
is extremely relevant to AD, in part because extracellular fibrillar
aggregates of Aβ have AGE characteristics and bind to RAGEs
in neurons and endothelial cells of the brain. Glycation can delay
Aβ conversion to fibrils, maintaining them in toxic oligomeric
forms for longer (Emendato et al., 2018). Simultaneously, Aβ

and AGE binding to RAGEs results in additional oxidative
stress, which contributes to vascular dementia and neuronal
death in AD (Takuma et al., 2009; Emendato et al., 2018;
Wang et al., 2018). Furthermore, RAGEs mediate activation
of GSK3β, which increases tau phosphorylation and cognitive
decline (Li et al., 2012). Collectively, the above studies lead us to
speculate that AGEs play a significant role in AD pathogenesis.
However, how obesity-induced increased AGEs or RAGEs affect
brain function and how they interact with AD remains a
missing link.

FIGURE 2 | Insulin resistance or hyperinsulinemia-related neurodegenerative pathway. Insulin resistance or hyperinsulinemia induces degradation of
insulin-degrading enzyme (IDE), affects the MAPK signaling pathway, stimulates the amyloidogenic pathway, and inhibits the non-amyloidogenic pathway, thereby
facilitating the accumulation of amyloidβ (Aβ). It also induces Akt downregulation that eventually boosts glycogen synthase kinase (GSK) β activation and inhibits
phosphatase 2A (PP2A) which leads to neurofibrillary tangles (NFTs) formation.

Frontiers in Human Neuroscience | www.frontiersin.org 4 December 2020 | Volume 14 | Article 602360

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Tabassum et al. Mechanism Underlying Obesity and AD

NEUROINFLAMMATION IN OBESITY AND
AD

Obesity is known to promote chronic low-grade systemic
inflammation and neuroinflammation and is one of the most
important mediators between obesity and AD (Gregor and
Hotamisligil, 2011; Saltiel and Olefsky, 2017). Triglycerides
(TGs), stored in the blood and adipose tissues, can be broken
down into FFAs in individuals with obesity. FFAs initiate
pro-inflammatory cytokine secretion from adipose tissue, which
contributes to moderate and persistent systemic inflammation
(Alford et al., 2018). Studies on obese and overweight adults
showed altered levels of circulating inflammatory cytokines,
including MCP-1, IL-6, IL-1β, and TNF-α, in these individuals
(Chen et al., 2016). These altered levels of pro-inflammatory
cytokines may establish an inflammatory milieu that reduces
insulin sensitivity through feedback inhibition of the insulin
receptor. This also disrupts mitochondrial function through
a feed-forward mechanism, which then stimulates the
production of reactive oxygen species (ROS) further to
promote inflammation (Bonnard et al., 2008; Hoeks and
Schrauwen, 2012). Such a chronic inflammatory milieu may
stimulate NFκ-B-inducing kinase activity, which independently

promotes further IR by compromising mitochondrial function
(Figure 3; Choudhary et al., 2011). These cytokines can cross
the BBB and facilitate the extravasation of leukocytes from the
circulation through the BBB into the central nervous system
(CNS). Also, chronic inflammation causes damage to the
BBB that can have deleterious effects on the CNS, including
hypothalamic dysfunction, loss of synapses, impaired cognition,
and neurodegeneration (Wyss-Coray and Mucke, 2002; Gregor
and Hotamisligil, 2011; Bettcher and Kramer, 2013). The
inflammation caused by obesity can, therefore, result in neuronal
damage, usually beginning in adolescence.

While there is a minimal passage of FFAs across the BBB,
positron emission tomography has demonstrated fatty acid
uptake in the brain of obese individuals (Karmi et al., 2010).
The presence of carnitine in various brain regions indicates
that FFAs are involved in brain metabolism (Mitchell and
Hatch, 2011). Nevertheless, toxic-level accumulation of fats in
the brain can lead to damaging effects, such as inflammation
of the brain. Long-chain fatty acids in the brain function
via TLRs such as TLR4 and trigger cytokine production
in local cells (microglia), eventually leading to activation
of NF-κB signaling (Gupta et al., 2012). Hence, persistent
CNS inflammation causes cerebral IR, hyperinsulinemia, and

FIGURE 3 | Obesity-induced neuroinflammation in AD. Neuroinflammation caused by obesity is known to arise from low-grade, chronic peripheral inflammation.
Obesity-induced insulin resistance causes an overload of free fatty acids (FFAs) and triggers the activation of peripheral cytokines that further increased reactive
oxidative stress (ROS). Although peripheral cytokines and FFAs can cross the blood-brain barrier (BBB), their overload causes damage to the BBB. The presence of
increased FFAs and cytokines in the brain follows the cytokine production in brain cells (microglia) and causes neuroinflammation. This neuroinflammation is also a
pathologic hallmark of AD.
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hyperglycemia and consequently follow the production and
deposition of AGE (Alford et al., 2018). Nevertheless, obesity-
induced chronic low-grade inflammation in midlife provides a
mechanistic association with a progressive cognitive decline as a
result of CNS inflammation (Pugazhenthi et al., 2017).

Neuroinflammation is also considered a major contributor
to AD pathogenesis. The pathological accumulation of Aβ alone
may be sufficient to induce an inflammatory environment,
which consequently contributes to progressive cognitive
decline and AD (Guerriero et al., 2017). Considering the
likelihood of Aβ deposition preceding cognitive impairment or
clinical manifestation, one might speculate that exogenous or
endogenous factors may alter the innate immune response of
microglia exposed to Aβ. We have summarized the molecular
pathway in which environmentally modifiable AD risk factors
such as obesity might affect AD pathogenesis through a sustained
neuroinflammatory drive (Figure 3).

MITOCHONDRIAL DYSFUNCTION IN
OBESITY AND AD

Mitochondria are usually referred to as the cellular powerhouses
as they provide energy to the cell (Morrow et al., 2017; Bertolin
et al., 2018). Mitochondrial dysfunction has been observed
in both AD and obese individuals with insulin resistance
(Vernochet and Kahn, 2012; Ji et al., 2015; Swerdlow, 2020). As
well as adenosine triphosphate (ATP) production, mitochondria
play numerous roles in neurons such as Ca2+ regulation,
lipid metabolism, ROS signaling, and cell survival or death
(Torralba et al., 2016; Pfanner et al., 2019). Regarding brain
activity, studies have shown that mitochondria are important
for cognitive function and synaptic transmission (Mattson et al.,
2008; Cheng et al., 2010a; Raefsky and Mattson, 2017; Lee
et al., 2018). Specifically, presynaptic mitochondria endorse
sustained synaptic activity by providing ATP and buffering
presynaptic Ca2+ signals, thereby modulating neurotransmission
and eventually imposing an upper limit on synaptic activity.
Also, mitochondrial morphological changes in presynaptic
neurons impair synaptic homeostasis, and may, therefore, lead to
neurodegeneration (Devine and Kittler, 2018). Morphologically,
donut-shaped mitochondria are indicative of mitochondrial
stress (Liu and Hajnoczky, 2011; Ahmad et al., 2013) and
correlate with the deterioration of working memory with aging
(Hara et al., 2014). In subsequent studies, the authors found
that donut mitochondria are linked with reduced synapse
formation, as demonstrated by smaller active zone sizes.
Moreover, donut-containing presynaptic terminals have fewer
fully docked vesicles, which indicates a reduced potential for
the release of synaptic vesicles containing neurotransmitters.
Hence brain mitochondria, and more specifically, presynaptic
mitochondria, significantly affect cognitive function (Dragicevic
et al., 2010; Baek et al., 2017), which supports the hypothesis that
mitochondrial dysfunction may result in cognitive impairment.
Similarly, mitochondrial Aβ accumulation and mitochondrial
dysfunction were observed in an AD mouse model, and the
degree of these impairments correlated with the extent of
cognitive decline (Dragicevic et al., 2010).

Brain mitochondrial dysfunction is also linked with an
obese/insulin-resistant condition (Hunnicut et al., 2015; Koliaki
and Roden, 2016; Thoudam et al., 2019). Both an HFD and
genetically mediated obesity/IR consistently cause mitochondrial
dysfunction characterized by alterations in mitochondrial
membrane potential, excessive mitochondrial ROS production,
and swollen mitochondria with unfolded cristae (Ciapaite et al.,
2007; Cardoso et al., 2010; Gomes et al., 2012; Guo et al.,
2013; Kalinovich et al., 2016). A reduction in ATP levels as
a consequence of mitochondrial dysfunction, i.e., reduced O2
consumption and excessive CO2 output, occurs in obese/IR
rats (Porter et al., 2012, 2013; Raza et al., 2015; Wang
et al., 2015). These studies only reported on the association
between obesity/IR and dysfunction of brain mitochondria
and brain IR (Pintana et al., 2013; Pipatpiboon et al., 2013;
Sa-Nguanmoo et al., 2016, 2017), but to date, it is still unclear
how peripheral mitochondrial dysfunction leads to brain IR and
brain mitochondrial dysfunction.

Mitophagy, a type of autophagy, plays a significant role in
maintaining a healthy mitochondrial pool and ensuring neuronal
function and survival, and mitophagy deficits might be the
leading pathological cause of Aβ enrichment (Wang et al.,
2016). Pink-1-parkin and Sirtuin (Sirt) mediated mitophagy
pathways are getting more focus with relevance to chronic
diseases, including AD (Fang et al., 2016) and obesity (Ren
et al., 2020). Sirt-1, a member of the deacetylase protein family
exerting protective effects against cellular insult (Zhang et al.,
2016), is involved in the regulation of a variety of cellular
stress responses such as inflammation, autophagy, and apoptosis
(programmed cell death; Hall et al., 2013). Some studies link
brain apoptosis with mitochondrial dysfunction (Sa-Nguanmoo
et al., 2016, 2017). One possible explanation is that, due to
mitochondrial swelling, cytochrome c is released, resulting in
the development of a complex with apoptotic protease activating
factor-1 (APAF-1). These complexes become the apoptosomes
and activate caspase cascades, which eventually trigger apoptosis
(Cozzolino et al., 2006; Spellicy et al., 2018). In line with the above
notions, it was found that mitochondrial dysfunction causes
enhancement of pro-apoptotic protein (Bax and Bad) levels, and
reduction in anti-apoptotic protein (Bcl-2) levels in the brain
of obese/IR rats (Nuzzo et al., 2015; Sa-Nguanmoo et al., 2016,
2017). An increase in pro-apoptotic proteins can cause the release
of cytochrome c, leading to apoptosis in the brain (Gomez-
Lazaro et al., 2007; Gomez-Crisostomo et al., 2013). Apoptosis-
mediated neuronal death has also been observed in several
neurodegenerative diseases and is considered a key process
underlying cognitive dysfunction (Ghavami et al., 2014).

Besides the generation of energy and apoptosis, mitochondrial
processes such as fission and fusion also support cell survival or
death (Perfettini et al., 2005). Neurodegeneration and cognitive
dysfunction are associated with an imbalance in mitochondrial
dynamics as well as with brain mitochondrial dysfunction (Knott
and Bossy-Wetzel, 2008; Bertholet et al., 2016). Previously, it
was reported that the imbalance in mitochondrial dynamics
implied by a reduction in mitochondrial fusion in conjunction
with an increase in mitochondrial fission, leads to cognitive
dysfunction and cell death (Cho et al., 2010). More specifically,
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FIGURE 4 | Obesity-induced mitochondrial dysfunction cross-talk with AD.
Hyperglycemia and overloaded FFA that are associated with obesity and
aging are known to cause mitochondrial dysfunction. Dysfunctional
mitochondria decreased mitochondrial biogenesis, increased ROS, increased
apoptosis, reduced adenosine triphosphate (ATP) generation, impaired
mitochondrial dynamics, which is characterized by increased fission and
reduced fusion. All of these events are also associated with mitochondrial
dysfunction in AD.

mitochondrial fission protein (Drp-1) is involved in synaptic
dysfunction and neurodegeneration as Drp-1 inhibitor improved
age-related synaptic depression, cognitive decline, and Aβ

accumulation in APP/PS1 mice (Baek et al., 2017). Similarly,
this imbalance in mitochondrial dynamics is also seen in
obesity/IR, as shown by decreased expression of mitochondrial
fusion proteins and increased expression of mitochondrial
fission proteins (Diaz et al., 2015; Filippi et al., 2017).
Hence the underlying mechanisms responsible for age-related
cognitive decline or cognitive dysfunction in obesity/IR are likely
either imbalanced mitochondrial dynamics or impaired brain
mitochondrial function. Based on the above reports, there is
strong evidence to suggest that obesity leads, at least in part,
to the onset of AD by compromising mitochondrial function
(Figure 4).

APPETITE DYSREGULATION IN OBESITY
AND AD

Dietary/ appetite regulation of the nuclear receptors involves
the Sirt-1 gene (also known as calorie sensitive anti-aging gene;
Martins, 2016b), which has a close link with the development
of AD (Pardo and Boriek, 2020). In global populations,
the AD-associated appetite dysregulation in early life shows
defective suprachiasmatic nucleus (SCN) in the appetite center,
hypothalamus (Reisberg et al., 1989; Nifli, 2018). Physiologically,
Sirt 1 is involved in Aβ clearance from neurons and inhibiting
inflammatory responses in neuroglia, thus functions as a
neuroprotective factor against Aβ toxicity and cognitive deficits

(Li et al., 2018). Conversely, during the aging process, Sirt-1
activity is suppressed due to transcriptional dysregulation,
leading to defective mitophagy and AD accelerations (Yuan
et al., 2016). Additionally, Sirt-1 also plays a significant role
in the glucose and fat homeostasis by regulating various
transcription factors; reduction in Sirt-1 activity due to either
HFD or unhealthy diet leads to insulin resistance (Chen et al.,
2013), altered immunity, mitochondrial apoptosis, and NAFLD
(Martins, 2017b). Moreover, Nitric oxide (NO) is one of the
principal regulators of various mitochondrial functions such as
mitochondrial biogenesis and mitochondrial respiration (Nisoli
et al., 2003; Bombicino et al., 2017) and appetite regulation
(Morley et al., 2011); whose disturbances are extensively reported
in various chronic diseases, such as AD (Tse, 2017) and obesity
(Rus et al., 2016). Existing literature reported that Sirt-1 prevents
oxidative stress by maintaining NO levels and creating ROS
resistance (Zhang et al., 2017). These reports, together, suggest
that appetite dysregulation may be critically involved in obesity
and AD pathogenesis.

DISCUSSION AND CONCLUSION

While the mechanisms underlying AD are not yet completely
understood, it is evident that AD follows a series of critical
events in the brain over time. There is convincing evidence
that obesity is linked with AD, especially in middle age and in
younger adults. This association alone makes understanding the
mechanisms and pitfalls addressed in this review essential. The
connections between dementia, obesity, and aging represent a
major threat to public health, particularly as people are adopting
increasingly sedentary lifestyles. The preference is for a western-
style diet with high levels of starch, fat, sugar, and oil, and
this is coupled with reduced energy expenditure. This ‘‘double
whammy’’ creates an imbalance between calorie intake and
expenditure that collectively leads to obesity. Though the severity
of obesity and its relevance to AD differs between developing
and developed countries (Martins, 2013), the quality of food
and xenobiotics levels might underlie this discrepancy (Martins,
2016a). A report on childhood obesity predicts that, by 2030,
over 250 million young people will be classified as obese, from
school-aged children to adolescents, thereby placing a massive
burden on health care systems. While there have been numerous
attempts to eliminate the causes and consequences of obesity,
the management of blood glucose combined with weight loss
seems to be, currently, the only successful strategy. However, the
therapeutic interventions to prevent these interlinked diseases
are still obscure.

Accordingly to the current literature, the most likely
mechanisms linking obesity to AD involve IR, AGE
accumulation, neuroinflammation, mitochondrial dysfunction,
and appetite dysregulation. Though, oxidative stress and
hyperglycemia contribute to AD pathogenesis as they potentiate
Aβ deposition, hyperphosphorylation of tau, and eventually
neuronal and synaptic failure. Hyperinsulinemia or IR, and
their role in AD progression, have fostered tremendous interest
recently and are thus topics of intensive research. However, it is
still unclear whether these are just correlations or whether there
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is a direct effect on the amyloid cascade and AD, and whether
any intervention will modify the risk of disease. In our opinion,
this is the most important question in the field.

As discussed earlier, obesity-associated inflammation
facilitates AD; hence neuroinflammation might be a critical
pathway that accelerates the aging process, and its malfunction
leads to alteration in other intersecting pathways related to
obesity and AD as discussed in this review. Indeed, chronic
neuroinflammation contributes to the development and
progression of AD, but whether peripheral inflammation
triggers neuroinflammation in AD is not entirely clear. More
work is therefore required to identify the origin of inflammation
in AD. Additionally, the role of TNF-α and NF-kB upregulation
in neurons is extremely complex, and it is difficult to define
any clear relationship with AD onset; further studies are
therefore necessary for obese brain tissue. Although studies
also correlate AD with mitochondrial dysfunction in obesity,
how peripheral mitochondrial dysfunction causes dysfunctional
brain mitochondria, and how this leads to AD is still unknown.
We propose that the brain mitochondrial involvement in early
pathogenesis should receive more emphasis on ongoing AD
research programs. Based on what is understood about the
natural history of obesity and our analysis of current evidence,
we believe that obesity, when combined with aging, plays a
significant role in AD pathogenesis.

One of the major risk factors of obesity is an unhealthy
diet, which is involved in epigenetic modifications that further
affect nuclear/mitochondria interactions and inactivate Sirt-1,
thus accelerating NAFLD and obesity in the global population
(Martins et al., 2015; Pardo and Boriek, 2020). Since repression
of Sirt-1 is involved in obesity and AD, proteomic profiles
that include early plasma Sirt-1 detection could be used
as a biomarker associating with the inactivation of rapid
toxic Aβ and therapeutic drug metabolism (Martins, 2018).
Hence, a diagnostic test that can detect Sirt-1 inactivation,
will provide an early insight into later disease alterations.
Furthermore, as early nutritional intervention causes activation
of the Sirt-1 pathway that reverse NAFLD with reduced
obesity and prevent mitochondrial apoptosis (Martins, 2017a);

therefore, pharmacological interventions which either prevent
downregulation of Sirt-1 or upregulation of Sirt-1 would be
beneficial for people with obesity and AD.

Obesity is contributing to glucose sensitivity and
hyperinsulinemia/IR, which are known AD risk factors. IR
is responsible for tau hyperphosphorylation and Aβ aggregation
via the various mechanisms discussed in this review, leading to
the pathogenesis of AD. All these factors can occur sequentially,
but may also coexist. It is currently unknown how early
lifelong obesity affects the risk of AD, but given the impact of
hyperinsulinemia on brain amyloid metabolism the onset of the
conditions that underlie the disease could begin at a young age
or even in childhood. Since there is an increasing trend of obesity
among children and adults, this possibility is overwhelming.
Thus, it will be important to use traditional measures of obesity
such as BMI in younger persons, and to study the correlation
of obesity and AD, to attempt to clarify conflicting findings in
the literature. Ethnicity and gender may also have differential
effects on obesity, so we suggest taking ethnic group, age, and
gender into consideration irrespective of the cut-offs for these
measures. Additionally, it will be important to directly measure
body composition in older adults to better understand the effects
of obesity in this key subset of the population. Further research
needs to determine how the prevention, treatment, and lifelong
care of obesity might delay or reduce the risk of AD.
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