
RESEARCH ARTICLE Open Access

Primate-specific evolution of noncoding element
insertion into PLA2G4C and human preterm birth
Jevon Plunkett1,2, Scott Doniger3, Thomas Morgan1,4, Ritva Haataja5, Mikko Hallman5, Hilkka Puttonen6,
Ramkumar Menon7,8, Edward Kuczynski9, Errol Norwitz9, Victoria Snegovskikh9, Aarno Palotie10,11,12,13,
Leena Peltonen10,11,12, Vineta Fellman14,15, Emily A DeFranco16, Bimal P Chaudhari17, John Oates18,
Olivier Boutaud18, Tracy L McGregor1, Jude J McElroy1, Kari Teramo6, Ingrid Borecki19, Justin C Fay20,
Louis J Muglia1,21*

Abstract

Background: The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine
physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target
genes involved in human preterm birth, an area of global health significance.

Methods: We performed a comparative genomics screen of highly conserved noncoding elements and identified
PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. To examine
whether this gene demonstrating primate-specific evolution was associated with birth timing, we genotyped and
analyzed 8 common single nucleotide polymorphisms (SNPs) in PLA2G4C in US Hispanic (n = 73 preterm, 292
control), US White (n = 147 preterm, 157 control) and US Black (n = 79 preterm, 166 control) mothers.

Results: Detailed structural and phylogenic analysis of PLA2G4C suggested a short genomic element within the
gene duplicated from a paralogous highly conserved element on chromosome 1 specifically in primates. SNPs
rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites were significant after correcting for
multiple tests (p < 0.006). Additionally, rs11564620 (Thr360Pro) was associated with increased metabolite levels of
the prostaglandin thromboxane in healthy individuals (p = 0.02), suggesting this variant may affect PLA2G4C
activity.

Conclusions: Our findings suggest that variation in PLA2G4C may influence preterm birth risk by increasing levels
of prostaglandins, which are known to regulate labor.

Background
A growing body of evidence supports genetic influences
on preterm birth risk; however, few genes have been
consistently associated with the disorder [1,2]. Investiga-
tors have typically focused on candidate genes selected
based on predicted parturition physiology; however, this
approach may be limited by the divergence in physiolo-
gical mechanisms between humans and model organ-
isms that have been typically studied. For example,
while a rapid decline in progesterone plays a prominent
role in initiating parturition in rodents and sheep, this

signal does not seem to precede human labor [3]. Other
parturition-related traits, such as placental morphology
and source of progesterone, also differ importantly in
humans compared to model organisms typically studied
and may limit what generalizations can be made [3].
Differences in parturition physiology between apes,

including humans, and other mammals may have devel-
oped in response to uniquely human adaptations includ-
ing relatively large human head size and narrow birth
canal cross-sectional area [4]. Genes involved in parturi-
tion likely have evolved differentially along the human
and/or higher primate phylogenetic lineages to decrease
the length of gestation and alleviate the complications
arising from such cephalopelvic constraints. As a result,
the set of genes rapidly evolving on the human and/or
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higher primate lineage likely includes genes that play
important roles in regulating parturition and potentially
influence preterm birth risk. Consistent with our
hypothesis, we identified FSHR as having rapidly evolved
by nucleotide substitution and as being associated with
preterm birth risk across independent populations ([5]
and (Plunkett J, Doniger S, Orabona G, Morgan T,
Haataja R, Hallman M, Puttonen H, Menon R,
Kuczynski E, Norwitz E et al: Evolutionary history of
FSHR in human predicts role in birth time, submitted)).
In addition to nucleotide substitution, genomic rear-

rangements account for a substantial portion of genomic
divergence among species. For example, Frazer et al. [6]
and Wetterbom et al. [7] observed insertions and dele-
tions frequently when comparing genome sequences
among humans, chimpanzees and other primate species.
Moreover, such rearrangements may account for a lar-
ger fraction of genomic divergence than nucleotide sub-
stitutions [7]. Rearrangements can lead to loss or
acquisition of exons, splice sites and promoters, facilitat-
ing differences in expression patterns, such as those
observed for transcript variants of CHRM3 and SFTPB
with differing transposable element insertion events
[8,9]. Hence, genomic rearrangement may contribute to
rapid evolution along the human and/or higher primate
lineages in response to unique physiological constraints.
We hypothesized that genes with genomic rearrange-

ments departing from the ancestral state and occurring on
the human and/or higher primate lineages may play
important roles in birth timing and preterm delivery.
Thus, we investigated association with preterm birth for
common variants in a gene, PLA2G4C, which is expressed
in the uterus [10] and involved in prostaglandin synthesis,
suggesting a potential role in parturition, and in which we
have identified a primate-specific insertion.

Results
Evolutionary history of a primate-specific PLA2G4C
noncoding element
We identified genes showing evidence of rapid evolution
along the human lineage, based on evidence from a
comparative genomic screen of highly conserved non-
coding elements as previously described [5]. Among the
rapidly evolving genes emerging from our noncoding
screen, PLA2G4C was identified as the most statistically
significant human-lineage accelerated gene (p = 2.2 ×
10-7, significant at 10% False Discovery Rate threshold)
that was also included in a list of preterm birth candi-
date genes [11]. Because the reported deletion of
PLA2G4C in cattle [12] contrasted with its presence in
the 17-way MultiZ alignments [13] used to identify the
gene as rapidly evolving (Figure 1A), we examined the
history of this region in greater depth. We compared
sequence surrounding the 130 base pair (bp) highly

conserved noncoding element in intron 14 of PLA2G4C,
located on chromosome 19q13.3, which strongly sug-
gested the gene’s designation as rapidly evolving along
the human lineage, in comparison to other mammalian
and primate genomes. From such comparisons, we
determined that this 130 bp element on human chromo-
some 19 was highly similar to a highly conserved non-
coding element on human chromosome 1 (BLASTN
114/130 bp identical (87%), BLAST Expect value (i.e.
number of matches of this similarity likely to occur by
chance alone) = 5x10-38; Figure 1B). Subsequent analysis
showed that the MultiZ alignments that we used in our
comparative genomics screen had misaligned the human
chromosome 19 element with sequences in other mam-
mals which were orthologous to human chromosome 1.
When appropriate alignments were examined, we
observed that the human chromosome 19 element was
nearly identical in higher primate species (chimpanzee,
gorilla, orangutan, macaque) examined, but absent in
syntenic sequences in lower primates (lemur, bushbaby,
tarsier) and other mammalian species. Chromosome 1
elements from higher primates are more similar to
lower primates and other mammalian species than chro-
mosome 19 elements (Figure 2). The chromosome 1 ele-
ment occurs in the 5’ untranslated region of RNF11, a
gene involved in inflammatory signaling (UniProt KB) in
mouse. Thus, a duplication of chromosome 1 noncoding
element to chromosome 19 likely occurred before the
last common ancestor between apes and macaque. A
phylogenetic tree of coding sequences for PLA2G4C fol-
lows the expected mammalian phylogeny (Figure 3),
suggesting that the duplication did not include coding
sequences. Together these results suggest that neither
element would qualify as rapidly evolving along the
human lineage due to nucleotide substitution, but the
chromosome 19 element may represent a primate-speci-
fic change meriting further study.

Association with preterm birth
Having identified PLA2G4C as a candidate gene for regu-
lation of parturition timing, we tested variants in this
gene for association with preterm birth in a case-control
study involving diverse clinical populations. Because of
recent data suggesting that heritability of preterm birth
risk acts largely or exclusively through the maternal gen-
ome [14-16], we genotyped US Hispanic (73 preterm,
292 control), US Whites (n = 147 preterm, 157 control)
and US Black (n = 79 preterm, 166 control) mothers for
14 SNPs in the PLA2G4C gene region (Additional file 1
Table S1). We were able to analyze 8 of these 14 SNPs
that met our quality and frequency cut-off criteria (Addi-
tional file 1 Table S1). Power analysis for allelic associa-
tion in each of these relatively limited populations
modeling a relative risk of 2.0 for the high risk allele
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showed actual power for detection at p < 0.05 (not cor-
recting for multiple tests) ranging from 51-86%, and p <
0.006 (adjusting for 8 comparisons) ranging from 22 -
62% depending upon high risk allele frequency (Addi-
tional file 2 Table S2). The results from these analyses
include two SNPs, rs8110925 and rs2307276, in the US
Hispanics and one in the US Whites, rs11564620, that
were significant after correcting for 8 tests (p < 0.006).
Prior to constructing a meta-analysis, we performed a
test for homogeneity across the three populations for
each of these three SNPs. Two SNPs, rs8110925 and
rs2307276, showed significant heterogeneity, implying
population-specific effects. The heterogeneity p-value for
rs11564620, in contrast, was not significant (p = 0.21), so
we performed a formal meta-analysis across populations.
In this circumstance, the test for overall effect across
populations resulted in p = 0.02 (Figure 4). Given the
relatively limited number of studies and subjects, we

went on to gain additional biological support by measur-
ing prostaglandin levels (see below).
Additionally, 2, 3 and 4 SNP haplotypes containing SNPs
rs8110925 and rs2307276 were significant in the US His-
panics after correcting for 18 haplotype comparisons (p <
0.003), although not more significant than single SNP
association findings (Additional file 3 Table S3, S4).
2 SNP haplotypes containing rs11564620 were moder-
ately significant (p < 0.05) in US Whites (Additional file 3
Table S3, Additional file 4 Table S4). Linkage disequili-
brium (LD) among SNPs rs8110925, rs2307276, and
rs11564620 was very low (r2 < 0.1) in the three popula-
tions studied (Additional file 5 Figure S1), suggesting
multiple independent associations were observed.

Association with prostaglandin concentrations
To test the potential functional effect of associated
PLA2G4C variants on prostaglandin metabolism, we

Figure 1 Genomic alignments suggest PLA2G4C noncoding element duplicated from another chromosome. MultiZ alignments used in
the noncoding analysis from which we initially identified PLA2G4C as rapidly evolving include sequence for lower mammals, including cow, in
which the gene is absent (Panel A). A BLASTN search of the element located in PLA2G4C intron 14 (red bar) (chromosome 19) that led to the
gene’s designation as rapidly evolving by nucleotide substitution revealed highly conserved noncoding elements (purple bars) on human
chromosomes 1 and 2 (Panel B).
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compared levels of metabolites of prostaglandin E2
(PGE), prostaglandin I2 (PGI) and thromboxane (11-
DTXB2) among genotype classes for associated SNPs
rs8110925, rs2307276, and rs11564620 in healthy indivi-
duals using a two-sided Wald test (Additional file 6
Table S5). We hypothesized that these variants, particu-
larly the coding region variant, would be associated with
altered prostaglandin levels independent of pregnancy
status. Of note, rs11564620, a nonsynonymous coding
polymorphism, is associated with 11-DTXB2 levels (p =
0.04) despite the limited sample size available. The
minor allele of rs11564620, present at approximately
10% frequency in US Whites, is associated with both
risk for preterm birth and higher 11-DTXB2 levels
(Wilcoxon one-sided p = 0.02; Figure 5).

Discussion
Comparative genomic analysis is an attractive method
for identifying genetic variation among species that may
correlate with inter-specific phenotypic variation in fun-
damental processes such as parturition. Through such
an analysis, we have identified a noncoding element in
intron 14 of PLA2G4C on chromosome 19 representing
a primate-specific change involving amplification and
subsequent divergence but without increased nucleotide
substitution. Having identified PLA2G4C as a candidate
gene, we proposed that this duplicated element repre-
sents a primate-specific change with a potential regula-
tory role in human parturition.
We then tested our hypothesis by case-control asso-

ciation studies of preterm birth in several genetically
diverse populations. Single SNP and haplotype associa-
tion results implicated the role of SNPs rs8110925,
rs2307276, and rs11564620 in preterm birth risk
(Table 1 and Additional file 3 Table S3). The asso-
ciated SNPs are located in an 8 kilobase (kb) region of
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Figure 2 Phylogeny with sequences homologous to human
chromosomes 19 noncoding element. Species name followed by
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derived or by a letter indicates that multiple copies homologous to
the human chromosome 19 noncoding element were identified for
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the 3’ end of PLA2G4C, near the genomic element of
interest (Figure 6), but show little LD with each other
(Additional file 5 Figure S1) or other SNPs in
PLA2G4C documented in the International HapMap
Project database [17]. Of note, Polyphen [18] and SIFT
[19] programs predict rs11564620, a nonsynonymous
polymorphism in exon 13 resulting in a change in
amino acid 360 from threonine to proline, to be possi-
bly damaging to the protein structure (using protein
sequence NP_003697 for PLA2G4C). This 8 kb region
also includes coding sequence for aspartic acid 385,
one of the three amino acids that make up the putative
active site of the enzyme [20], such that the proline
substitution may alter the active site’s physical confor-
mation. Supporting the potential functional effect of

rs11564620, this polymorphism is associated with
11-DTXB2 levels in healthy individuals (p = 0.02;
Figure 5), with proline allele carriers having elevated
thromboxane metabolite levels, compared to threonine
homozygotes. Further suggesting functional importance
of rs11564620, this SNP is also significantly associated
(p < 0.0001) with altered expression of NFATC2IP, a
factor regulating cytokine expression in T cells located
on chromosome 16 in quantitative trait databases for
CEU populations http://scan.bsd.uchicago.edu/newin-
terface/about.html. Last, the evidence of modest devia-
tion (p = 0.04) from Hardy-Weinberg Equilibrium in
the control US White population suggests that this
variant may be under selection consistent with our
hypothesis of selective pressure on genes involved in
human parturition.
PLA2G4C encodes cytosolic phospholipase A2 gamma,

which hydrolizes phospholipids from the cellular mem-
brane to form free arachidonic acid, from which prosta-
glandins, including prostaglandins D, E, F, I2 (also
known as prostacyclin), and thromboxane A2 are gener-
ated. Prostaglandins play an important role in parturi-
tion. Pharmacologically, prostaglandins are used to
induce abortion, for cervical ripening, and labor induc-
tion and drugs inhibiting prostaglandin synthesis are
successful in preventing preterm labor [21]. Levels of
prostaglandins, including thromboxane A2, are elevated
in pregnant compared to non-pregnant women, and in
late (36 weeks) compared to early (20, 30 weeks) gesta-
tion [22], suggesting a link between prostaglandin abun-
dance and parturition timing. Prostaglandins may
facilitate labor by several mechanisms. These hormones
are known uterotonic agents and also promote luteolysis
and the onset of labor in species that exhibit progester-
one withdrawal prior to birth [23]. Prostaglandins may
also facilitate delivery by affecting placenta function,
since thromboxane A2 induces platelet aggregation and
acts as a vasoconstrictor [22]. Hence, higher prostaglan-
din levels than expected may initiate parturition prema-
turely and lead to preterm delivery.

Figure 4 Meta-analysis for US Hispanic, US White and US Black SNP association results for rs11564620.
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The PLA2G4C enzyme is the only cytosolic phospholi-
pase A2 family member that is constitutively associated
with the cellular membrane, the site of prostaglandin
synthesis, rather than translocating to the membrane in
response to calcium signaling [10]. Hence, dysregulation
of PLA2G4C may alter prostaglandins levels independent
of other parturition signals, such as oxytocin [24], that act
via intracellular calcium signaling. For example,
rs11564620 may contribute to a conformational change in
the enzyme’s active site, rendering it more active than

usual and leading to increased synthesis of prostaglandins,
as demonstrated by our observation of higher levels of
thromboxane A2 in minor allele carriers for this poly-
morphism. Moreover, multiple splice isoforms of
PLA2G4C exist, differing in transcript length, presence of
certain exons and overlapping exons with different bound-
aries (AceView, NCBI, http://www.ncbi.nlm.nih.gov/IEB/
Research/Acembly/). As a result, variation in PLA2G4C
may contribute to differences in tissue-specific expression
or relative abundance of various PLA2G4C isoforms,
potentially altering function. Further study of the region
encompassing these SNPs, including the genomic element
of interest, is needed to examine the mechanism by which
variation in PLA2G4C influences birth timing.
Specialization within multi-gene families, like the large

phospholipase A2 gene family, can create individualized
functions among paralogous genes. For example,
PLA2G4C has a continuous association with the cellular
membrane, unlike other phospholipase A2 genes, poten-
tially differentiating its role in prostaglandin synthesis
from those of other family members. Genomic variation,
such as the element insertion observed in PLA2G4C,
may contribute to gene specialization, as demonstrated
by divergence in PLA2G4C expression patterns in
humans versus mice, who lack the element insertion
and express PLA2G4C only in ovary and oocytes[25].
Specialized genes are potentially better therapeutic

Table 1 Case-control association results for significant and suggestive SNPs in the PLA2G4C gene region tested across
3 independent populations.

Population SNP Allele Case Frequency Control Frequency Allele p-value Genotype p-value Allelic OR (95% CI)

US Hispanic
(73 cases, 292 controls)

rs8110925 G 0.18 0.085 7.92 × 10-4 a, b 5.66 × 10-5 b 2.4 (1.4-4.1)

rs2307276 A 0.11 0.036 5.45 × 10-3 b 0.01 3.2 (1.6-6.5)

rs1366442 A 0.49 0.36 0.01 0.03 1.7 (1.2-2.4)

rs11564620 G 0.09 0.08 0.55 c 0.63 c 1.1 (0.6-2.1)

US White
(147 cases, 157 controls)

rs8110925 G 0.058 0.057 0.92 0.59 1.0 (0.5-2.0)

rs2307276 A 0.031 0.041 0.87 0.86 0.8 (0.3-1.8)

rs1366442 G 0.4 0.42 0.5 0.02 0.9 (0.6-1.2)

rs11564620d G 0.14 0.07 6.98 × 10-3 1.03 × 10-3 b 2.1 (1.2-3.6)

US Black
(79 cases, 166 controls)

rs8110925 G 0.22 0.21 0.58 e 0.83 e 1.1 (0.7-1.7)

rs2307276 A 0.093 0.14 0.22 0.49 0.6 (0.3-1.2)

rs1366442 G 0.42 0.4 0.92 0.94 1.1 (0.7-1.6)

rs11564620 G 0.25 0.21 0.47 c 0.36 c 1.2 (0.8-1.9)
aBolded numbers indicate p-value <0.05.
bMarker significant correcting for 8 tests (p < 0.006).
cSame allele trends in same direction as US Whites.
dp = 0.04 for deviation from Hardy-Weinberg Equilibrium.
eSame allele trends in same direction as US Hispanics.
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targets than gene products with multiple roles within
cell, since pharmaceutically targeting such genes may
lead to fewer side effects. As a result, PLA2G4C may be
a useful target for designing novel therapies to prolong
pregnancy and reduce the incidence of preterm birth.

Conclusions
A higher primate-specific noncoding element insertion
into intron 14 of the phospholipase A2 gene PLA2G4C
was identified, demonstrating the gene’s rapid evolution
along the higher primate lineage by genomic rearrange-
ment. Results from our genetic analysis suggest common
variation in PLA2G4C influences preterm birth risk. One
of the variants associated with preterm birth is a nonsy-
nonymous coding polymorphism, rs11564620, predicted
to be potentially altering protein structure. This coding
polymorphism is also associated with thromboxane
levels, suggesting that genetic variation in PLA2G4C
may increase risk for preterm birth by increasing levels
of prostaglandins, which are known to regulate labor. By
examining rapid evolution along human and higher pri-
mate lineages by genomic rearrangement, we have iden-
tified a novel gene associated with preterm birth. This
approach can be readily applied to other traits differing
among humans and/or higher primates and other spe-
cies to aid in gene discovery.

Methods
Genomic alignments to investigate evolutionary history
of PLA2G4C
Noting the deletion of PLA2G4C reported in the
Taurine Cattle genome [12] contrasted with its presence
in the 17-way MultiZ alignments [13] we used to iden-
tify the gene as rapidly evolving (analysis conducted
Spring 2007 and presented in detail in (Plunkett J, Doni-
ger S, Orabona G, Morgan T, Haataja R, Hallman M,
Puttonen H, Menon R, Kuczynski E, Norwitz E et al:
Evolutionary history of FSHR in human predicts role in
birth time, submitted)), we examined the history of this
region in greater depth. We extracted sequence sur-
rounding the 130 bp highly conserved noncoding ele-
ment (human chromosome 19: 48,560,500 -48,560,630;
hg19 genome build) which largely contributed to our
designation of PLA2G4C as rapid evolving along the
human lineage. A BLASTN search of the element
revealed highly identical conserved noncoding elements
on human chromosomes 1 (87% identity) and 2 (85%
identity) (Figure 1B). We compared the human chromo-
some 19 and chromosome 1 sequences to 31 eutherian
mammalian genomes using Ensembl Genomic align-
ments (accessed September 2009), and ClustalW align-
ment, and to specific primate genomes using BLASTN
searches of human, chimpanzee, gorilla, orangutan,
macaque, and bushbaby genomes (accessed September

2009). We then reconstructed history of the element by
creating phylogenies using maximum likelihood with
sequences homologous to the human chromosome 19
element (Figure 2) and coding sequences homologous to
human PLA2G4C (Figure 3).

Human subjects
Study subjects were enrolled for genetic analysis by
methods approved by Institutional Review Boards/Ethics
Committees at each participating institution. Informed
consent was obtained for all participants. Mothers with
preterm birth were included if the birth was sponta-
neous (non-iatrogenic), singleton, had no obvious preci-
pitating stimulus (trauma, infection, drug use), and was
less than 37 weeks (Yale University; New York Univer-
sity) or 36 weeks (Centennial Hospital, Nashville, TN) of
completed gestation. Control mothers were included if
they had delivered two or more children at 37 weeks or
later spontaneously. Healthy volunteers were recruited
at Vanderbilt University for studies of prostaglandin
metabolism. DNA from blood or saliva was prepared by
standard methods. Race/ethnicity was assigned by self-
report. All specimens were linked with demographic and
medical data abstracted from maternal/neonatal records.
DNA from blood or saliva was prepared by standard
methods. Maternal age did not differ between cases and
controls in the different populations (27.3 y vs. 28.4 y,
p = 0.10 US White; 25.3 y vs. 25.2 y, p = 0.88 US Black;
26.0 y vs. 25.0 y, p = 0.20 US Hispanic).

Prostaglandin metabolite levels
For individuals enrolled in the prostaglandin study,
urine was collected by standard methods. Levels of the
urinary metabolites of prostaglandin E (PGE), prosta-
glandin I (PGI) and thromboxane (11-DTXB2) were
quantified by mass spectrometry and normalized to
creatinine levels, an indicator of renal function, in 44
healthy control individuals of Black, Hispanic or White
race (median age 29, 60% male, 77% White).

Genotyping
We genotyped 14 SNPs spanning the PLA2G4C gene
region (Additional file 1 Table S1) on human chromo-
some 19 in cohorts of US Hispanics (n = 73 preterm,
292 control mothers), US Whites (n = 147 preterm,
157 control mothers) and US Blacks (n = 79 preterm,
166 control mothers). For SNP selection, data from the
HapMap Release 27 CEU population was examined in
the Haploview program [26], using tagger and haplo-
type block functions, to identify regions of high LD.
We selected 1 SNP per haplotype block, defined using
the D’ confidence interval method [27], having the
highest minor allele frequency (MAF) in the CEU
population for genotyping. We also included coding
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SNPs and other noncoding SNPs to improve coverage
of conserved elements contributing to the gene’s desig-
nation as “rapidly evolving.” This selection scheme
resulted in approximately 35% coverage of the gene
region at r2≥0.8. SNPs showing evidence of association
in one or more cohort (p < 0.01; n = 4) were then gen-
otyped in healthy individuals on whom data on their
concentrations of several prostaglandin metabolites
was available to examine potential functional effects of
the variants. All SNPs were genotyped using the
Sequenom iPLEX massARRAY technology (Sequenom,
San Diego, CA).

Data Analysis
Data cleaning and analysis was performed with Whole-
genome Association Study Pipeline (WASP) [28] and
PLINK [29]. We excluded individuals based on geno-
typing quality (< 90% call rate) and SNPs based on the
following criteria: not in Hardy-Weinberg Equilibrium
in controls (p < 0.001 c2 test), <90% genotype call
rate, MAF < 0.01). Linkage disequilibrium among
SNPs tested was determined using the Haploview pro-
gram [26]. We chose this Hardy-Weinberg threshold
for two reasons. First, we hypothesize this locus is
under selective pressure which could result in some
deviation from HWE in the control population. Sec-
ond, samples with p < 0.001 also had low genotype
call rates, suggesting genotyping error, while those
with p > 0.001 had high call rates. For significant
SNPs, the Hardy-Weinberg deviation was greater than
0.05 unless otherwise indicated. We corrected for mul-
tiple testing using the simpleM method [30], which
estimates the number of independent tests, given the
LD relationships among SNPs, used to obtain a Bon-
ferroni-corrected critical value.
Our analysis considered preterm birth affection status

(i.e. delivery <37 weeks) as a binary trait, comparing fre-
quencies between case and control groups of alleles and
genotypes by c2 test. Sliding windows of 2,3 and 4 SNP
haplotypes also were compared between cases and con-
trols [29]. Meta-analysis of data for significant SNPs was
done using the Mantel-Haenszel method, after success-
fully passing the test of homogeneity.
To test the potential functional effect of associated

PLA2G4C variants on prostaglandin metabolism, we
examined the levels of PGE, PGI, and 11-DTXB2, stan-
dardized to normal distributions (μ = 0, s = 1), as quan-
titative traits. A Wald test was performed to compare
the mean phenotype between different allele or genotype
classes for associated SNPs. We also tested whether
rs11564620 risk-allele carriers had higher prostaglandin
levels than noncarriers, by comparing the 11-DTXB2
value distribution among genotype classes with box

plots and one-sided Wilcoxon nonparametric test per-
formed in R [31].

Additional material

Additional file 1: SNPs in the PLA2G4C gene region tested in all
cohorts. Table S1 - SNPs examined in our association study.

Additional file 2: Power analysis for populations analyzed in this
study for association with preterm birth risk. Table S2 - Power
analyses for the populations tested for preterm birth risk.

Additional file 3: Case-control association results for 2, 3 and 4 SNP
haplotypes in the PLA2G4C gene region tested across 3
independent US populations. Table S3 - Case-control association
results for 2, 3 and 4 SNP haplotypes in the PLA2G4C gene region.

Additional file 4: Frequency of 2, 3, and 4 SNP haplotypes across
each population studied. Table S4 Specific frequency information for
the haplotypes in each population.

Additional file 5: Linkage disequilibrium among SNPs tested in
PLA2G4C. Figure S1 - Panel A: US Hispanics. Panel B: US Whites. Panel C:
US Blacks. Panel D: HapMap MEX reference population. Panel E: HapMap
CEU reference population. Panel F: HapMap YRI reference population.

Additional file 6: Association results for associated SNPs (p ≤ 0.01)
in the PLA2G4C gene region for the quantitative phenotypes of
PGE, PGI, and TXB2 metabolite levels examined in healthy
individuals (n = 44). Table S5 Association results for those SNPs that
were significantly associated (p ≤ 0.01) in the PLA2G4C gene region with
preterm birth examining the quantitative phenotypes of prostaglandin
metabolite levels examined in healthy individuals.
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