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A B S T R A C T   

Probability distributions are widely utilized in applied sciences, especially in the field of 
biomedical science. Biomedical data typically exhibit positive skewness, necessitating the use of 
flexible, skewed distributions to effectively model such phenomena. In this study, we introduce a 
novel approach to characterize new lifetime distributions, known as the New Flexible Exponent 
Power (NFEP) Family of distributions. This involves the addition of a new parameter to existing 
distributions. A specific sub-model within the proposed class, known as the New Flexible Expo
nent Power Weibull (NFEP-Wei), is derived to illustrate the concept of flexibility. We employ the 
well-established Maximum Likelihood Estimation (MLE) method to estimate the unknown pa
rameters in this family of distributions. A simulation study is conducted to assess the behavior of 
the estimators in various scenarios. To gauge the flexibility and effectiveness of the NFEP-Wei 
distribution, we compare it with the AP-Wei (alpha power Weibull), MO-Wei (Marshal Olkin 
Weibull), classical Wei (Weibull), NEP-Wei (new exponent power Weibull), FRLog-Wei (flexible 
reduced logarithmic Weibull), and Kum-Wei (Kumaraswamy Weibull) distributions by analyzing 
four distinct biomedical datasets. The results demonstrate that the NFEP-Wei distribution out
performs the compared distributions.   

1. Introduction 

In applied science, particularly in biomedical science, probability distributions are indispensable tools. Various parametric 
continuous probability distributions have been introduced in the literature for the statistical analysis and modeling of lifetime datasets. 
These distributions include the exponential (Exp), gamma (Gam), log-normal (Log-nor), Rayleigh (Ray), beta (Beta), and Weibull (Wei) 
distributions. For more details, please refer to Zichuan et al. [1]. Among these distributions, the Exponential, Rayleigh, and Weibull 
distributions are more popular than the Gamma, Beta, and Log-normal distributions. This popularity is due to the latter group’s lack of 
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a closed version of the cumulative distribution function (CDF), which makes parameter estimation challenging and necessitates nu
merical integration. The aforementioned distributions are suitable and frequently used to model things that occur across a lifetime 
phenomenon. Unfortunately, the current distributions are frequently too rigid to accurately represent complex lifetime phenomena. 
For instance, the widely used one-parameter exponential (Exp) distribution can only represent data with a fixed Failure Rate Function 
(FRF). The Rayleigh (Ray) distribution, on the other hand, is used to simulate data with a strictly rising FRF. On the other hand, the 
two-parameter Weibull (Wei) distribution is a more versatile choice, as it combines the characteristics of both the Exp and Ray dis
tributions, allowing it to model data with monotonically increasing, decreasing, or constant FRF. 

However, in biomedical science, datasets often exhibit unimodal, modified unimodal, or bathtub-shaped (U-shaped) FRF patterns. 
For more details, please refer to Almalki and Yuan [2], Zajicek [3], Lai and Xie [4], and Demicheli et al. [5]. Therefore, in such a 
situation, the Weibull distribution may not be a suitable choice, and a flexible distribution is required to accommodate the phe
nomenon. In this context, substantial efforts have been made and continue to evolve rapidly to introduce a new flexible variant of the 
Weibull distribution. In recent times, researchers have made significant contributions to the development of new families of distri
butions by incorporating one or more additional parameters into these existing distributions. Here, we refer to a few generalized 
families of distributions in the literature, for example, Gleaton and Lynch [6] introduced the OLL-G (odd log-logistic-G) family of 
distributions, Shaw and Buckley [7] proposed the distribution function of the transmuted family, Mahdavi and Kundu [8] introduced a 
new method for introducing statistical distributions, Bourguignon et al. [9] introduced Weibull-G family, Korkmaz [10] proposed the 
Ex-Wei-G (extended Weibull-G) family, Morshedy and Eliwa [11] derived the odd flexible Weibull-H family of distributions, Hussain 
et al. [12] proposed kum-G (Kumaraswamy Generalized) family, Huo et al. [13] proposed NL-Exp-X (new lifetime exponential-X) 
family, Zichuan et al. [1] introduced the NEx-F (new extended-Family) of distributions, Eghwerido et al. [14] proposed the TAP-G 
(transmuted alpha power-G) family, Alzaatreh et al. [15] proposed the Truncated family of distributions, Tung et al. [16] proposed 
Arcsine-X family of distributions, Shah et al. [17] introduced an NMEPA (new modified exponent power alpha) family, Hussain et al. 
[18] proposed GAEP (generalized alpha exponent power) family of distributions, Kilai et al. [19] derived GGAP (a generalization of 
Gull alpha power) family, Eghwerido et al. [20] proposed SExpo-G (shifted exponential-G) family of distributions, and Klakattawi et al. 
[21] introduced the MO-Wei-G (Marshall-Olkin Weibull Generated) family of distributions. 

Recently, Xin et al. [22] suggested a new technique called, a NG-X (new generalized-X) family of distributions. The K(x; θ, δ,ϑ) CDF 
of the NG-X is given by 

K(x; θ, δ,ϑ)=1 −

(

1 −
(1 − θ)2A(x;ϑ)
[1 − θA(x;ϑ)]2

)δ

, x ∈ R,

where δ ∈ R+, θ ∈ (0,1), and A(x;ϑ) is the CDF of any baseline distributions. 
Hussein et al. [23] introduced another novel method of adding two extra parameters to the baseline distribution. The proposed 

method is used for obtaining the updated version of the existing and other modified distributions. The proposed method is called the 
MAPT (modified alpha power transformations) family of distributions. The K(x; α, β, ϑ) CDF of the MAPT is given by 

K(x;α, β, ϑ)=
βA(x;ϑ)2 αA(x;ϑ) − 1

αβ − 1
, αβ ∕= 1, x ∈ R,

where α ∈ R+ and β ∈ R+ are the extra shape parameter and A(x;ϑ) is the CDF of baseline distribution which may depend on the 
parameters vector ϑ ∈ R. 

Similarly, Shah et al. [24] applied the power transformation technique and proposed a new approach to enhance the flexibility of 
probability distributions. They named their method the NGLog-X (new generalized logarithmic-X) approach. The K(x; θ, ϑ) CDF 
(cumulative distribution function) of the NGLog-X method is provided by 

K(x; θ,ϑ)=
eθA(x;ϑ)

(e − log A(x;ϑ))θ, x ∈ R,

where θ ∈ R+ is the shape parameter, and A(x;ϑ) is the CDF of baseline distribution depending on vector parameter ϑ ∈ R. 
The primary motivation behind this research is to leverage the strengths of the aforementioned distributions by introducing a novel 

approach to probability distributions called the transformed-transformer (T-X) family approach. This newly proposed distribution 
family is highly adaptable and offers a good fit for biological datasets. The following sections outline the content of this paper: Section 
2 introduces the readers to the newly suggested family of lifetime distributions. Section 3 is made up of the prospective family’s IP 
(identifiability property). Section 4, derives a sub-model of the proposed class, the New Flexible Exponent Power Weibull (NFEP-Wei) 
distribution, and shows CDF, SF (survival function), PDF (probability density function), and HF (hazard function) graphically. Section 
5 derives numerous mathematical features of the proposed family. Section 6 discusses estimation approach for estimating model 
parameters of the proposed family, and in the same section a brief MCS (Monte Carlo simulation) study is performed to evaluate the 
estimator’s behavior. Section 7 discusses the implementations of the suggested algorithms on four distinct biomedical datasets. Section 
8 concludes with several observations and helpful insights. 
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2. NFEP family of distributions 

The proposed method combines the Exp distribution’s PDF with the transformed-transformer (T-X) family approach introduced by 
Alzaatreh et al. [25]. Let T be a random variable (RV) that belongs to ω1 and ω2 for − ∞ ≤ ω1 < ω2 < ∞, and let suppose, X be a RV 
having CDF A(x;ϑ), and Z[A(x;ϑ)] be a function of CDF A(x;ϑ), which fulfill three conditions, as under:  

i. Z[A(x;ϑ)] ∈ (ω1,ω2).  
ii. Z[A(x;ϑ)] is differentiable and monotonically increasing function.  

iii. x→ − ∞ ⇒ Z[A(x; ϑ)]→ω1 and x→∞ ⇒ Z[A(x; ϑ)]→ω2. 

The T-X family having the CDF K(x), is defined by 

K(x)=
∫ Z[A(x;ϑ)]

ω1

r(t)dt, x ∈ R, (1)  

where, Z[A(x; ϑ)] satisfies the above (i)-(iii) conditions. The PDF corresponding to Eq. (1), is given by 

k(x)=
{

d
dx

Z[A(x; ϑ)]
}

r{Z[A(x; ϑ)]}, x ∈ R.

Setting Z[A(x; ϑ)] = − log

(

1 −
A(x;ϑ)eδ A(x;ϑ)2

eδ

)

, and r(t) = e− t in Eq. (1), we define the CD K(x; δ,ϑ) of the New Flexible Exponent 

power (NFEP) family of distributions as 

K(x; δ, ϑ)=
A(x;ϑ)eδ A(x;ϑ)2

eδ , x ∈ R, (2)  

where, δ ∈ R+ is an additional shape parameter, and A(x;ϑ) is the CDF of any baseline classical distribution, which may depend on the 
parameter vector ϑ ∈ R. Adding an extra parameter to an existing distribution can result in a better fit for biomedical data. To confirm 
the validity of the proposed method as a CDF, we have two main prepositions: 

Proposition 1. For the CDF K(x; δ,ϑ) in Eq. (2), we must prove that 

lim
x→− ∞

K(x; δ,ϑ)=0 and lim
x→∞

K(x; δ,ϑ)= 1.

Proof. From Eq. (2), we have 

lim
x→− ∞

K(x; δ,ϑ)= lim
x→− ∞

{
A(x; ϑ)eδ A(x;ϑ)2

eδ

}

. (3)  

Where, A(x;ϑ) is a valid CDF of any baseline distribution. So, we have 

lim
x→− ∞

A(x; ϑ)=A(− ∞; ϑ)=0.

Now, from Eq. (3), we have 

lim
x→− ∞

K(x; δ,ϑ)=
A(− ∞; ϑ)eδ A(− ∞;ϑ)2

eδ =0.

Again, from Eq. (2), we have 

lim
x→∞

K(x; δ,ϑ)= lim
x→∞

{
A(x;ϑ)eδ A(x;ϑ)2

eδ

}

. (4)  

Where, A(x;ϑ) is a valid CDF. So, we have 

lim
x→∞

A(x;ϑ)=A(∞; ϑ)= 1.

Now, from Eq. (4), we have 

lim
x→∞

K(x; δ,ϑ)=
A(∞;ϑ)eδ A(∞;ϑ)2

eδ =1.

Propositions 2. The CDF K(x; δ,ϑ) in Eq. (2) is differentiable and right continuous (RC) 

Proof. 
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d
dx

K(x; δ,ϑ)= k(x; δ,ϑ).

From propositions 1 and 2, we observed that the proposed method in Eq. (2) is a valid CDF. For δ ∈ R+ and x ∈ R, the PDF 
d
dx K(x; δ, ϑ) = k(x; δ,ϑ) of the NFEP family, is given by 

k(x; δ,ϑ)=
δ(x;ϑ)eδA(x;ϑ)2

{
2δA(x;ϑ)2

+ 1
}

eδ , x ∈ R, (5)  

where d
dx A(x;ϑ) = a(x;ϑ). 

Furthermore, in link to Eq. (2), and Eq. (5), the HF h(x; δ,ϑ) =
k(x;δ,ϑ)

1− K(x;δ,ϑ), SF (survival function) S(x; δ,ϑ) = 1 − K(x; δ,ϑ), RHF (reverse 

HF) τ(x; δ,ϑ) =
k(x;δ,ϑ)
K(x;δ,ϑ), and CHF (cumulative HF) H(x; δ,ϑ) = − log(S(x; δ,ϑ)) of the NFEP family, are given by 

h(x; δ,ϑ)=
a(x;ϑ)eδA(x;ϑ)2

{
2δA(x;ϑ)2

+ 1
}

eδ − A(x;ϑ)eδA(x;ϑ)2
, x ∈ R,

S(x; δ,ϑ)=
eδ − A(x;ϑ)eδA(x;ϑ)2

eδ , x ∈ R,

τ(x; δ,ϑ)=
a(x;ϑ)eδA(x;ϑ)2

{
2δA(x;ϑ)2

+ 1
}

A(x;ϑ)eδA(x;ϑ)2
, x ∈ R,

and 

H(x; δ, ϑ)= − log

(
eδ − A(x;ϑ)eδA(x;ϑ)2

eδ

)

, x ∈ R.

3. Identifiability property (IP) 

In this section, we derive IP of the NFEP family of distributions using extra parameter δ. Let δ1 and δ2 be the two additional pa
rameters having CDFs K(x; δ1, ϑ) and K(x; δ2,ϑ). Then, the parameter δ is identifiable, if δ1 = δ2, for 

K(x; δ1, ϑ)=K(x; δ2,ϑ). (6) 

Inserting Eq. (2) in Eq. (6), we get 

A(x;ϑ)eδ1 A(x;ϑ)2

eδ1
=

A(x;ϑ)eδ2 A(x;ϑ)2

eδ2
. (7) 

After simplifying Eq. (7), we get 

eδ1 A(x;ϑ)2+δ2 = eδ2 A(x;ϑ)2+δ1 . (8) 

By taking logarithm of Eq. (8), we get 

δ1 A(x;ϑ)2
+ δ2 = δ2 A(x; ϑ)2

+ δ1,

δ1 A(x;ϑ)2
− δ1 = δ2 A(x;ϑ)2

− δ2,

δ1

(
A(x;ϑ)2

− 1
)
= δ2

(
A(x; ϑ)2

− 1
)
,

δ1 = δ2. (9)  

From Eq. (9), after some algebraic simplification, we observed that δ1 = δ2. Hence, the parameter δ is identifiable. 

4. NFEP-Wei distribution 

To provide a special sub-model of the NFEP family of distributions, let consider the CDF A(x;ϑ) and PDF a(x;ϑ) of the traditional 
Wei distribution are given by A(x;ϑ) = 1 − e− ηxθ and a(x;ϑ) = θηxθ− 1e− ηxθ , respectively (for θ,η ∈ R+,x ∈ R), where ϑ = (η,θ). Then, 
the K(x; δ,ϑ) CDF of the NFEP-Wei distribution is given by 
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K(x; δ, ϑ)=

(
1 − e− ηxθ

)
eδ
(

1− e− ηxθ
)2

eδ , δ, η, θ∈R+, x ∈ R, (10) 

Corresponding to Eq. (10), the S(x; δ,ϑ) SF is 

S(x; δ,ϑ)=
eδ −

(
1 − e− ηxθ

)
eδ
(

1− e− ηxθ
)2

eδ , x ∈ R.

Some plots of the CDF K(x; δ,ϑ) and SF S(x; δ, ϑ) of the NFEP-Wei model are sketched in Fig. 1(a and b). The plots are acquired for (i) 
δ = 3.0, η = 5.0, θ = 2.5 (green curve line), (ii) δ = 4.0, η = 3.0, θ = 2.9 (black curve line), and (iv) δ = 4.0, η = 1.5, θ = 3.5 (blue curve 
line). 

Link to CDF K(x; δ, ϑ) in Eq. (10), the PDF k(x; δ,ϑ) is given by 

k(x; δ,ϑ)=
ηθxθ− 1eδ

(
1− e− ηxθ

)2
− ηxθ
{

2δ
(

1 − e− ηxθ
)2

+ 1
}

eδ , x ∈ R. (11) 

For graphical illustration, different plots of PDF k(x; δ,ϑ) of the NFEP-Wei distribution at different parameters values are sketched 
in Fig. 2. The corresponding plots are obtained for (i) δ = 3.0, η = 3.5, θ = 0.3 (red curve line), (ii) δ = 3.0, η = 5.0, θ = 2.5 (green 
curve line), (iii) δ = 4.0, η = 3.0, θ = 2.9 (black curve line), and (iv) δ = 4.0, η = 1.5, θ = 3.5 (blue curve line). Fig. 2 shows four 

Fig. 1. Plots of (a) K(x; δ,ϑ) CDF and (b) S(x; δ,ϑ) SF of the NFEP-Wei model.  

Fig. 2. Plots of k(x; δ, ϑ) PDF with different parameters values of the NFEP-Wei model.  
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possible PDF k(x; δ, ϑ) shapes: (a) a declining or reverse-J pattern (red line), (b) a right-skewed pattern (green line), (c) a symmetrical 
pattern (black line), and (d) a lift-skewed pattern (blue line). 

Furthermore, in link to Eq. (10), and Eq. (11), the h(x; δ,ϑ) HF, τ(x; δ,ϑ) RHF, and H(x; δ,ϑ) CHF are given, respectively, by 

h(x; δ,ϑ)=
ηθxθ− 1eδ

(
1− e− ηxθ

)2
− ηxθ
(

2δ
(

1 − e− ηxθ
)2

+ 1
)

eδ − (1 − e− ηxθ
)eδ(1− e− ηxθ )

2 , x∈R, τ(x; δ,ϑ)=
ηθxθ− 1eδ

(
1− e− ηxθ

)2
− ηxθ
(

2δ
(

1 − e− ηxθ
)2

+ 1
)

eδ(1− e− ηxθ )
2

(1 − e− ηxθ
)

, x ∈ R,

and 

H(x; δ, ϑ)= − log

⎛

⎜
⎝

eδ − eδ
(

1− e− ηxθ
)2(

1 − e− ηxθ
)

eδ

⎞

⎟
⎠, x ∈ R.

Similarly, for numerous values of parameters, some plots of h(x; δ,ϑ) HF of the proposed NFEP-Wei model are also sketched in Fig. 3 
(a and b). In Fig. 3(a and b), the plots are provided for (i) δ = 11, η = 2.4, θ = 0.43 (red curve line), (ii) δ = 1.4, η = 0.5, θ = 0.5 (green 
curve line), (iii) δ = 15, η = 3.12, θ = 0.2 (black curve line), and (iv) δ = 18, η = 3.4, θ = 0.19 (blue curve line). Similarly, in Fig. 3(a 
and b), the plots of h(x; δ,ϑ) HF are visualized for (i) δ = 2.9, η = 0.64, θ = 0.8 (red curve line), (ii) δ = 2.5, η = 0.6, θ = 0.6 (green 
curve line), (iii) δ = 2.8, η = 0.67, θ = 0.8 (black curve line), and (iv) δ = 2.5, η = 0.64, θ = 0.6 (blue curve line). From Fig. 3(a and b), 
we can clearly see that the HF shape of the NFEP-Wib distribution can be (i) increasing, (ii) decreasing, (iii) uni-model, and (iv) bathtub 
form. 

5. Mathematical properties of NFEP family 

This section presents the main statistical/mathematical properties of the NFEP family of probability distributions. 

5.1. Moments 

General order moments are a set of descriptive statistics used to summarize probability distributions and their characteristics. In 
this context, we provide a computational representation of general order moments that correspond to the proposed NFEP family of 
distributions. If X is an NFEP RV, then the rth moments concerning the origin are provided by 

E(xr)=

∫ ∞

− ∞
k(x; δ,ϑ)dx. (12)  

when we plug the suggested family’s density into Eq. (12), we obtain 

μʹ=
1
eδ

(

2
∑∞

i=0

δi+1

i!

∫ ∞

− ∞
xra(x;ϑ)A(x;ϑ)2i+2dx+

∑∞

0

δi

i!

∫ ∞

− ∞
xrA(x;ϑ)2ia(x;ϑ)dx

)

,

μʹ=
1
eδ

(

2
∑∞

i=0

δi+1

i!
φr,2i+2 +

∑∞

i=0

δi+1

i!
φr,2i

)

,

Fig. 3. Different (a) and (b) plots of h(x; δ,ϑ) HF of the NFEP-Wei model.  
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where, φr,2i+2 =
∫∞
− ∞ xra(x;ϑ)A(x;ϑ)2i+2dx and φr,2i =

∫∞
− ∞ xra(x;ϑ)A(x;ϑ)2idx. 

Furthermore, a general expression for MGF (moments generating function) of the introduced family of density is derived as 

МX(t)=
∫ ∞

− ∞
etxk(x; δ,ϑ)dx =

∑∞

r=0

tr

r!
μʹ. (13)  

By simplifying Eq. (13), we get the MGF 

МX(t)=
1
eδ

(

2
∑∞

i,r=0

δi+1tr

r!i!
φr,2i+2 +

∑∞

i,r=0

δitr

r!i!
φr,2i

)

.

5.2. Residual and reverse residual life of NFEP family 

The residual lifespan random variable is sometimes referred to as "time since failure" or "survival time" in survival analysis. It 
indicates the length of time that a person or system endures after an event, such as the time of a diagnosis, the commencement of 
therapy, or the beginning of an experiment. The residual lifespan random variable is frequently used to model survival data and 
calculate the likelihood that an event, such as deaths, failure, or recurrence, will happen at a specific period. It is a crucial tool for the 
study of data that has been censored, which happens when the precise survival duration for certain people or systems is unknown. The 
residual lifespan of the NFEP RVs, say X, is denoted by R(t) and is given as 

R(t)(x)=
S(x + t; δ,ϑ)

S(x; δ,ϑ)
,

R(t)(x)=
eδ − A(x + t;ϑ)eδA(x+t;ϑ)2

eδ − A(t;ϑ)eδA(x;ϑ) .

For the NFEP random variable X, the reverse residual life is R(t). 

R(t)(x)=
S(x − t; δ,ϑ)

S(x; δ,ϑ)
,

R(t)(x)=
eδ − A(x − t;ϑ)eδA(x− t;ϑ)2

eδ − A(x; ϑ)eδA(x;ϑ)2
.

5.3. Order statistics 

Let X1 < X2 < X3 < ... < Xn be a set of i.i.d RVs of size ‘n’ taken from NFEP family of distributions with parameters δ and ϑ, then the 
associated OS (order statistics) are X(1:n) ≤ X(2:n) ≤ X(3:n) ≤ ... ≤ X(n:n) with the K(x; δ,ϑ) CDF and k(x; δ,ϑ) PD. From David et al. [26] 
the PDF of X(j:n), say fj:n(x), where j = 1,2, ....,n, is defined by 

fj:n(x)=
k(x; δ,ϑ)

B(x, n − j + 1)
∑n− j

i=0
(− 1)i

[K(x; δ,ϑ)]i+j− 1
. (14) 

Using Eq. (2) and Eq. (5) in Eq. (14), we get the jth order statistics for the proposed family of distributions. 

5.4. Quantile function 

Quartiles are descriptive statistic used to encapsulate a dataset’s distribution. Calculating quartiles requires the use of a mathe
matical formula called the quartile function (QF). The function, let’s say Q(u; δ,ϑ), that satisfies the following non-linear equations is 
the QF of the proposed NFEP family. 

Q(K(u; δ,ϑ))= u, u ∈ (0, 1) (15)  

By using Eq. (2) in Eq. (15), we get 

Q(K(u; δ,ϑ))=K− 1(u) = A− 1(u).

Q(u)= δA(x;ϑ)2
+ log(A(x; ϑ) − ueδ),

where, u is the solution of δA(x;ϑ)2
+ log(A(x;ϑ) − ueδ). 
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6. Estimation and simulation 

Further work of this research paper presented in this section is divide into two subsections. In very first subsection, the MLEs 
(maximum likelihood estimators) (δ̂MLE, ϑ̂MLE) of the parameteors (δ,ϑ) are derived. In the next subsection, a comprehensive 
simulation study based on NFEP-Wei distribution as a special sub-model of the NFEP family of distributions is conducted to evaluate 
the performance of these (δ̂MLE, ϑ̂MLE). 

6.1. MLE method 

Maximum Likelihood Estimation (MLE) is a popular technique for calculating the parameters of a statistical model. The funda
mental principle of MLE involves finding the set of parameter values that maximizes the likelihood of the observed data. The likelihood 
function assesses how well the model aligns with the data across various parameter values. It depends on both the model parameters 
and the observed data. The MLE method seeks the parameter values that maximize the likelihood of the observed data being generated 
by the model. In this section, we define the MLE method for estimating the unknown parameters of the NFEP family of distributions. 
Let suppose the observed values X1,X2, ...,Xd of size d be selected randomly from the NFEP family of distributions with parameters (δ,
ϑ). Then corresponding to Eq. (5), the LF l (Θ) is acquired as follows; 

Table 1 
Simulations results of the NFEP-Wei distribution for set I and set II.    

SetI: δ = 1.4,η = 1.0,θ = 1.8 Set II: δ = 3.2,η = 2.2,θ = 2.8 

n Parameters MLE MSEs Biases MLE MSEs Biases 

25 δ̂ 1.835226 2.890406 0.435226 3.210584 4.623899 0.010584 
η̂ 1.050124 0.344733 0.050124 2.075723 0.688522 − 0.124276 
θ̂ 1.967728 0.432582 0.167728 3.272871 1.588412 0.472871 

50 δ̂ 1.652391 1.842478 0.252391 3.287184 2.379300 0.087184 
η̂ 1.020735 0.244576 0.020735 2.115238 0.311814 − 0.084761 
θ̂ 1.917023 0.280400 0.117022 3.091635 0.818819 0.291635 

75 δ̂ 1.582892 1.341268 0.182891 3.248166 1.874261 0.048166 
η̂ 1.017775 0.191671 0.017775 2.130770 0.246385 − 0.069230 
θ̂ 1.880093 0.216140 0.080093 3.039680 0.642035 0.239679 

100 δ̂ 1.493650 1.066813 0.093649 3.295353 1.602628 0.095352 
η̂ 0.992794 0.163651 − 0.007206 2.159513 0.194828 − 0.040487 
θ̂ 1.891585 0.184891 0.091584 2.971380 0.459676 0.171379 

200 δ̂ 1.416261 0.501824 0.016260 3.291924 0.976563 0.091924 
η̂ 0.983430 0.093765 − 0.016569 2.180209 0.112095 − 0.019790 
θ̂ 1.866071 0.108476 0.066071 2.888326 0.250451 0.088326 

300 δ̂ 1.414486 0.347691 0.014485 3.303093 0.617848 0.103093 
η̂ 0.988928 0.066943 − 0.011071 2.209978 0.059870 0.009977 
θ̂ 1.846026 0.078220 0.046025 2.825685 0.107226 0.025684 

400 δ̂ 1.366821 0.243250 − 0.033179 3.224899 0.427394 0.024899 
η̂ 0.969982 0.051280 − 0.030017 2.187224 0.046741 − 0.012776 
θ̂ 1.859620 0.066228 0.059619 2.841787 0.084269 0.041786 

500 δ̂ 1.390782 0.207865 − 0.009217 3.257464 0.322750 0.057463 
η̂ 0.984776 0.041956 − 0.015223 2.204851 0.030738 0.004851 
θ̂ 1.836700 0.049477 0.036699 2.819982 0.048753 0.019981 

600 δ̂ 1.397843 0.181395 − 0.002156 3.255041 0.281289 0.055040 
η̂ 0.989041 0.036407 − 0.010958 2.205458 0.025605 0.005457 
θ̂ 1.829099 0.041570 0.029098 2.810966 0.040713 0.010966 

700 δ̂ 1.382622 0.145829 − 0.017378 3.239750 0.275368 0.039750 
η̂ 0.986133 0.029855 − 0.013866 2.200292 0.024986 0.000292 
θ̂ 1.828738 0.033835 0.028737 2.818897 0.039654 0.018897 

800 δ̂ 1.383342 0.132699 − 0.016657 3.232778 0.222014 0.032777 
η̂ 0.984593 0.027505 − 0.015406 2.201247 0.021073 0.001247 
θ̂ 1.829511 0.031400 0.029511 2.811853 0.033239 0.011852 

900 δ̂ 1.362719 0.105432 − 0.037280 3.230148 0.183249 0.030148 
η̂ 0.978495 0.022500 − 0.021504 2.201453 0.017992 0.001453 
θ̂ 1.831974 0.025314 0.031974 2.808406 0.027796 0.008405 

1000 δ̂ 1.395490 0.097188 − 0.004509 3.236034 0.154365 0.036033 
η̂ 0.992605 0.020196 − 0.007394 2.204886 0.014572 0.004885 
θ̂ 1.817425 0.022947 0.017425 2.801814 0.022499 0.001814  
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l (Θ)= n log 2+ n log δ+2
∑d

c=1
log A(xc;ϑ)+2

∑d

c=1
log a(xc; ϑ)

+2δ
∑d

c=1
log A(xc; ϑ)2

− nδ.

The partial derivatives of l (Θ) are given by 

d
dδ

l (Θ)=
n
δ
+ 2
∑d

c=1
log A(xc;ϑ)2

− n,

and 

d
dϑ

l (Θ)=2
∑d

c=1

dA(xc;ϑ)/dϑ
A(xc;ϑ)

+2
∑d

c=1

da(xc; ϑ)/dϑ
a(xc; ϑ)

+4δ
∑d

c=1
A(xc; ϑ)(dA(xc; ϑ)/dϑ),

where Θ = (δ,ϑ). 

Table 2 
Simulations results of the NFEP-Wei distribution for set III and set IV.    

Set III: δ = 2.4,η = 1.5,θ = 1.9 Set IV: δ = 3.0,η = 1.0,θ = 4.6 

n Parameters MLE MSEs Biases MLE MSEs Biases 

25 δ̂ 2.609820 3.205297 0.020981 3.690870 2.101958 0.690869 
η̂ 1.410057 0.419553 − 0.089943 1.112048 0.101021 0.112048 
θ̂ 2.255538 0.819189 0.355537 4.467409 0.419440 − 0.132591 

50 δ̂ 2.623254 2.316416 0.022325 3.485139 1.493573 0.485139 
η̂ 1.473858 0.292558 − 0.026141 1.084928 0.069390 0.084928 
θ̂ 2.088966 0.456476 0.188965 4.501526 0.310415 − 0.098473 

75 δ̂ 2.493442 1.870164 0.0934421 3.357265 1.206166 0.424438 
η̂ 1.434147 0.252774 − 0.065852 1.059008 0.055906 0.074899 
θ̂ 2.100369 0.389419 0.200368 4.527652 0.258406 − 0.085958 

100 δ̂ 2.563526 1.642578 0.016352 3.351537 0.994084 0.357265 
η̂ 1.480091 0.205850 − 0.019908 1.068215 0.047298 0.059008 
θ̂ 2.020522 0.296469 0.120521 4.502337 0.237131 − 0.072347 

200 δ̂ 2.414098 0.800394 0.001409 3.196913 0.588330 0.196913 
η̂ 1.460252 0.113060 − 0.039747 1.032180 0.029630 0.032180 
θ̂ 1.993773 0.153063 0.093773 4.571760 0.159532 − 0.028240 

300 δ̂ 2.425807 0.527329 0.002580 3.101236 0.404496 0.101236 
η̂ 1.479430 0.075185 − 0.020569 1.014651 0.021514 0.014651 
θ̂ 1.958515 0.097220 0.058515 4.600143 0.123264 0.000143 

400 δ̂ 2.431273 0.388575 0.003127 3.082540 0.327923 0.082540 
η̂ 1.495071 0.056090 − 0.004928 1.012884 0.018184 0.012884 
θ̂ 1.927438 0.067249 0.027438 4.598751 0.109225 − 0.001248 

500 δ̂ 2.375952 0.288865 − 0.024048 3.062336 0.267384 0.062335 
η̂ 1.475582 0.040985 − 0.024417 1.006813 0.015123 0.006813 
θ̂ 1.940625 0.048139 0.040624 4.606532 0.090850 0.006531 

600 δ̂ 2.419211 0.231678 0.019210 3.013987 0.205556 0.013986 
η̂ 1.496547 0.032660 − 0.003452 0.999693 0.012317 − 0.000306 
θ̂ 1.920273 0.034514 0.020273 4.622437 0.078337 0.022436 

700 δ̂ 2.371514 0.184530 0.017412 3.078559 0.205900 0.078559 
η̂ 1.481122 0.025949 − 0.007839 1.013503 0.012350 0.013503 
θ̂ 1.929855 0.027495 0.016698 4.588683 0.078587 − 0.011316 

800 δ̂ 2.410285 0.142367 0.001028 3.051371 0.173223 0.051371 
η̂ 1.493218 0.019086 − 0.006782 1.007967 0.010747 0.007967 
θ̂ 1.918665 0.017738 0.018665 4.602270 0.068458 0.002270 

900 δ̂ 2.384074 0.126248 − 0.015925 3.026016 0.143721 0.026016 
η̂ 1.488186 0.017785 − 0.011813 1.003219 0.009000 0.003219 
θ̂ 1.921149 0.018141 0.021148 4.606797 0.058341 0.006797 

1000 δ̂ 2.393682 0.118201 − 0.006317 3.023297 0.139371 0.023297 
η̂ 1.490034 0.015884 − 0.009966 1.001446 0.008993 0.001446 
θ̂ 1.913514 0.014355 0.013514 4.613701 0.061406 0.013701  
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Setting d
dδ l (Θ) = 0 and d

dϑ l (Θ) = 0, solving above equations simultaneously, we will get MLEs (δ̂MLE, ϑ̂MLE) of the parameters (δ,
ϑ), respectively. 

6.2. Simulation 

Many techniques may be used to assess the efficacy of distribution estimators, one of which is Monte Carlo simulation with sub
sampling (MCS). MCS study is a resampling approach that includes producing several random samples from a known distribution, 
estimating the distribution’s parameters using an estimator, and assessing the estimator’s performance by contrasting the estimated 
parameters with the distribution’s actual values. The effectiveness of the NFEP-Wei distribution estimators is evaluated using an MCS 
study. The simulation results out for four sets of parameters values; (i) SetI (δ = 1.4,η = 1.0,θ = 1.8), (ii) Set II (δ = 3.2,η = 2.2,θ =

2.8), (iii) Set III (δ = 2.4,η = 1.5,θ = 1.9), (iv) Set IV (δ = 3.0,η = 1.0,θ = 4.6) are calculated. For each of the aforementioned sets of 
parameter values, 1000 separate MCS study replicates are created using c = 25,50, ...,1000. For each set of MCS study, we calculated 
the typical MLEs, MSEs, and biases. The new suggested model’s numerical values for its biases and MSE are computed as follows: 

Bias=
1

1000
∑1000

c=1
(δ̂c − δ),

and 

MSE=
1

1000
∑1000

c=1
(δ̂c − δ)2

.

For numerical values of ϑ, the same method is reiterated. Table 1 displays the simulation results for SetI and Set II. Table 2 presents 
the outcomes of Sets III and IV. It is clearly observed from Tables 1 and 2 that the estimated values of (δ̂, ϑ̂)MLE are steady and the MSE 
of (δ̂, ϑ̂)MLE decreases. Biases of (δ̂, ϑ̂)MLE decline or tend to zero as the sample size “c” increase or tend to infinity. 

7. Application to biomedical data 

Here in this section, for practical illustration, we consider four data sets from biomedical area. The first biomedical dataset (Data 1) 
consists of seventy-two (72) observations, depicting the survival times (ST) of guinea pigs infected with various amounts of tubercle 
bacilli. The second dataset (Data 2), which is also available at [https://covid19.who.int/] contains 36 observations and represents the 
death rate of COVID-19 patients in Canada of 36 days, from 10 April to May 15, 2020, for the purposes of numerical analysis. The third 
data set (Data 3) is made up of forty-four (44) observations and shows how long patients with head and neck cancer survive. Similarly, 
the fourth data set (Data 4) has twenty (20) observations and depicts the life periods of analgesic patients. For each data sets, the NFEP- 
Wei distribution is compared with different well-known distribution and observe that the proposed distribution outclasses then the 
other competitor. Table 3 contains all of the data sets. 

The NFEP-Wei distribution is applied to all the considered data sets. The fitting results (to select the best distribution) are compared 
with (i) AP-Wei (alpha power Wei) model developed by Dey et al. [31], (ii) MO-Wei (Marshall-Olkin Wei) model proposed by Marshall 
and Olkin [32], (iii) NExpo-Wei (new exponential Wei) model proposed by Shah et al. [33], (iv) FRLog-Wei (flexible reduced loga
rithmic Wei) model proposed by Liu et al. [28], (v) classical Wei distribution proposed by Weibull [34], and (vi) Kum-Wei (Kumar
aswamy Weibull) distribution introduced by Cordeiro et al. [35]. The CDF of these well-known compared distributions are outlined as.  

• The three parameters AP-Wei model 

G(x; a, ϑ)=
a
(

1− e− ηxθ
)

− 1
a − 1

, x ∈ R+,

where, a ∕= 1,a ∈ R+. 

Table 3 
Four biomedical Datasets.  

No. Observation of the data sets References 

Data 1. 10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 120, 121, 122, 122, 
124, 130, 134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 
231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 432, 458, 555 

Bjerkedal [27] 

Data2. 3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769, 6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594, 4.0480, 4.1685, 
3.6426, 3.2110, 2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781, 4.2202, 1.5157, 2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806, 
2.7704, 2.1901, 2.4141, 1.9048 

Liu et al. [28] 

Data3. 12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 94, 110, 112, 119, 127, 
130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776 

Ceren et al. 
[29] 

Data4. 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0 Gross et al. 
[30]  
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• The three parameters MO-Wei distribution 

G(x; β, ϑ)=

(
1 − e− ηxθ

)

(1 − β)(1 − e− ηxθ
) + β

, x ∈ R+,

where, β ∈ R+.  

• The two parameters NExpo-Wei distribution 

Table 4 
Summary measures of Data 1.  

Min 1st Qu Mean Median 3rd Qu Max 

10.00 108.00 176.80 149.50 224.00 555.00  

Fig. 4. Visual illustration of dataset (Data 1) using (a) Histogram plot, (b)Kernel density plot, (c)TTT plot, (d) Violin plot, and (e) Box plot.  

Table 5 
The η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the proposed and other competitive distributions for Data 1.  

Dist. η̂MLE θ̂MLE δ̂MLE âMLE b̂MLE β̂MLE 

NFEP-Wei 0.048724 0.796168 4.919883 – – – 
AP-Wei 0.003250 1.190032 – 6.817653 – – 
MO-Wei 0.002404 1.242525 – – – 2.371487 
Wei 0.002055 1.197816 – – – – 
FRL-Wei 0.003047 1.222505 – – – 8.160021 
NExpo-Wei 0.002379 1.040409 – – – – 
Kum-Wei 0.013561 0.937990 – 3.760287 1.334416 –  

Z. Shah et al.                                                                                                                                                                                                           



Heliyon 10 (2024) e32203

12

G(x;ϑ)=1 −

(
ee− ηxθ

− 1
e − e− ηxθ

)

, x ∈ R+.

• The four parameters Kum-Wei distribution 

G(x; a, b,ϑ)=1 −
[
1 −

(
1 − e− ηxθ

)a]b
, x ∈ R+,

where a,b ∈ R+.  

• The two parameters Wei distribution 

G(x; η, θ) =1 − e− ηxθ
, x ∈ R+.

• The three parameters FRlog-Wei distribution 

G(x; β, ϑ)=1 −
log
(

β + 1 − β
(

1 − e− ηxθ
))

log(1 + β)
, x ∈ R+,

where β ∈ R+. 
After selecting the competing distributions, we consider AMs (analytical measures) to verify which distribution is out performed to 

the Data 1, Data 2, Data 3, and Data 4 among these fitted distributions. The AMs used to compare the fitted distributions are the DMs 
(discrimination measures), GoFMs (goodness of fit measures), and its P-values. The DMs are contained by the AIC (Akaike Information 
Criterion), BIC (Bayesian IC), CAIC (Consistent AIC), HQIC (Hannan Quinn IC) while the GoFMs measures are contains by the KS 
(Kolmogorov-Smirnov), AD (Anderson-Darling) and CM (Cramer-von-Misses). The values of GoFMs are computed as.  

• The CM test statistic 

CM=
∑n

i=1

[

K(xi; δ,ϑ) −
2i − 1

2n

]2

+
1

12n
.

• The AD test statistics 

Table 6 
The GOFMs and P-values for guinea pigs infected Dataset (Data 1).  

Dist. CM AD KS P-values 

NFEP-Wei 0.07059 0.40948 0.07758 0.7798 

AP-Wei 0.80373 0.13802 0.17147 0.0290 
MO-Wei 0.16136 0.94136 0.17256 0.0274 
Wei 0.10983 0.66328 0.25928 0.0002 
FRLog-Wei 0.19237 1.12405 0.18161 0.0173 
NExpo-Wei 0.08960 0.52217 0.29516 0.0671 
Kum-Wei 0.08173 0.52259 0.09174 0.5795  

Table 7 
The DMs for guinea pigs infected Dataset (Data 1).  

Dist. AIC BIC CAIC HQIC 

NFEP-Wei 854.90890 861.73891 855.26180 857.62791 

AP-Wei 864.12672 870.95672 864.47971 866.84586 
MO-Wei 865.71113 872.54111 866.06415 868.43022 
Wei 877.46762 882.02180 877.64165 879.28033 
FRLog-Wei 868.08501 874.91520 868.43832 870.80412 
NExpo-Wei 902.70857 907.26185 902.88241 904.52120 
Kum-Wei 859.49202 868.59871 860.08914 863.11743  
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AD= − n −
1
n
∑n

i=1
(2i − 1) × [log K(xi; δ,ϑ)+ log(1 − K(xi+1− n; δ, ϑ))].

• The KS test statistic 

sup x[Kn(x; δ,ϑ) − K(x; δ,ϑ)].

While, the DMs are computed as.  

• The AIC test statistics 

AIC= 2w − 2l (φ).

Fig. 5. The illustrations plots of (a) fitted PDF, (b)empirical CDF, (c) fitted SF, (d) PP plot, and (e) QQ plot of the NFEP-Weib distribution for Data 1.  

Table 8 
Summary measures of Data 2.  

Mini 1st-Qu Mean Median 3rd-Qu Max 

1.516 2.788 3.282 3.178 3.637 6.868  
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• The BIC test statistics 

BIC=w log(n) − 2l (φ).

Fig. 6. Visual illustration of dataset (Data 2) using (a) Histogram plot, (b)Kernel density plot, (c)TTT plot, (d) Violin plot, and (e) Box plot.  

Table 9 
The η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the competitive models using COVID-19 Dataset (Dataset 1).  

Dist. η̂MLE θ̂MLE δ̂MLE âMLE b̂MLE β̂MLE 

NFEP-Weib 0.664791 1.342981 7.695297 – – – 
AP-Weib 0.205920 1.953723 - 171.54246 – – 
MO-Weib 0.038697 2.832476 - – – 1.927467 
Wei 0.014140 3.301129 - – – – 
FRLog-Weib 0.042111 2.814466 - – – 3.678752 
NExpo-Weib 0.003600 3.908928 - – – – 
Kum-Weib 0.695443 1.063776 - 13.023971 2.111903 –  

Table 10 
The GOFMs and P-values for the COVID-19 dataset (data 2).  

Dist. CM AD KS P-values 

NFEP-Weib 0.08129 0.47084 0.10636 0.8101 
AP-Wei 0.10228 0.58178 0.12286 0.6488 
MO-Wei 0.18187 1.03546 0.14083 0.4732 
Wei 0.17233 0.98839 0.14836 0.4065 
FRL-Wei 0.19842 1.12775 0.14451 0.4398 
NExpo-Wei 0.13717 0.79325 0.14381 0.4463 
Kum-Wei 0.09268 0.53943 0.10583 0.7948  
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• The CAIC test statistics 

CAIC=
2nw

n − w − 1
− 2l (φ).

Table 11 
The DMs for the COVID-19 dataset (data 2).  

Dist. AIC BIC CAIC HQIC 

NFEP-Wei 101.65857 106.40912 102.40854 103.31662 
AP-Wei 103.61564 108.36619 104.36563 105.27365 
MO-Wei 109.44277 114.19336 110.19272 111.10084 
Wei 106.94972 110.11680 107.31340 108.05512 
FRLog-Wei 110.51631 115.26680 111.26630 112.17432 
NExpo-Wei 104.29355 107.46054 104.65715 105.39890 
Kum-Wei 104.00192 110.33626 105.29228 106.21276  

Fig. 7. The illustrations plots of (a) fitted PDF, (b)empirical CDF, (c) fitted SF, (d) PP plot, and (e) QQ plot of the NFEP-Weib distribution for Data 2.  

Table 12 
Summary measures of Data 3.  

Min. 1st-Qu. Mean Median 3rd-Qu. Max. 

12.20 67.2100 223.500 128.500 219.000 1776.00  
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• The HQIC test statistics 

HQIC=2w log(log(n)) − 2l (φ).

Where, l (φ) is MLF at MLEs, n is the SS (sample size), and w is the number of parameters in the model. We implement statistical R 
software using (AdquacyModel) package with the method of “BFGS algorithm” for the AMs of Data 1, Data 2, Data 3, and Data 4. 

In general, a statistical model is deemed a better probability model for the considered data sets if it has lower GoFMs, DMs values, 
and a higher P-value. By using these AMs, it is discovered that the NFEP-Wei model outperforms then the other competing or fitting 

Fig. 8. Visual illustration of dataset (Data 3) using (a) Histogram plot, (b)Kernel density plot, (c)TTT plot, (d) Violin plot, and (e) Box plot.  

Table 13 
The η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the competitive models using head and neck cancer Dataset (Dataset 3).  

Dist. η̂MLE θ̂MLE δ̂MLE âMLE b̂MLE β̂MLE 

NEP-Wei 1.182393 0.265807 23.957386 – – – 
AP-Wei 0.003265 0.992700 – 0.245030 – – 
MO-Wei 0.003033 1.001190 - – – 0.507524 
Wei 0.007092 0.923501 - – – – 
FRLog-Wei 0.028596 0.761846 - – – 5.721750 
NExpo-Wei 0.002456 1.022756 - – – – 
Kum-Wei 0.416466 0.459511 - 12.665165 0.490206 –  
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distributions for all of the studied biomedical datasets. 

7.1. Analyzing data 1 

Here, in this sub-section, we try to apply the NFEP-Wei distribution and compare its goodness of fit with the considered competing 
distribution. Corresponding to Data 1, the SMs (summary measures) are listed in Table 4, while the HP (histogram plot), KD (Kernel 
density), TTT-P (total time-on-test plot), VP (Violin plot), and BP (Box plot) are given in Fig. 4(a–e). Similarly, corresponding to Data 1, 
the η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the NFEP-Wei distribution and other competitive probability distributions 
are presented in Table 5. The GoFMs and P-values are provided in Table 6 and the DMs of the NFEP-Wei and other competitive 
distributions are presented in Table 7. The fitted PDF, CDF, SF, PP (probability probability), and QQ (quintile quintile) plots of the 
NFEP-Wei distribution for the analyzed data set are sketched in Fig. 5(a–e). 

From the results presented in Tables 6 and 7, we can clearly see that the NFEP-Wei distribution has minimum values of these AMs 
and higher P-value than the other distributions applied in comparison. Similarly, from Fig. 5(a–e), it is also clear that the NFEP-Wei 
distribution fit estimated PDF, CDF, SF, PP (probability probability), and QQ (quintile quintile) plots very closely. 

Hence, from the above discussion, we can clearly conclude that the proposed NFEP-Wei distribution is a better competitor than the 
other well-known probability distributions for the Data 1. 

7.2. Analyzing data 2 

In this sub-section, we again apply the NFEP-Wei distribution to Data 2, and compare its potentiality power to the other competitive 
distributions. Corresponding to Data 2, the SMs are listed in Table 8, while the HP, KD, TTT-P, VP, and BP plots are given in Fig. 6(a–e). 
Similarly, corresponding to Data 2, the η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the NFEP-Wei distribution and other 
competitive probability distributions are presented in Table 9. The GoFMs and P-values are provided in Table 10 and the DMs of the 
NFEP-Wei and other competitive distributions are presented in Table 11. The fitted PDF, CDF, SF, PP (probability probability), and QQ 
(quintile quintile) plots of the NFEP-Wei distribution for the analyzed data set are sketched in Fig. 7(a–e). 

Based on the results presented in Tables 10 and 11, it is evident that the NFEP-Wei distribution exhibits the lowest values of these 
AMs and a higher P-value compared to the other competitive distributions used in the comparison. Additionally, Fig. 7(a–e) shows that 
the NFEP-Wei distribution closely matches the estimated PDF, CDF, SF, PP (probability probability), and QQ (quintile quintile) plots. 
Therefore, based on the above discussion, it is clear that the proposed NFEP-Wei distribution outperforms than the other well-known 
probability distributions for Data 2. 

7.3. Analyzing data 3 

In this sub-section, we again apply the NFEP-Wei distribution to Data 3, and compare its potentiality power to the other competitive 
distributions. Corresponding to Data 3, the SMs are listed in Table 12, while the HP, KD, TTT-P, VP, and BP plots are given in Fig. 8 
(a–e). Similarly, corresponding to Data 3, the η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the NFEP-Wei distribution and 
other competitive probability distributions are presented in Table 13. The GoFMs and P-values are provided in Table 14 and the DMs of 

Table 14 
The GOFMs and P-values of the competitive models using head and neck cancer Dataset (Data 3).  

Dist. CM AD KS P-values 

NFEP-Wei 0.01833 0.11950 0.05692 0.9973 
AP-Wei 0.09338 0.55387 0.10551 0.6723 
MO-Wei 0.09492 0.56181 0.11255 0.5933 
Wei 0.13834 0.80581 0.12425 0.4682 
FRLog-Wei 0.19103 1.09553 0.13355 0.3789 
NExpo-Wei 0.08657 0.51532 0.10064 0.7270 
Kum-Wei 0.02199 0.13589 0.06546 0.9854  

Table 15 
The DMs of the competitive models using head and neck cancer Dataset (Data 3).  

Dist. AIC BIC CAIC HQIC 

NFEP-Wei 560.73223 566.08487 561.33222 562.71721 
AP-Wei 567.77125 573.12383 568.37133 569.75623 
MO-Wei 568.20842 573.56198 568.80847 570.19348 
Wei 567.71520 571.28353 568.00783 569.03854 
FRLog-Wei 572.88337 578.23595 573.48339 574.86839 
NExpo-Wei 565.15683 568.72526 565.44952 566.48014 
Kum-Wei 562.71149 569.84784 563.73664 565.35763  
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the NFEP-Wei and other competitive distributions are presented in Table 15. The fitted PDF, CDF, SF, PP (probability-probability), and 
QQ (quantile-quantile) plots of the NFEP-Wei distribution for the analyzed data set are sketched in Fig. 9(a–e). 

From the results presented in Tables 14 and 15, we can also clearly see that the NFEP-Wei distribution has lower values of these 
AMs and higher P-value than the other competitive distributions applied in comparison. Similarly, from Fig. 9(a–e), it is also clear that 
the NFEP-Wei distribution fit estimated PDF, CDF, SF, PP (probability-probability), and QQ (quantile-quantile) plots very closely. 

Hence, from the visual display and the above discussion, we can clearly conclude that the proposed NFEP-Wei distribution is a 
better competitor than the other well-known probability distributions for the Data 3. 

7.4. Analyzing data 4 

Here, we again apply the NFEP-Wei distribution to Data 4, and compare its potentiality power to the other well-known competitive 
distributions. Corresponding to Data 4, the SMs are listed in Table 16, while the HP, KD, TTT-P, VP, and BP plots are given in Fig. 10(a 
and b). Similarly, corresponding to Data 4, the η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the NFEP-Wei distribution and 
other competitive probability distributions are presented in Table 17. The GoFMs and P-values are provided in Table 18 and the DMs of 

Fig. 9. The illustrations plots of (a) fitted PDF, (b)empirical CDF, (c) fitted SF, (d) PP plot, and (e) QQ plot of the NFEP-Weib distribution for Data 3.  

Table 16 
Summary measures of Data 4.  

Min. 1st Qu. Mean. Median. 3rd Qu. Max. 

1.1000 1.4750 1.9000 1.7000 2.0500 1776.00  
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the NFEP-Wei and other competitive distributions are presented in Table 19. The fitted PDF, CDF, SF, PP (probability probability), and 
QQ (quantile quantile) plots of the NFEP-Wei distribution for the analyzed data set are sketched in Fig. 11(a–e). From visual graphical 
representation and the results presented in Tables 18 and 19, we can clearly see that the NFEP-Wei distribution has minimum values of 
these AMs (GoFMs and GMs) and higher P-value than the other competitive probability distributions applied in comparison. Similarly, 
from Fig. 11(a–e), it is also clear that the NFEP-Wei distribution fit estimated PDF, CDF, SF, PP (probability probability), and QQ 

Fig. 10. Visual illustration of dataset (Data 4) using (a) Histogram plot, (b)Kernel density plot, (c)TTT plot, (d) Violin plot, and (e) Box plot.  

Table 17 
The η̂MLE, θ̂MLE, δ̂MLE, âMLE, b̂MLE, and β̂MLE values of the competitive models using patients receiving analgisic Dataset (Dataset 4).  

Dist. η̂MLE θ̂MLE δ̂MLE âMLE b̂MLE β̂MLE 

NFEP-Wei 3.29444 0.77505 57.98659 – – – 
AP-Wei 0.02074 3.62007 – 0.01587 – – 
MO-Wei 0.00371 4.40523 - – – 0.04792 
Wei 0.12157 2.78699 - – – – 
FRL-Wei 0.19153 2.54816 - – – 1.363036 
NExpo-Wei 0.04603 3.32338 - – – – 
Kum-Wei 2.74119 1.28961 - 55.89059 0.38631 –  

Table 18 
The GOFMs and P-values of the competitive models using patients receiving analgisic Dataset (Data 4).  

Dist. CM AD KS P-values 

NFEP-Wei 0.04526 0.26371 0.11608 0.9083 
AP-Wei 0.13242 0.77844 0.15791 0.7009 
MO-Wei 0.07829 0.46896 0.13609 0.8527 
Wei 0.18571 1.09288 0.18496 0.5006 
FRLog-Wei 0.14024 0.85222 0.22294 0.2732 
NExpo-Wei 0.15219 0.90424 0.18129 0.5267 
Kum-Wei 0.04755 0.27189 0.12915 0.8925  
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(quintile quintile) plots very well and closely. 
Hence, based on the visual graphical display and the comprehensive discussion above, it is evident that the proposed NFEP-Wei 

distribution outperforms other well-known probability distributions for Data 4. 

Table 19 
The DMs of the competitive models using patients receiving analgisic Dataset (Data 4).  

Dist. AIC BIC CAIC HQIC 

NFEP-Wei 37.88203 40.86922 39.38203 38.46516 
AP-Wei 43.41718 46.40438 44.91718 44.00031 
MO-Wei 40.81298 43.80018 42.31298 41.39611 
Wei 45.17281 47.16427 45.87869 45.56156 
FRLog-Wei 44.70328 47.69047 46.20328 45.28641 
NExpo-Wei 42.93560 44.92706 43.64148 43.32435 
Kum-Wei 39.55053 43.53346 42.21719 40.32804  

Fig. 11. The illustrations plots of (a) fitted PDF, (b)empirical CDF, (c) fitted SF, (d) PP plot, and (e) QQ plot of the NFEP-Weib distribution for 
Data 4. 
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8. Conclusion 

In this study, we introduce and investigate a new flexible family of probability distributions known as the New Flexible Exponent 
Power (NFEP) family. To assess the potential of this proposed method, we focus on a specific sub-case within this family, the New 
Flexible Exponent Power Weibull (NFEP-Wei) distribution. We delve into various mathematical aspects, including moments, Moment 
Generating Function (MGF), residual life, reverse residual life, order statistics (OS), and the quantile function. To achieve this, we 
employ one of the most well-known estimation approaches, Maximum Likelihood Estimation, to estimate the unknown parameters of 
the NFEP family of distributions. A brief MCS study is carried out to investigate the efficiency of η̂MLE, θ̂MLE and δ̂MLE of the NFEP 
family. We applied the NFEP-Wei distribution in four different biomedical datasets and compared its goodness of fit or potentiality 
power with other well-known distributions, such as the AP-Wei, MO-Wei, Wei, FRLog-Wei, NExpo-Wei, and Kum-Wei distributions. In 
all four biomedical data sets, the proposed distribution is outclassing. Modeling medical datasets reveals that the NFEP-Wei distri
bution provides an excellent or optimal fit in contrast to rival distributions based on AMs and P-Values. The findings imply that the 
suggested approach and the distribution theory models it generates might have practical applications in the biomedical and other 
relevant domains. 
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