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ABSTRACT

Dyslipidemia is a major risk factor for cardiovascular disease, and its impact may be 
exacerbated when accompanied by metabolic dysfunction-associated steatotic liver disease 
(MASLD). The simultaneous management of these conditions poses multiple challenges 
for healthcare providers. Insulin resistance has been implicated in the pathogenesis 
of both dyslipidemia and MASLD, necessitating a holistic approach to managing 
dyslipidemia, glucose levels, body weight, and MASLD. This review explores the intricate 
pathophysiological relationship between MASLD and dyslipidemia. It also examines current 
guidance regarding the use of lipid-lowering agents (including statins, ezetimibe, fibrates, 
omega-3 polyunsaturated fatty acids, and proprotein convertase subtilisin/kexin type 9 
inhibitors) as well as glucose-lowering medications (such as pioglitazone, glucagon-like 
peptide-1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors) in patients 
with MASLD, with or without metabolic dysfunction-associated steatohepatitis (MASH), 
and dyslipidemia. Additionally, the review addresses the potential of emerging drugs 
to concurrently target both MASLD/MASH and dyslipidemia. Our hope is that a deeper 
understanding of the mechanisms underlying MASLD and dyslipidemia may assist clinicians 
in the management of these complex cases.
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INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated 
steatotic liver disease (MASLD), is characterized by the ectopic accumulation of triglycerides 
(TG) and other lipids in hepatocytes, accompanied by at least one cardiometabolic risk factor.1 
MASLD can range from isolated steatosis to more severe liver disease, including lobular 
inflammation and hepatocyte ballooning (necrosis); this latter condition is known as metabolic 
dysfunction-associated steatohepatitis (MASH) and may even progress to MASH-related  
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cirrhosis or hepatocellular carcinoma. The term “steatotic liver disease” has also been 
recently introduced to describe not only MASLD but other forms of hepatic steatosis, such as 
alcoholic liver disease, viral hepatitis, et cetera. Additionally, a new entity termed metabolic 
and alcohol-associated liver disease (MetALD) has been defined for patients who meet the 
criteria for MASLD but consume moderate amounts of alcohol.1 As the overlap between 
NAFLD and MASLD has been demonstrated to be close to 99%,2 we have adopted the new 
nomenclature throughout this manuscript, despite most of the evidence being derived from 
studies on patients with NAFLD (the previous terminology).

Despite the elevated risk of liver-related mortality in patients with MASLD, atherosclerotic 
cardiovascular disease (CVD) is the predominant cause of death in this population.3 Recent 
studies have consistently shown that all stages of MASLD—including isolated steatosis and 
MASH—can heighten the risk of cardiovascular (CV) events such as myocardial infarction, 
stroke, revascularization, or CV death.3,4 However, the exact cause of the increased CV risk 
remains uncertain; it is not clear whether the liver disease itself or the accompanying cluster 
of metabolic abnormalities is primarily responsible. Additionally, the role of clinically 
significant or advanced liver fibrosis in exacerbating CV risk is still under debate.5

Apart from the potential contribution of liver disease, metabolic disturbances are widely 
believed to be a key mediator of the increased CV risk observed in individuals with MASLD. 
MASLD is associated with increased visceral adiposity, insulin resistance (IR) with or without 
hyperglycemia, and atherogenic dyslipidemia, characterized by low high-density lipoprotein 
cholesterol (HDL-C), elevated TG, and high levels of remnant lipoprotein and small dense 
low-density lipoprotein (LDL-sd).6 Both the American Association of Clinical Endocrinology 
and the American Association for the Study of Liver Diseases guidelines recommend that 
patients with MASLD be screened for CVD and that CV risk factors be aggressively managed 
in these patients.1

MASLD should be approached as a systemic disease, characterized by IR and the ectopic 
accumulation of lipids leading to lipotoxicity.7 Within this context, key changes occur in the 
lipoprotein profile, impacting the concentration and size of very-low-density lipoprotein 
(VLDL), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) particles. 
Although the most pronounced changes in lipoproteins appear to be driven by IR and hepatic 
steatosis,8 the severity of liver disease also plays a role, particularly when it begins to impair 
the liver’s synthetic capabilities.9 In this review, we explore the current understanding of the 
lipoprotein changes observed in patients with MASLD at different disease stages and address 
the appropriate management of patients with dyslipidemia and MASLD.

EPIDEMIOLOGY: THE FREQUENT COEXISTENCE OF 
DYSLIPIDEMIA AND MASLD
Recent meta-analyses have estimated that MASLD affects approximately 25% to 35% of the 
general population.10,11 The prevalence rises to around 60% among patients with obesity or 
type 2 diabetes (T2D).12,13 A significant proportion of these individuals also exhibit some form 
of dyslipidemia. For instance, in a study examining the global prevalence of MASLD, Younossi 
et al.14 reported that dyslipidemia impacted 69% of patients with MASLD and 72% of those 
with MASH. However, the study did not provide a precise definition of dyslipidemia. In the 
same report, hypertriglyceridemia was observed in 41% of patients with MASLD and in 83% 
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of those with MASH.14 The rates of MASLD and MASH are also higher among patients with 
hypercholesterolemia and/or hypertriglyceridemia. In the Dallas Heart Study, the prevalence 
of MASLD detected by proton magnetic resonance spectroscopy (1H-MRS) was 50% in 
patients with only hypertriglyceridemia (TG≥150 mg/dL and total cholesterol [TC]<200 mg/
dL) and 60% in those with mixed hyperlipidemia.15 Similarly, a cross-sectional analysis of the 
Netherlands Epidemiology of Obesity study found that the prevalence of MASLD, as assessed 
by 1H-MRS, was 57% in participants with hypertriglyceridemia. This prevalence was even 
higher among those with concurrent obesity and hypertriglyceridemia (81%) or T2D and 
hypertriglyceridemia (86%).16 In a cohort of 993 participants in Argentina, the prevalence of 
MASLD diagnosed by ultrasound was 59% in patients with hypertriglyceridemia.17

Longitudinal studies have demonstrated that patients with MASLD are at relatively high risk 
of both fatal and non-fatal CV events.18 A meta-analysis, including 5,802,226 individuals with 
a median follow-up period of 6.5 years, observed an approximate 45% increase in fatal and 
non-fatal CV events among patients with MASLD after adjusting for confounding factors. 
Furthermore, the severity of liver fibrosis, as assessed by histology, was also associated with 
the incidence of fatal and non-fatal CV events. At least a portion of this heightened CV risk 
can likely be attributed to abnormalities in the lipoprotein profile.

As previously mentioned, the most common lipid findings observed in patients with 
MASLD are high TG and low HDL-C levels. However, the role of liver disease progression in 
lipoprotein changes remains poorly understood. Studies comparing lipid profiles in patients 
with isolated steatosis versus those with MASH found no significant differences in routine 
lipid profiles, lipoprotein size, or lipoprotein composition, provided that patients were well-
matched for other clinical variables such as obesity and IR.8,9 Nevertheless, the development 
of significant liver fibrosis, particularly at advanced stages in which the synthetic function 
of the organ is compromised, is associated with a paradoxical “improvement” in the lipid 
profile, characterized by lower levels of TG, TC, and LDL cholesterol (LDL-C).9,19-21 Indeed, 
in patients with cirrhosis, reduced levels of LDL-C and HDL-C have been shown to possess 
meaningful prognostic value.19,22

PATHOPHYSIOLOGY: FROM ADIPOSE TISSUE (AT) TO 
MASLD AND FROM MASLD TO DYSLIPIDEMIA
1. From AT to the liver
The development and progression of MASLD involve complex and multifactorial mechanisms. 
Several theories have been proposed, leading initially to the “two-hit” hypothesis. According 
to this theory, hepatic lipid accumulation—resulting from nutrient excess, a sedentary 
lifestyle, obesity, and/or IR—functions as a “first hit” that sensitizes the liver to further 
damage. The “second hit” triggers inflammatory cascades and fibrogenesis.23 However, this 
perspective was quickly deemed too simplistic, and as a result, the “multiple-hit” hypothesis 
has gained prominence. This updated hypothesis posits that multiple, parallel factors act in an 
insidious and synergistic manner in individuals with a genetic predisposition.24

MASLD and IR are closely linked. Even in the presence of genetic variants associated with 
liver fat accumulation (such as PNPLA3), IR seems to be a prerequisite for the development of 
MASLD.25 In most cases, the presence of overweight or obesity represents a trigger associated 
with reduced insulin sensitivity in AT. The pathways from excessive AT accumulation to its 
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dysfunction are discussed in detail elsewhere.26 However, once AT becomes dysfunctional, 
associated changes include increased rates of lipolysis (elevated plasma free fatty acids [FFAs]), 
decreased adiponectin levels, and overproduction of proinflammatory adipocytokines.27

The accumulation of intrahepatic TG is partially dependent on the supply of FFAs to hepatocytes, 
which occurs in a dose-dependent manner.28 These FFAs are primarily derived from AT lipolysis 
and (to a lesser extent) from the hydrolysis of chylomicrons (Qm), the uptake of remnant-like 
lipoprotein particles (RLP) by specific receptors, and liver de novo lipogenesis (DNL).

In cases of IR within AT and heightened lipolysis, the liver receives an increased flux of FFAs.29 
Furthermore, IR differentially impacts metabolic pathways, leading to an increase in hepatic 
DNL in these patients in the presence of hyperinsulinemia. This also contributes to a high 
hepatic FFA burden.30 Skeletal muscle IR further leads to reduced glucose uptake, resulting in 
glucose being rerouted to the liver, where it provides additional substrate for DNL.31,32

2. From the liver to dyslipidemia
Under physiological conditions, excess fat is stored in lipid droplets (LDs), which are the 
hallmark of hepatic steatosis. These droplets provide the majority of the TG for the synthesis 
and assembly of VLDL, a process regulated by microsomal transfer protein (MTP).33 In 
patients with MASLD, the process of VLDL synthesis and secretion is complex. Rather than 
responding linearly to hepatic TG content, a plateau is often reached early on, resulting in 
a lowered capacity to export TG-VLDL.34 The liver may produce large, TG-rich lipoproteins 
(TRL) as an alternative pathway for lipid secretion, primarily in MASLD cases without 
fibrosis.35 However, as the degree of fibrosis progresses, VLDL tends to display a lower mass 
and TG content. This is likely due to reduced efficiency of lipoprotein synthesis,36 and it is 
associated with the inhibitory effect of insulin on apolipoprotein (apo) B and MTP synthesis.37

However, the overproduction of TG-enriched particles accounts for only a small portion of 
the variation in triglyceridemia among patients with MASLD. The primary factor influencing 
hypertriglyceridemia in patients with obesity and IR concurrent with MASLD is the altered 
catabolism of TRL.38 The activity of lipoprotein lipase (LPL), which acts on TRL to produce 
FFA and RLP, is regulated by insulin and several other factors. Studies have demonstrated 
that in the context of IR, the expression and activity of LPL are reduced, not only in the 
bloodstream,39,40 but also in AT and the myocardium.41 This contributes to the decreased 
catabolism of TRL, leading to hypertriglyceridemia and the accumulation of RLP.

Among apolipoproteins, apoCII promotes LPL activity on VLDL and Qm, representing a 
necessary factor for enzymatic activity.42 In contrast, apoCIII, which is primarily synthesized 
in the liver and to a lesser extent in the intestine, is a well-known inhibitor of LPL activity and 
is considered an emerging CV risk factor. ApoAV exhibits complex behavior; it interacts with 
the LPL activator glycosylphosphatidylinositol-anchored high-density lipoprotein-binding 
protein 1, facilitating the enzyme’s hydrolysis of TRL.43 Additionally, apoAV may be involved 
in the intracellular lipid metabolism of TG, contributing to the assembly and stability of LDs 
as well as the storage and secretion of hepatocyte TG.44

Angiopoietin-like proteins (ANGPTL1–8) are a family of secretory glycoproteins that exhibit a 
tissue-specific expression pattern45 and influence TG metabolism and LPL function to varying 
degrees. For instance, ANGPTL3, 4, and 8 inhibit LPL in addition to performing additional 
functions in various tissues.46
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With the changes in TRL described above, significant fluctuations are also observed in 
HDL-C and LDL-C. Cholesteryl ester transfer protein (CETP) is an enzyme that facilitates the 
exchange of cholesterol esters and TGs between lipoproteins.47 When there is an increase in 
VLDL particles that contain more TGs, CETP preferentially transfers TGs to HDL and LDL 
particles.48 Subsequent hydrolysis of these TGs by various lipases leads to the formation of 
smaller HDL and LDL particles. The small HDL particles can pass through the glomerular 
filtration barrier, after which apoAI is reabsorbed in the proximal tubule and degraded.49 The 
resulting LDL-sd is highly atherogenic and represents an excellent predictor of CV risk in 
patients with IR.50

3. Role of diet and the intestine in dyslipidemia
Dysregulated pathways in other tissues, such as the intestine, could also play a key role in the 
development of dyslipidemia and MASLD. Dysbiosis, or altered intestinal flora, is associated 
with increased gut inflammation, bacterial translocation into the portal circulation, and 
endotoxemia. These conditions contribute to increased liver steatosis, inflammation, and 
fibrosis. Accompanying these phenomena is a disruption of the gut barrier, which leads to 
increased absorption of FFAs and elevated circulating levels of proinflammatory cytokines. 
Concurrently, alterations in intestinal bile acid metabolism may result in decreased levels of 
glucagon-like peptide-1 (GLP-1), impacting glucose metabolism and potentially exacerbating 
liver steatosis and fibrosis.51

The overproduction of Qm has been demonstrated in patients with IR and is associated with 
a decrease in TRL clearance.28,52 Insulin acutely suppresses the secretion of apoB-48 from the 
intestine as Qm particles through both direct and indirect pathways.53 However, in patients 
with MASLD, Qm production does not respond to the normal acute suppressive effects of 
insulin.54 In MASLD, approximately 15% of the FFA that contributes to TG synthesis in the 
liver comes from dietary FFA flux to hepatocytes.55 In cases of MASH with advanced fibrosis, 
higher serum apoB-48 levels have been observed,56 suggesting an increase in palmitic acid 
transport via Qm in these patients. Furthermore, dietary changes have been linked to the 
onset and progression of MASH.56

DIAGNOSIS: DO WE NEED ADVANCED LIPID TESTING IN 
PATIENTS WITH MASLD?
The risk of developing atherogenic dyslipidemia, characterized by a higher presence of 
atherogenic lipoprotein subfractions,9,35 is about twice as high in patients with MASLD 
compared to those without hepatic metabolic compromise.8,57 We previously mentioned a 
higher rate of LDL-sd particles in patients with MASLD, which corresponds to a higher apoB 
content relative to LDL-C levels. Furthermore, the role of TRL and RLP in the development 
of CVDs has garnered significant interest, especially regarding patients with elevated IR.36 In 
this context, it has been suggested that the standard lipid profile—which includes TC, TG, 
HDL-C, and LDL-C—should be supplemented with additional measurements. These may 
include the assessment of lipoprotein subfractions and sizes or the quantification of other 
lipid-related markers, such as apoB, apoA1, or Lp(a). The rationale behind these so-called 
advanced lipid profiles is that they may better enable prediction of residual atherogenic 
risk in patients with T2D and MASLD.58 This is particularly relevant given that elevated 
levels of these lipoproteins persist even after LDL-C has been successfully lowered through 
pharmacological interventions.59
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In addition to TC, TG, HDL-C, and LDL-C, the standard lipid profile can also be used to 
estimate non-HDL-C. This is calculated by subtracting HDL-C from TC (non-HDL-C=TC−
HDL-C), representing the cholesterol content in all atherogenic particles, including LDL, 
VLDL, intermediate-density lipoprotein, and Lp(a). When measured in a nonfasting state, 
this calculation also encompasses RLP cholesterol (RLP-C).60 Furthermore, RLP-C can be 
estimated from the standard lipid profile using the formula (RLP-C=TC–HDL-C–LDL-C). 
This includes cholesterol in TRL and, if measured nonfasting, cholesterol in Qm remnants as 
well. Although RLP-C is a component of non-HDL-C, the latter does not distinguish between 
LDL-C and RLP-C.60

The debate continues over whether additional testing for apoB, apoA1, or Lp(a) provides 
meaningfully more information in a clinical setting. The 2018 American Heart Association 
(AHA) guideline on the management of blood cholesterol61 suggests that apoB, the structural 
protein for all non-HDL lipoproteins, may be useful for the prediction of CVD, particularly in 
patients with hypertriglyceridemia—a condition common among individuals with MASLD. 
While apoB has been shown to predict CVD more effectively than LDL-C,62 studies comparing 
apoB to non-HDL-C have yielded conflicting results.62,63 However, even in those studies 
where apoB demonstrated statistical differences from non-HDL-C in predicting CV risk, the 
differences were minimal and likely of very low clinical significance.62 This, along with the 
additional costs associated with apoB testing, may limit its utility in clinical practice.

Regarding Lp(a), the 2018 AHA guideline61 considers it a risk-enhancing factor and suggests 
that it may be measured in patients with a family history of premature CVD. The primary 
limitation of this measure, however, is that it often does not alter management, as there 
are currently no effective tools to reduce Lp(a) levels. Nevertheless, as we will explore in the 
treatment section, emerging pharmacological options for MASLD include medications that 
can concurrently lower Lp(a) by approximately 30% (e.g., resmetirom).64 As such, as more 
pharmacological options to decrease Lp(a) become available, its measurement may become 
a standard part of our clinical diagnostic work-up. Until that time, a routine lipid profile 
provides most of the necessary information for clinical decisions, with additional tests 
requiring a case-by-case discussion with patients.

TREATMENT: HOW SHOULD WE APPROACH PATIENTS 
WITH MASLD AND DYSLIPIDEMIA?
1. Lifestyle intervention
Lifestyle intervention is the cornerstone of treatment for all patients with MASLD.65 Several 
randomized controlled trials have demonstrated that lifestyle interventions leading to 
weight loss result in a decrease in intrahepatic TG content.66 Studies assessing different 
interventions, such as hypocaloric diet, exercise, a combination of diet and exercise, and 
intermittent fasting, and their effects on weight and intrahepatic TG content are summarized 
in Fig. 1. A strong correlation was observed between the amount of weight loss and the 
reduction of intrahepatic TG content (r=−0.70; p<0.0001), indicating that weight loss is 
the primary factor driving improvements in hepatic steatosis. Importantly, various dietary 
strategies, including low-carbohydrate, low-fat, and Mediterranean diets, have all been 
associated with reductions in intrahepatic TG content that are proportional to the extent 
of weight loss.67 Longitudinal studies68 and randomized control trials69 that have used liver 
biopsy as an endpoint demonstrate that weight loss through lifestyle intervention also leads 
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to improvements in lobular inflammation, hepatocyte ballooning, and even liver fibrosis. 
Histological improvements in MASH appear dependent on the degree of weight loss, 
with reductions in steatosis and inflammation associated with more than 5% weight loss, 
resolution of MASH with more than 7% weight loss, and regression of liver fibrosis with 
more than 10% weight loss.68 Despite the key role of weight loss in managing MASLD, several 
studies have also indicated that exercise alone and changes in macronutrient composition 
(even when isocaloric) can influence intrahepatic TG accumulation without significant 
weight loss.70

A well-recognized advantage of lifestyle intervention and weight loss is its holistic approach, 
with benefits extending beyond liver health to include improvements in hypertension, 
diabetes control, sleep apnea, and other conditions.71 In this context, dyslipidemia is 
also likely to improve with weight loss, particularly through reductions in plasma TG 
and increases in HDL-C.72 The effects of weight loss on LDL-C are less straightforward.72 
Nonetheless, certain foods, especially those high in unsaturated fats and low in saturated and 
trans fats, have been shown to contribute to reductions in LDL-C levels.73

2. Bariatric surgery
In 1991, the National Institutes of Health Consensus Statement set the criteria for bariatric 
surgery eligibility at a body mass index (BMI) of ≥40 kg/m2 or ≥35 kg/m2 with accompanying 
comorbidities.74 More recently, the American Society for Metabolic and Bariatric Surgery 
updated its guidelines in 2022, recommending bariatric surgery for patients with a BMI of 
≥35 kg/m2 regardless of comorbidities. It also suggested that patients with a BMI between 30–
34.9 kg/m2 who have obesity-related comorbidities and have not achieved significant weight 
loss through non-surgical methods could benefit from the procedure.75 Patients with MASLD 
or MASH would be included in this latter category. Furthermore, bariatric surgery has been 
linked to a decrease in the number of CV deaths and a lower incidence of CV events among 
adults with obesity.76 A meta-analysis that evaluated lipid level changes up to 4 years after 
bariatric surgery found improvements in dyslipidemia. However, the timing of improvements 
varied among different lipid fractions, indicating that multiple concomitant mechanisms 
may play a role.77 While changes in TG and HDL-C are only observed after weight loss has 
been achieved (at 3 months and 1 month post-surgery, respectively), persistent changes in TC 
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and LDL-C begin immediately after Roux-en-Y gastric bypass (RYGB), suggesting a weight-
independent mechanism.77

According to a 2019 meta-analysis, bariatric surgery leads to the resolution of MASH in nearly 
80% of patients after 1 year of follow-up, and approximately 40% of patients experience 
significant improvements in fibrosis stage.78 The weight loss associated with bariatric surgery 
corresponds with a marked reduction in the hepatic expression of various proinflammatory 
adipocytokines and mediators of fibrogenesis.79 Sleeve gastrectomy (SG) and RYGB, the two 
primary bariatric surgical techniques, result in comparable weight loss and increases in GLP-1 
levels.80 A recent study that compared these surgical approaches to lifestyle intervention in 
patients with biopsy-proven MASH found that, among 288 patients, those assigned to RYGB 
and SG had higher rates of MASH resolution without worsening fibrosis (56% and 57%, 
respectively) compared to those undergoing lifestyle intervention (16%, both p<0.001) after 1 
year of follow-up.81 This study also suggests that, at least in the short term, the outcomes for 
RYGB and SG are similar.

3. Optimizing diabetes control in patients with MASLD and dyslipidemia
The close link between T2D and MASLD is undeniable.82 Patients with T2D exhibit a 
higher prevalence of MASLD and experience a more rapid progression to liver fibrosis and 
cirrhosis.83 Furthermore, individuals with MASLD are at an increased risk of developing T2D. 
However, it remains incompletely understood whether hyperglycemia itself contributes to the 
development and progression of MASLD, or if IR, a common factor in both conditions, is the 
primary driver of the progression of T2D and MASLD. In children with T2D, the initiation of 
glucose-lowering medications that do not have known effects on the liver, such as metformin 
and/or insulin, has led to improvements in hemoglobin A1c (HbA1c) levels without 
significant changes in aspartate transaminase (AST) or alanine transaminase (ALT) levels.84 
While the debate continues, most medications for T2D that are known to affect the liver 
either improve insulin sensitivity (e.g., pioglitazone) or induce weight loss (GLP-1 agonists 
and sodium-glucose cotransporter 2 [SGLT-2] inhibitors). These medications not only lower 
glucose levels but also exert significant impacts on MASLD and lipid profiles (Table 1). 

Metformin
General consensus supports the concept that metformin, despite its insulin-sensitizing 
effect in the liver, does not substantially impact liver histology in patients with MASLD.1 
Consequently, it is not recommended solely for treating MASLD in patients with T2D. 
Although its use has been linked to some minor improvements in hepatocyte ballooning in a 
randomized controlled trial85 and to significant resolution of MASH in an uncontrolled, open-
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Table 1. Effects of glucose-lowering medications approved for type 2 diabetes in the treatment of MASLD and 
their impact on lipid profiles in randomized placebo-controlled clinical trials
Drugs Improves 

steatosis
Improves  

MASH
Delays progression  

of fibrosis
Reduces CV 
outcomes

TG LDL HDL

Metformin - - - - ↓ ↓ ↑
DPP-IV-I - - - - ↓ ↓ ↔
Pioglitazone + + + + ↓ ↔ ↑
GLP-1RAs + + + + ↓ ↓ ↔
SGLT-2is + ?* ?* + ↓ ↑ ↑
MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated 
steatohepatitis; CV, cardiovascular; LDL, low-density lipoprotein; HDL, high-density lipoprotein; DPP-IV-I, 
Dipeptidyl peptidase 4 inhibitors; GLP-1RAs, glucagon-like peptide-1 receptor agonists; SGLT-2is, sodium-
glucose cotransporter-2 inhibitors.
*Conflicting data.



label study,86 the overall results have been inconsistent. It is possible that the minor effects 
of metformin could be partly attributable to weight loss.86 In terms of its impacts on the lipid 
profile, metformin may slightly reduce LDL-C levels, a finding observed in patients with T2D, 
as well as in those with T1D and individuals without diabetes.87-89 However, this reduction is 
modest, and its clinical implications remain uncertain.

Pioglitazone
Pioglitazone is a thiazolidinedione that primarily acts as a peroxisome proliferator-activated 
receptor (PPAR)-gamma agonist, with some additional PPAR-alpha agonistic activity.90 
Its main function is to promote insulin sensitivity in AT through its PPAR-gamma effects. 
However, it also appears to exert various pleiotropic effects on the liver, such as improving 
mitochondrial function, which may account for its benefits in patients with MASH.91 In 
contrast to another PPAR-gamma agonist, rosiglitazone,92 pioglitazone has demonstrated a 
significant impact on liver histology, indicating a mechanism of action that extends beyond 
PPAR-gamma agonism. Furthermore, PXL065, a deuterium-stabilized (R)-enantiomer of 
pioglitazone that lacks PPAR-gamma activity yet retains non-genomic effects, has recently 
been shown to ameliorate hepatic steatosis, necroinflammation, and fibrosis in patients with 
MASH.93 This suggests that many of the hepatic actions of pioglitazone may not be mediated 
by PPAR-gamma agonism.

Regardless of the specific mechanism, pioglitazone has been demonstrated in multiple 
clinical trials to significantly reduce liver fat, improve metabolic variables such as HbA1c and 
IR, and resolve MASH along with other histological improvements.94,95 Consequently, it has 
been recommended in all current guidelines for the management of patients with T2D and 
MASH.1,96 Debate has continued over whether pioglitazone possesses antifibrotic effects. 
Results from individual randomized controlled trials have been mixed, with some indicating 
no improvement in fibrosis94 and others showing a modest benefit.95,97 A meta-analysis of 
all randomized controlled trials that assessed histological changes following pioglitazone 
treatment reported a significant improvement in liver fibrosis, regardless of the stage of 
fibrosis at baseline.98

In addition to its benefits for diabetes control and MASH, pioglitazone has also been shown 
to improve the lipid panel, an effect not observed with rosiglitazone.99 This improvement may 
be attributed to pioglitazone's partial PPAR-alpha agonist effect. Specifically, pioglitazone 
leads to a significant decrease in TG (−40 mg/dL; 95% confidence interval [CI], −53, −26 
mg/dL) and an increase in HDL-C (4.6 mg/dL; 95% CI, 3.6, 5.5 mg/dL), with no significant 
impact on LDL-C levels.99 However, it does reduce LDL particle size and number.100 
Furthermore, several studies have demonstrated that pioglitazone reduces CVD and CV 
events in patients, with or without diabetes.101,102

GLP-1 agonists with or without GIP agonism
Initially considered for the management of T2D, GLP-1 agonists—with or without GIP 
agonism—have become a cornerstone in the pharmacological treatment of obesity.103 
Liraglutide and semaglutide, both GLP-1 agonists, as well as the more recently approved 
tirzepatide (a GLP-1 and GIP agonist), have been authorized for obesity management due to 
the significant and sustainable weight loss observed in clinical trials. Beyond their impressive 
metabolic profile, which includes weight loss and significant HbA1c reduction, these agents 
have consistently demonstrated improvements in CV outcomes in patients with T2D.104,105 
More recently, semaglutide has even been shown to improve CV outcomes in patients 
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without diabetes.106 Given these findings, GLP-1 agonists should be considered early in the 
treatment of patients with T2D, particularly those with obesity or with a history of CVD. Since 
a significant proportion of the patients with or without diabetes in these trials likely had 
MASLD, it is reasonable to infer that the CV benefits may extend to patients with MASLD.

These compounds have also been shown to produce hepatic improvements in patients 
with MASLD and MASH.57 Because hepatocytes exhibit no apparent expression of GLP-
1 or GIP receptors, it is widely accepted that the hepatic effects of GLP-1/GIP agonists 
are primarily mediated indirectly through weight loss. Liraglutide and semaglutide have 
been evaluated in randomized controlled trials for their effects on histological changes 
compared to placebo,107,108 while until recently, tirzepatide had only been assessed using 
imaging as the primary outcome in patients with MASLD.109 However, a recent study by 
Loomba et al, showed that among 190 patients followed for 52 weeks, all doses of tirzepatide 
were associated with significant MASH resolution and improvement in fibrosis stages.110 
In the largest randomized controlled trial involving a GLP-1 agonist to date,108 a daily 
dose of semaglutide successfully led to the resolution of MASH. However, no significant 
improvements in liver fibrosis were observed compared to placebo, although the progression 
of fibrosis was delayed. Another study administering the standard weekly dose to patients 
with MASH and advanced fibrosis at baseline also did not demonstrate significant changes in 
liver fibrosis compared to placebo.111 The lack of improvement in liver fibrosis in these trials 
may be attributed to the relatively short duration of therapy or the advanced stage of liver 
fibrosis at baseline.112

Regarding their effects on the lipid profile, the changes are relatively minor and are 
likely driven primarily by weight loss, although some specific effects on lipids have been 
suggested.113 Overall, GLP-1 agonists are associated with modest reductions in LDL-C and 
TG, while having a neutral effect on HDL-C. More pronounced effects have been noted on 
postprandial TG, although the underlying mechanism remains unclear.113

Dipeptidyl peptidase 4 (DPP-IV) inhibitors
Unlike GLP-1 agonists, and perhaps due to their neutral effect on weight, DPP-IV inhibitors 
have not demonstrated positive outcomes in MASLD or MASH,114,115 nor have they shown any 
CV protection.116,117 Given that the combination of DPP-IV inhibitors and GLP-1 agonists is 
not recommended because of the lack of additional benefits118 and the potential for increased 
side effects,119 the use of DPP-IV inhibitors in T2D is generally reserved for patients who 
cannot tolerate GLP-1 agonists, or when GLP-1 agonists are unavailable or contraindicated. 
Several meta-analyses have reported on the effects of DPP-IV inhibitors on lipid profiles,120,121 
revealing associations with statistically significant reductions in TC, LDL, and TG, with 
decreases of 5%–18%, 4%–16%, and 7%–20%, respectively.

SGLT-2 inhibitors
Like GLP-1 agonists, SGLT-2 inhibitors have gained popularity in the treatment of patients 
with T2D because of their favorable CV outcomes.122,123 Additionally, they offer other key 
benefits such as nephroprotection and a reduction in hospital admissions due to heart 
failure.124,125 However, their impact on liver health has not been as extensively studied as that 
of GLP-1 agonists.

Most of the current evidence for SGLT-2 inhibitors in patients with MASLD is derived from 
studies that assess changes in liver fat using imaging techniques.126-128 Collectively, these 
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studies indicate that SGLT-2 inhibitors lead to an approximate 25% reduction in liver fat 
in patients with T2D and MASLD. A more recent study has demonstrated that this effect is 
consistent in patients without T2D,129 suggesting that the reduction in liver fat is not solely 
dependent on glucose control. However, this level of liver fat reduction is somewhat less 
than that observed with pioglitazone or the more potent GLP-1 agonists. Consequently, 
it remains uncertain whether the degree of liver fat reduction achieved with SGLT-2 
inhibitors is sufficient to produce histological improvements. Information on histological 
changes following treatment with SGLT-2 inhibitors is primarily sourced from small open-
label studies.130,131 Although the histological improvements reported in these studies are 
significant, more robust research is required to draw definitive conclusions about the specific 
role of SGLT-2 inhibitors in the management of MASH.

Several meta-analyses have been published that demonstrate the effects of SGLT-2 inhibitors 
on lipid profiles.132,133 Although these inhibitors are associated with significant increases in 
total, LDL, and HDL cholesterol, the relative changes are modest (0%–3%, 2%–4%, and 
5%–9%, respectively). Additionally, plasma TG levels are reduced by approximately 2%–11% 
following treatment with SGLT-2 inhibitors.133

In summary, several medications currently used for managing T2D have been shown to 
benefit patients with MASLD, including those with more severe liver disease, namely MASH 
(Table 1). While SGLT-2 inhibitors may reduce liver fat, their effects on liver histology remain 
unclear. Consequently, for patients with T2D and MASH, particularly those with clinically 
significant fibrosis (stage ≥2 on liver biopsy) or at risk for liver fibrosis based on imaging 
or noninvasive scores, pioglitazone and potent weekly GLP-1 agonists (i.e., semaglutide or 
tirzepatide) should be considered the preferred treatment options.

We recommend semaglutide or tirzepatide over GLP-1 agonists in general because the 
largest randomized controlled trials with positive histological outcomes have utilized these 
drugs.108,110,111 However, as previously noted, the benefits are primarily associated with weight 
loss, suggesting a class effect, with more pronounced benefits from the more potent GLP-1 
agonists. Consequently, patients with higher BMI are likely to experience greater hepatic 
benefits. The efficacy of these medications in lean individuals with MASLD has yet to be 
established. For patients with a lower BMI and advanced liver disease, pioglitazone may be a 
preferable alternative. Lastly, similar to the management of T2D and hypertension, treating 
MASLD and/or MASH may necessitate a combination of multiple drugs, as monotherapy may 
be insufficient.

4. Addressing dyslipidemia: can we also help the liver?
The use of lipid-lowering medications is recommended for patients with MASLD due to their 
increased CV risk. The approach to treating dyslipidemia in these individuals should align 
with the standard care for any patient at elevated CV risk. Accordingly, the prescription of 
statins should be based on the patient's previous history of CVD, their calculated 10-year 
CV risk, and/or LDL-C levels.61 For patients with high-risk atherosclerotic CVD and LDL-C 
levels of 70 mg/dL or higher, the addition of other therapies to statin treatment should be 
considered.61 In the context of hypertriglyceridemia, which is common in patients with 
MASLD, the use of TG-lowering medications, such as fibrates, is advisable only for those 
at risk of pancreatitis with TG levels exceeding 500 mg/dL. Prior to using these drugs, 
secondary causes should have been excluded and lifestyle modifications attempted.
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The specific effects of these agents on the liver have been extensively studied. Although 
they are generally deemed safe for this population, they have not demonstrated consistent 
improvements in liver histology (Table 2).

Statins
Statins play a central role in both primary and secondary CV prevention due to their 
established efficacy and safety in patients with or without T2D.61 As previously mentioned 
in this review, the presence of MASLD is linked to heightened risk of CVD and mortality.134 
Furthermore, CV mortality is the leading cause of death in patients with MASLD. 
Consequently, aggressive treatment of all CV risk factors, including dyslipidemia, is crucial in 
these patients. 

Patients with MASLD are typically excellent candidates for initiating statin therapy due 
to their abnormal cardiometabolic profile. Despite this, the overall rate of statin use 
among these patients remains relatively low.135,136 This may be attributed to several factors, 
including healthcare providers' concerns about the potential for exacerbating liver disease. 
Nevertheless, it is well-established that the risk of hepatotoxicity associated with statins 
is quite low, making them safe for use in patients with MASLD and MASH.137 Although 
large randomized controlled trials specifically evaluating the efficacy of statins in patients 
with biopsy-proven MASH are lacking, some prospective studies have indicated potential 
benefits in reducing steatosis and improving the NAFLD activity score, as summarized in 
a recent meta-analysis.138 However, the meta-analysis did not report any effects on liver 
fibrosis. Furthermore, observational studies in the general population have shown that statin 
users experienced a 42% decrease in the incidence of hepatocellular carcinoma and a 28% 
reduction in liver-related mortality.139 These findings are consistent with those observed in a 
separate cohort of patients diagnosed with MASLD.140

Thus, the initiation of statins in these patients should be encouraged when indicated.

Fibrates
Fibrates are activators of PPAR-α that serve as anti-hyperlipidemic agents, primarily reducing 
serum TG levels.141 Large-scale clinical trials have demonstrated that fibrate treatment, 
which lowers TG levels and raises HDL-C levels, does not reduce atherosclerotic CVD risk in 
patients with T2D.142,143 Recently, the PROMINENT study showed that pemafibrate did not 
reduce CV events despite the decrease in TG levels.144

In preclinical studies, pemafibrate was shown to reduce serum TG levels and increase 
HDL-C more effectively than fenofibrate. This was achieved by inhibiting VLDL secretion 
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Table 2. Effects of lipid-lowering medications in the treatment of MASLD and their impact on lipid profiles in 
randomized placebo-controlled clinical trials
Drugs Improves 

steatosis
Improves 

MASH
Delays progression of 

fibrosis
Reduces CV 
outcomes

TG LDL HDL

Statins ?* - - + ↓ ↓↓ ↑
Fibrates - - - - ↓↓ ↓ ↑
EPA-ethyl ester ?* - - + ↓ ↓ ↑
Ezetimibe - - - + ↓ ↓ ↑
PCSK9-I - - - + ↓ ↓↓ ↑
CV, cardiovascular; EPA, Eicosapentaenoic acid; HDL, high-density lipoprotein; LDL, low-density lipoprotein; 
MASLD, metabolic dysfunction-associated steatotic liver disease; MASH, metabolic dysfunction-associated 
steatohepatitis; PCSK9-I, proprotein convertase subtilisin/kexin type 9 inhibitors; TG, triglycerides.
*Conflicting data.



and promoting TG clearance through the activation of LPL.145 Furthermore, pemafibrate 
increased the expression of the VLDL receptor, leading to improved catabolism of VLDL and 
its remnants.146 Pemafibrate also attenuated postprandial hyperlipidemia by inhibiting the 
expression of the intestinal cholesterol transporter Niemann-Pick C1-Like 1 (NPC1L1) mRNA 
in the small intestinal mucosa of mice fed a high-fat diet.147 This attenuation may be due 
to the suppression of chylomicron synthesis and secretion by inhibiting NPC1L1-mediated 
cholesterol absorption, as well as the activation of PPARα in the small intestines. Clinically, 
pemafibrate significantly decreased RLP-C, non-HDL-C, and levels of apolipoproteins B, 
apoB-48, and apoC-III. From both a basic and clinical perspective, the effects of pemafibrate 
on MASLD/MASH included reduced liver function test values and improvements in fatty liver, 
ballooning, inflammation, and fibrosis.148

Despite demonstrating excellent results in mouse models of MASH,149 the use of fibrates 
in humans with MASLD has been underwhelming due to their inability to reduce hepatic 
steatosis.150,151 However, research conducted by Nakajima et al. revealed a reduction of liver 
stiffness, as measured by magnetic resonance elastography, that persisted for 72 weeks. 
Notably, this discrepancy between the impact on hepatic steatosis and the effects on liver 
inflammation/fibrosis has been similarly noted in a mouse model treated with pemafibrate.152 
Whether these findings will correspond to histological improvements in human biopsy 
studies is yet to be determined.

Omega-3 polyunsaturated fatty acids (omega-3 PUFAs)
Eicosapentaenoic acid (EPA) is the sole component of omega-3 PUFAs that is used clinically 
as a single-agent treatment for hypertriglyceridemia, and its serum TG-lowering effect has 
been clinically established.153 A study evaluating the lipoprotein flux following 8 weeks of 
therapy with 1,080 mg of EPA and 720 mg of docosahexaenoic acid (DHA) in patients with 
T2D demonstrated that the reduction in TG levels was due to decreased production of VLDL 
apoB-100.154

Despite the TG reduction, several randomized controlled trials using a combination of 
EPA and DHA have failed to demonstrate CV benefits.155 However, two distinct randomized 
controlled trials using isolated EPA indicated CV protection: the Reduction of Cardiovascular 
Events with Icosapent Ethyl–Intervention Trial (REDUCE-IT) and the Japan EPA Lipid 
Intervention Study (JELIS).156,157 In the REDUCE-IT trial, 8,179 patients on statins with 
established atherosclerotic CVD or with T2D and at least one other CV risk factor were 
randomized to receive either 4 g of icosapent ethyl (IPE, a highly purified EPA ethyl ester) or 
a placebo. The use of IPE was associated with a ≤20% reduction in TG levels and a significant 
25% improvement in the composite CV outcome.88 In the JELIS findings, the reduction in CV 
outcome against placebo was similar to the REDUCE-IT trial, at around 19%.157

Patients with MASH exhibit a higher liver ratio of omega-6 (n-6) to omega-3 (n-3) PUFAs 
compared to healthy controls. This suggests that either low n-3 PUFA or high n-6 PUFA 
content may play a role in the pathophysiology of the disease.158 Kinetic studies have 
demonstrated that high doses of EPA can significantly reduce the production of apoB-48-
containing lipoproteins from the intestine.159 In animal models, omega-3 PUFAs have been 
shown to decrease hepatic lipogenesis and inflammation, downregulate sterol regulatory 
element-binding protein 1c, and activate PPAR-alpha, leading to fatty acid oxidation and a 
reduction in steatosis.160 However, multiple meta-analyses evaluating the use of omega-3 in 
the treatment of MASH have concluded that, although some studies report decreases in ALT 
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and AST and even a small reduction in liver fat, histological outcomes remain unchanged 
after treatment.161

Treatment with omega-3 PUFAs for 6 months significantly improved hepatic proteomic 
and plasma lipidomic profiles, markers of lipogenesis, endoplasmic reticulum stress, 
and mitochondrial functions in patients with MASH.162 However, histological data in 
these patients remained unchanged compared to the placebo group, complicating the 
interpretation of the true implications of these changes.163

Ezetimibe
Ezetimibe, a cholesterol absorption inhibitor, reduces LDL-C levels and has been associated 
with a decrease in CV events.164

Ezetimibe is used to treat patients with elevated cholesterol levels. In a mouse model of 
hepatic steatosis induced by a high-fat diet in C57BL/6J mice,165 ezetimibe therapy prevented 
hepatic steatosis and decreased hepatic IR. However, in the MOZART trial, ezetimibe did not 
significantly reduce hepatic steatosis as assessed by magnetic resonance imaging-derived 
proton density fat fraction.166 While meta-analyses have reported that ezetimibe improves 
histology and hepatic steatosis,167,168 most of the included studies were small, open-label, or 
uncontrolled. It is currently accepted that ezetimibe does not provide any specific hepatic 
benefit in patients with MASLD, but it can be used safely in this population. When treating 
patients with MASLD, the potential side effects of ezetimibe on glucose metabolism should 
always be considered. Nevertheless, a recent meta-analysis reported that ezetimibe does not 
affect glucose or HbA1c levels, demonstrating the safety of ezetimibe treatment for patients 
with MASLD.169,170

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors
The discovery of PCSK9 has rapidly led to the development of PCSK9 inhibitors for 
the pharmacological management of hypercholesterolemia and CVDs. PCSK9 human 
monoclonal antibodies, which efficiently block the extracellular PCSK9 pathway, have 
significantly reduced major CV events in dedicated CV outcome trials when used in addition 
to statin therapy.171 Some observational studies suggest a potential link between PCSK9 and 
hepatic steatosis. For instance, Ruscica et al.172 found that circulating PCSK9 levels were 
positively associated with histological markers of MASH, such as steatosis severity, lobular 
inflammation, hepatocyte ballooning, and liver fibrosis. Conversely, Baragetti et al.173 found 
that carriers of the R46L PCSK9 loss-of-function variant had a two-fold higher prevalence 
of hepatic steatosis. Recently, Wargny et al.,174 in a multicentric observational study, showed 
that plasma concentrations of PCSK9 were not associated with the severity of liver steatosis 
or histological markers of MASH in a high-risk population. In a real-world study, a mean 
6-month follow-up with PCSK9 inhibitors showed an increase in ALT and AST by 5.8 mg/
dL (p=0.037) and 6.2 mg/dL (p=0.008), respectively, from baseline values, indicating that 
PCSK9 inhibitors should be used cautiously with follow-up liver function tests.175 However, 
a large meta-analysis of randomized controlled trials did not find any significant elevation 
in AST or ALT levels.176 Moreover, despite concerns that PCSK9 inhibitors may induce mild 
hyperglycemia, a meta-analysis including 163,688 patients without diabetes receiving either 
high or low intensity LDL reduction showed that neither LDL reduction nor PCSK9 inhibitor 
use was associated with new-onset diabetes.177
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5.  Future drugs for managing MASLD and MASH: can they concurrently 
improve lipid control?

Resmetirom
Resmetirom has recently become the first medication approved by the US Food and Drug 
Administration (FDA) for the management of MASH. This compound is a liver-specific 
thyroid hormone receptor-β agonist. It is believed that by selectively activating the hepatic 
thyroid receptor, resmetirom stimulates mitochondrial biogenesis and increases hepatic 
β-oxidation, thereby reducing the accumulation of lipotoxic intermediates. Additionally, it 
facilitates the uptake of LDL by the liver, which favorably impacts lipid profiles.64

In the MAESTRO-NASH trial (n=966),178,179 resmetirom was associated with a significant 
resolution of MASH when compared to placebo. The resolution rates were 30% for the 100 
mg daily dose and 26% for the 80 mg daily dose, versus 10% in the placebo group (p<0.001 
for both). Additionally, the drug demonstrated a significant improvement in fibrosis stage 
(100 mg group, 26%; 80 mg group, 24%; placebo, 14%; p<0.001 for both comparisons with 
placebo). The most frequently reported side effects were diarrhea and nausea. Furthermore, 
in the MAESTRO-NAFLD-1 trial, a daily dose of 100 mg resmetirom led to a significant 
reduction in secondary outcomes related to dyslipidemia. Among participants with baseline 
TG greater than 150 mg/dL, the analysis revealed reductions of 13.9% in LDL-C, 16.5% in 
apoB, and 23.4% in TG.64 For patients with LDL-C levels above 100 mg/dL, resmetirom 
treatment resulted in a 22% reduction in LDL-C, a 19.7% reduction in Lp(a), and a 17.6% 
reduction in apoCIII.

Due to its beneficial effects on liver function and lipid profiles, resmetirom could become an 
important therapeutic option for patients with MASH. It has the potential to simultaneously 
treat MASH and improve the lipid profiles of patients. Nevertheless, the CV safety and 
potential benefits of resmetirom need to be confirmed in larger randomized controlled trials.

Lanifibranor
Lanifibranor, a pan-PPAR agonist targeting alpha, delta, and gamma receptors, 
demonstrated promising results in a phase 2b randomized controlled trial by improving the 
resolution of MASH and liver fibrosis when compared to a placebo.180 At a higher dose of 
1,200 mg daily, 24 weeks of lanifibranor treatment led to the resolution of MASH without 
worsening fibrosis in 49% of patients, versus 22% in the placebo group. Additionally, 48% of 
patients experienced an improvement in fibrosis stage without MASH worsening, compared 
to 29% with placebo. In terms of lipid profile, the drug significantly reduced TG levels and 
increased HDL-C levels, showing a similar pattern to that observed with pioglitazone. 

Obeticholic acid
Obeticholic acid is a synthetic farnesoid X receptor agonist approved for treating primary 
biliary cholangitis. Although initial results in patients with MASH were promising,181 it 
remains uncertain whether the FDA will grant approval for its use in this patient population. 
The drug demonstrated significant improvement in liver fibrosis when compared to a 
placebo; however, the resolution of MASH did not differ significantly from the placebo group. 
Additionally, there are concerns regarding the tolerability and safety of obeticholic acid. 
Notably, pruritus is a common side effect that may persist throughout treatment. The drug 
also increases LDL-C levels while causing a slight decrease in HDL-C and TG concentrations. 
The implications of these lipid changes are not yet understood.182 Furthermore, there have 
been instances of hepatic decompensation in patients with primary biliary cholangitis and 
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primary sclerosing cholangitis, which warrant further investigation before the medication 
can be recommended for broader use.

Efruxifermin
FGF-21 is a key regulator of glucose and lipid metabolism. Efruxifermin is composed of a 
human IgG1 Fc domain fused to a modified human FGF21, acting as an agonist for FGFR1c, 
FGFR2c, and FGFR3c. Unlike other FGF-21 agonists that have not demonstrated beneficial 
metabolic or hepatic effects, efruxifermin has shown improvements in lipid profiles. This 
includes reductions in LDL-C and TG levels, along with an elevation in HDL-C levels.183 In a 
phase 2a randomized controlled trial involving patients with MASH, efruxifermin significantly 
reduced liver fat, as measured by magnetic resonance imaging-proton density fat fraction.184

CONCLUSION

Numerous existing medications have demonstrated promising results in improving liver 
histology and slowing the progression of liver fibrosis in affected patients. Additionally, some 
of these medications have displayed concomitant improvements in lipoprotein profiles. In 
contrast, lipid-lowering medications have not shown significant liver-specific benefits in 
MASLD; however, they are considered safe and, when indicated, should be recommended for 
patients with MASLD due to their elevated CV risk. Many drugs currently in development for 
MASLD also offer potential benefits to lipid profiles. Consequently, the approach to managing 
patients with MASLD and dyslipidemia may change substantially in the foreseeable future.
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