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Background. Many severe acute respiratory syndrome coronavirus 2 infections have not been detected, reported, or isolated. 
For community testing programs to locate the most cases under limited testing resources, we developed and evaluated quantitative 
approaches for geographic targeting of increased coronavirus disease 2019 testing efforts.

Methods. For every week from December 5, 2021, to July 23, 2022, testing and vaccination data were obtained in ∼340 cities/ 
communities in Los Angeles County, and models were developed to predict which cities/communities would have the highest test 
positivity 2 weeks ahead. A series of counterfactual scenarios were constructed to explore the additional number of cases that could 
be detected under targeted testing.

Results. The simplest model based on most recent test positivity performed nearly as well as the best model based on most 
recent test positivity and weekly tests per 100 persons in identifying communities that would maximize the average yield of 
cases per test in the following 2 weeks and almost as well as the perfect knowledge of the actual positivity 2 weeks ahead. In the 
counterfactual scenario, increasing testing by 1% 2 weeks ahead and allocating all tests to communities with the top 10% of 
predicted positivity would yield a 2% increase in detected cases.

Conclusions. Simple models based on current test positivity can predict which communities may have the highest positivity 
2 weeks ahead and hence could be allocated with more testing resources.
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During the coronavirus disease 2019 (COVID-19) pandemic, in-
fected individuals without access to testing and unaware of infec-
tion status may have further transmitted the disease. Therefore, 
testing is a key disease control strategy. However, from February 
2020 to September 2021, it was estimated that only 1 out of 4 se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infections in the United States was detected and reported [1].

When cases surge, community testing (eg, free tests available 
for residents provided by the government partnering with local 
test providers) may be scaled up to detect as many cases as pos-
sible and minimize further transmissions. With limited re-
sources, testing resources are often prioritized to those who 
are most likely positive (eg, showing symptoms or exposed) 

[2]. Du et al. [3] formalized test allocation as an optimization 
problem and showed that more cases could be detected if allo-
cation was optimized based on symptom severity and age 
group. However, our interest is in prioritizing the communities 
most likely to have the highest test positivity, as this is the quan-
tity that predicts how many cases will be identified per unit test-
ing effort. Within a jurisdiction, a test allocation strategy 
pertaining to communities should be developed.

Motivated by the need for an efficient test allocation strategy to 
identify as many cases as possible under resource constraints, we 
explored how basic testing data and simple statistical models could 
be used to inform targeted testing. We used data from cities/com-
munities in Los Angeles (LA) County to develop models to predict 
test positivity in each city/community 2 weeks ahead. We also 
hypothesized that targeted testing could detect more cases overall 
by prioritizing the cities/communities with the highest model- 
predicted test positivity compared with nontargeted testing.

METHODS

Study Population

LA County is the largest county in the United States by popu-
lation size and has a total of 346 cities/communities as statisti-
cal areas for data collection (hereafter referred to as 
communities) [4]. We obtained daily testing and vaccination 
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data for each community corresponding to individual residen-
tial address from the LA County Department of Public Health. 
Long Beach and Pasadena were not included in the data be-
cause they have their own health departments. The 2018 pop-
ulation estimates were used as denominators for calculating 
the cumulative incidence per 100 residents and the number 
of tests per 100 residents [5], while the 2019 population esti-
mates were used to calculate vaccination coverage [6].

Testing Data

All cases were determined using the case definition from The 
Council of State and Territorial Epidemiologists (CSTE) [7, 8]. 
A confirmed case could be defined by a positive nucleic acid am-
plification test result, and a probable case could be defined by a 
positive diagnostic antigen test performed by a provider certified 
under the Clinical Laboratory Improvement Amendments [9]. 
Confirmed (polymerase chain reaction) and probable cases (anti-
gen) were summed together as the total number of positive tests in 
the data set, which was used as the numerator for computing test 
positivity. LA County cases included reinfections, defined as a re-
peat positive ≥90 days after a previous confirmed case. Testing 
data were compiled from multiple data sources including elec-
tronic lab reporting and medical provider reporting. However, 
at-home and over-the-counter tests were not reported to the 
Department of Public Health.

Inclusion and Exclusion Criteria

Data from June 13, 2021, to July 23, 2022, were included in the 
analysis, covering both the Delta and Omicron waves 
(Supplementary Figure 1). Communities were highly heteroge-
neous in population sizes (interquartile range [IQR], 3592–41  
342; range, 0–220 424). We also excluded communities in the 
lowest 5% of population sizes (<300 individuals) because of 
the small number of tests conducted and therefore the highly 
unstable positivity. In addition, weeks with <50 tests were ex-
cluded to avoid extreme values in test positivity, but other 
weeks with ≥50 tests were included in the same community.

Targeted Testing Strategies

Three hypothetical strategies of geographic targeting for inten-
sified COVID-19 testing were evaluated. Communities were se-
lected for intensified testing based on the following strategies: 
(1) model-predicted test positivity 2 weeks forward, (2) random 
selection, or (3) perfect knowledge into the future—that is, the 
observed test positivity 2 weeks forward (not feasible in prac-
tice). For each week, the top 10% of communities with the high-
est predicted or observed positivity were selected (except for 
random selection) for intensified testing, with the same percent 
increase in testing for all the selected communities. We con-
structed counterfactual scenarios to evaluate the strategies by 
calculating the additional number of cases detected and num-
ber needed to test (NNT) per case detected in the targeted 

communities (see descriptions below). Model-based geographic 
targeting was expected to yield more additional cases compared 
with random selection but fewer cases compared with perfect 
knowledge into the future.

Statistical Models for Model-Based Geographic Targeting

For the model-based geographic targeting for strategy 1, we de-
veloped regression models using the most recent week (t) to 
predict weekly test positivity for each community 2 weeks 
ahead (t + 2) and select communities with top 10% predicted 
positivity for intensified testing. Predictors in the models in-
cluded (1) test positivity of the most recent week (t), (2) the 
most recent 3-week average test positivity (t − 2, t − 1 and t), 
(3) testing rate of the most recent week (weekly tests per 
100 persons at t), (4) cumulative proportion of residents 
(aged 12 years and older) who were fully vaccinated as vac-
cines were widely available for this group from mid-May 
2021 [10], and (5) cumulative proportion of residents who 
tested positive relative to the population (per 100 persons). 
Variable definitions are in Supplementary Table 1.

The 3 statistical models were as follows: (1) the “simplest” model 
with 1 predictor—the most recent positivity (%posi,t), (2) the 
“reduced” model with 2 predictors (%posi,t and tests per 100i,t), 
and (3) the “full” model with all predictors. Variables in the re-
duced model were selected because they were more accessible 
compared with other variables, while the variable (%posi,t) in the 
simplest model was selected because this variable was the strongest 
single predictor among all variables. All models were also evaluated 
by replacing the most recent positivity (%posi,t) with the average 
positivity over the past 3 weeks (Avg%posi,t−2tot). To account for 
the temporal autocorrelation of the residuals, different specifica-
tions were tested: (1) ordinary least squares (OLS), (2) second- 
order autoregressive (AR-2) process, and (3) mixed-effects models 
with community-specific random intercepts.

Model Development and One-Step Forward Forecasting

A total of 58 weeks of data were used in this analysis. From June 
13, 2021, to December 25, 2021 (Delta wave: 28 weeks), data 
were used for developing the initial models, which were tested 
on the first week of the Omicron period. One-step forward fore-
casting was performed by refitting the models every week for the 
Omicron wave (December 26, 2021, to July 23, 2022: 30 weeks) 
using all previous data (both Delta and Omicron) to predict 2 
weeks forward from each week of testing (Supplementary 
Figure 1). The Delta- and Omicron-predominant periods 
were defined based on sequencing results from the California 
Department of Public Health [11]. The steps in model develop-
ment and evaluation are outlined in Supplementary Figure 2A.

Model Evaluation

To explore how many additional cases could have been detect-
ed under targeted testing, a series of counterfactual scenarios 
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was constructed (Supplementary Figure 2B): (1) for each week 
t, 10% of communities with the highest predicted positivity 2 
weeks ahead (% 􏽤posi,t+2 for week t + 2) were selected; (2) the to-
tal number of tests in LA County increased by 1%, and all the 
additional tests were allocated to the selected communities in 
t + 2, such that all the selected communities had tests increased 
by a common multiplier m% compared with tests in t; (3) as-
suming that positivity is unaffected by the relatively small in-
crease in testing, the hypothetical number of cases could be 
modeled by multiplying the observed test positivity in t + 2 
with the hypothetical number of tests allocated in step 2. 
The total number of cases in LA County 2 weeks ahead is 
given by, for targeted communities j and untargeted communi-
ties i, Σj(100 + m)% ·%pos j,t+2 · tests j,t + Σi%posi,t+2 · testsi,t . 
The models were evaluated based on 2 metrics: (1) the total num-
ber of additional cases 2 weeks ahead, Σjm% ·%pos j,t+2 · tests j,t , 
and (2) the NNT for each case, Σjtests j, t+2

Σjcases j,t+2
, in the selected commu-

nities j.

Evaluation of Targeted Testing Strategies

For the other 2 strategies (ie, random selection and perfect 
knowledge of future positivity), the same evaluation procedures 
were applied as with the model-based strategy. Specifically, we 
used the 2 metrics defined above to evaluate the 3 testing strat-
egies for each of the 30 weeks from December 26, 2021, to July 
23, 2022. We expected that random allocation of additional tests 
(ie, 10% of the communities were randomly selected for inten-
sified testing) would be the worst-case scenario that gave a lower 
bound on the number of additional cases that could be detected, 
while selecting the communities based on the perfect knowledge 
of the future test positivity would give an upper bound. The best 
model was the model that can maximize the number of addi-
tional cases (defined in metric 1) given the number of additional 
tests. Analyses were conducted using R 3.6.2 (R Foundation for 
Statistical Computing, Vienna, Austria) [12]. Data and R codes 
are available at https://github.com/c2-d2/LAC_testing.

RESULTS

Descriptive Statistics

A total of 295 communities were included in the training set 
(the Delta period) and 303 in the validation set (the Omicron 
period). On average, each community administered 8 tests 
weekly per 100 persons for the Delta period and 9 tests weekly 
per 100 persons for the Omicron period. Weekly positivity was 
2.8% on average for the Delta period and 7.8% for the Omicron 
period.

Model Predictions

Current positivity (%posi,t) and 3-week average positivity 
(Avg%posi,t−2tot) were the strongest predictors for positivity 2 
weeks ahead (Supplementary Table 2). Supplementary 

Figure 3 shows estimates from all models that include %posi,t 

(and Avg%posi,t−2tot in Supplementary Figure 4). From 
December 26, 2021, to July 23, 2022 (the Omicron wave), the 
simplest model with test positivity alone (%posi,t) correctly pre-
dicted ∼48% of communities with top 10% positivity 2 weeks 
ahead. During the model evaluation period, the best model 
that maximized the average additional cases was the mixed- 
effects model with %posi,t and tests per 100i,t as predictors, 
but this model performed only slightly better than the simplest 
model by successfully predicting ∼49% of the communities. In 
general, predictive performances were similar across models 
(Supplementary Figure 5).

Additional Cases Under Targeted Testing

In the counterfactual scenario, testing was increased for the next 
2 weeks in communities with the top 10% predicted positivity. 
Throughout the testing period, 2% more cases could be detected 
in a week on average if testing were increased by 1%, and all the 
additional tests were allocated to the selected communities. In 
general, the number of additional cases was greater in weeks 
with higher positivity (Figure 1). For example, 4000 more cases 
could be detected in the week of January 16, 2022, if 1% more 
tests (n = 17 200) were performed. Of note, in Figure 1, the 
curves for the simplest and best models are indistinguishable 
in most weeks, slightly below the best possible model perfor-
mance (using perfect knowledge of future positivity).

Compared with selecting communities based on perfect 
knowledge of future positivity, %posi,t+2, the simplest model us-
ing most recent positivity, %posi,t, could detect as many as 89% 
of achievable additional cases (Table 1). Table 1 shows the per-
formance of the simplest and best models. Supplementary 
Table 3 shows results for all models.

Reduction in NNT in the Communities Under Intensified Testing

Targeting communities with top 10% predicted positivity could 
reduce the NNT in those communities. If tests were increased 
by 1% in LA County and all tests were allocated to selected 
communities under the simplest or the best model, NNT in 
the selected communities could be reduced by ∼50% on aver-
age compared with randomly selecting the communities for in-
creased testing (Figure 2). Note that this NNT considers the 
10% selected communities with increased testing only. 
Figure 2 and Supplementary Table 3 show the NNT under dif-
ferent test allocation strategies.

DISCUSSION

We found that test positivity was temporally correlated—high 
positivity in the most recent week indicated a high positivity 
2 weeks ahead. Through our counterfactual scenarios, we 
showed that by targeting communities with high positivity in 
the most recent week, detected cases could increase by 1% to 
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3% 2 weeks later, on average about 2% given a 1% increase in 
testing, meaning that these simple approaches can roughly 
double the yield of additional tests. The simplest model using 
test positivity alone performed as well as the best model in find-
ing more positive cases and nearly as well as perfect knowledge 
of future positivity. This simple method could inform a timely 
prioritization of testing resources to identify cases and mitigate 
future transmissions. By defining the goal of identifying com-
munities with high future test positivity, we do not make the 
claim that test positivity is a good indicator of actual disease 

burden, as this relationship has been shown to be quite depen-
dent on multiple factors; rather, we optimize for test positivity 
because it is the quantity that predicts the number of cases that 
can be identified per unit testing effort.

This approach is robust to changes of positivity during differ-
ent phases of an epidemic. That the communities with the high-
est positivity in the most recent week were likely to have 
comparatively high positivity in the next 2 weeks was true in 
both cases when test positivity for overall LA County was on 
an uptrend or a downtrend. To illustrate this phenomenon, 

Table 1. Mean Number of Additional Cases and Number Needed to Test in the Selected Communities Under Different Test Allocation Strategies, 
December 26, 2021, to July 23, 2022

No. of Additional Cases NNT

Mean No. of 
Additional Cases

Relative to Perfect Knowledge 
of Future Positivity

Mean 
NNT

Relative to Perfect Knowledge 
of Future Positivity

Simplest model 
most recent positivity (%posi,t ) only (OLS)

985 0.887 19.3 1.263

Best model 
most recent positivity (%posi,t ) + most recent tests per 
100 (testsper100i,t ) 
(mixed-effects model with community-specific intercepts)

994 0.895 19.0 1.241

Perfect knowledge of future positivity (%posi,t+2) 1110 1.000 15.3 1.000

Random selection 565 0.509 43.8 2.864

Abbreviations: NNT, number needed to test; OLS, ordinary least squares.

Figure 1. Number of additional cases in a week under the counterfactual scenario where tests were increased by 1% in LA County compared with 2 weeks back, with all 
additional tests allocated to communities in the top 10% of predicted positivity. The blue line (the uppermost line) represents the number of additional cases if communities 
were ranked based on perfect knowledge of future test positivity, %posi ,t+2. While requiring knowledge of the future and thus not practicable, this line serves as the upper 
bound of the best possible prediction. The purple line represents the yields if communities were randomly selected and serves as the lower bound. The red and green lines 
represent the number of additional cases that could be detected if communities were selected based on the best and the simplest models, respectively. Test positivity was 
based on testing data from LA County Department of Public Health.
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Supplementary Figure 6 shows the epidemic curves for commu-
nities that had the highest cumulative percent testing positive. 
At the start of the Omicron wave, positivity increased exponen-
tially, but it declined slowly after the peak. Therefore, commu-
nities with the highest positivity were likely to continue to top 
the list in terms of positivity in the next few weeks, even when 
overall LA County positivity was on a downtrend. If positivity 
continued to decrease in the next few weeks in a community be-
ing targeted, due to either increased testing or reduced inci-
dence, then that area would eventually be dropped from the 
list as the model would pick up some other community with a 
higher predicted positivity. The model corrected itself by mak-
ing new predictions every week and updating the list based on 
the most recent data.

The simple method is ready to use by any local public health de-
partment. This method does not require modeling expertise or 
complex inaccessible data and provides quick and useful predic-
tions on where the positivity could be highest in the next 2 weeks. 
However, test allocation strategies informed by complex dynamic 
transmission models that predict the full epidemic trajectory 
would require detailed data for model parameterization. 
Empirical data are often unavailable to account for factors includ-
ing vaccination coverage, frequency of breakthrough infections, 
waning immunity, and compliance with mitigation measures. 
Using this simple method, nearly 90% of additional cases could 
be detected when compared with perfect knowledge of future pos-
itivity. In this case, it is difficult to imagine that the resources 

devoted to more elaborate approaches would be justified for a fur-
ther 10% improvement in outcome, which is the upper bound 
based on perfect knowledge of the future. In addition, this simple 
approach could substantially improve test efficiency, as the target-
ed areas based on the simplest model had half the NNT of random-
ly selected areas. More generally, NNT is a useful measure of test 
efficiency and could be widely used to inform test allocation 
strategy.

There is a trade-off between accuracy and the prediction ho-
rizon—the longer the prediction horizon, the less accurate the 
prediction. Out of logistical considerations, the models were 
used to predict positivity 2 weeks ahead, as it might take ≥2 
weeks for the implementation team to increase testing in a 
community. Model performance decreased slightly when the 
prediction horizon increased to 3 weeks, but the model would 
still be useful for informing test allocation (Supplementary 
Figure 5, Supplementary Table 3).

This study has policy implications beyond the COVID-19 
pandemic, and our model could be applied in other infectious 
disease outbreaks. In general, targeted testing is needed to save 
resources by prioritizing tests to those with the greatest needs 
and to maximize the efficiency of testing [13]. For other diseas-
es like HIV where testing services are limited in some countries, 
targeted testing is also recommended by prioritizing communi-
ties with high HIV positivity [14]. We proposed and verified a 
straightforward approach to target geographical communities 
using a relatively minimal set of data (eg, the number of tests 

Figure 2. NNT in the selected communities under intensified testing, December 26, 2021–July 23, 2022. The blue line represents NNT in the targeted communities selected 
based on perfect knowledge of future test positivity, %posi ,t+2, which serves as the lower bound for NNT (ie, the most efficient scenario). The purple line (the uppermost line) 
represents the expected NNT under random selection of communities for targeted testing (ie, the least efficient) and serves as the upper bound. Abbreviation: NNT, number 
needed to test.
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per 100 persons and positivity by statistical areas) to prioritize 
testing for transmissible diseases.

If identifying subpopulations with inadequate testing, finer 
data disaggregated by age, race and ethnicity, or other demo-
graphic characteristics would be needed to detect any disparity 
in access to tests or test positivity [15]. If such data were avail-
able, the test allocation strategy could take any disparity into ac-
count and address undertesting by looking at test positivity in 
those subgroups. An ecological analysis on testing trends by 
ZIP code in New York City showed the total number of tests 
per capita was higher in ZIP codes with higher percentages of 
the White population during the early stage of the pandemic 
(March 2 to April 6, 2020) [16]. Since August 2020, all certified 
laboratories are required to report demographics for every test 
[17], but those fields may have a high proportion of data miss-
ing unless there is a proper enforcement of the mandate [15].

This study has some limitations. The first limitation is that 
we did not include at-home or over-the-counter tests as they 
were not reported to the Department of Public Health. 
Impacts of the unreported tests depend on positivity and how 
well the positivity correlates with community testing results. 
The model evaluation period from December 26, 2021, to 
July 23, 2022, covered a time period in which at-home tests 
were more widely available, and the models performed well 
during that period. If temporal correlation between positivity 
in the communities is weakened by the wide availability of 
at-home tests over the course of the pandemic, we would expect 
the efficiency of the targeting strategy to decrease. Therefore, 
this approach is expected to be more useful when at-home test-
ing is rare or in settings where the testing rate is more stable 
over time. Second, we assumed that positivity was unaffected 
by the number of tests. This assumption was plausible when 
tests and cases increased by a small amount compared with 
the large number of untested infections. A 1% increase for test-
ing in LA County was equivalent to a 12%–45% increase of test-
ing in the top 10% communities varying by week. We were not 
able to test this assumption empirically (ie, to test whether the 
1% increase in tests was large enough to bring down the posi-
tivity). In Supplementary Figure 7, percent change in positivity 
is plotted against percent change in tests (compared with the 
previous weeks) for communities with top 10% cumulative in-
cidence. However, in the majority of weeks from December 26, 
2021, to July 23, 2022, test positivity did not decline when the 
number of tests increased from 0% to 50% compared with 
the previous week (upper bound corresponding to 1% increase 
in overall LA County). In practice, if positivity decreased as a 
result of intensified testing, the chance of the community being 
targeted in the coming week would also decrease. Ultimately, 
an increase in tests should be determined by resource availabil-
ity, and here the 1% increase served as an example only. Third, 
we did not explore any disparity in testing and positivity across 
race, ethnicity, or socioeconomic status. Our simple goal was to 

predict in which communities the additional tests would yield 
the most positive cases. Further analysis would be needed to 
identify any systematic disparity in testing and to guide test 
allocation. Importantly, our model is just one piece of informa-
tion that can be used to inform decisions and may be consid-
ered in conjunction with other factors such as community 
vulnerability and high-priority population subgroups. Future 
research could consider how to incorporate these additional 
factors into quantitative approaches. Fourth, we did not con-
sider the spatial correlation of the positivity between communi-
ties. However, given the good performance of the model with 
test positivity as the sole predictor (the simplest model), spatial 
correlation may not add much to the predictive performance. 
Another limitation is that the location indicator of each test 
corresponded to the residential address of each individual, 
rather than the testing site. This indicator added complexity 
to implementing targeted testing, as the communities where 
people lived might not be the same communities as were tested. 
Finally, we excluded small communities with a population size 
below the 5th percentile (ie, <300) and weeks with <50 tests. 
However, in practice, health authorities should look into rea-
sons for the high positivity in those geographic areas, and 
more tests may be needed.

CONCLUSIONS

We showed that simple models based on current positivity and 
proportion of tests relative to population size are useful for 
identifying communities with high positivity in the next 2 
weeks. In particular, more tests can be allocated to communi-
ties with the highest current positivity. Using this approach 
to allocate tests could detect more cases and save resources. 
Although targeting communities with the highest predicted 
positivity is shown to be an efficient strategy, health authorities 
should be cognizant of the community vulnerability and any 
systematic disparity within the communities when allocating 
tests.
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