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Abstract: The steady-state visual evoked potential (SSVEP), measured by the electroencephalograph
(EEG), has high rates of information transfer and signal-to-noise ratio, and has been used to construct
brain–computer interface (BCI) spellers. In BCI spellers, the targets of alphanumeric characters are
assigned different visual stimuli and the fixation of each target generates a unique SSVEP. Matching
the SSVEP to the stimulus allows users to select target letters and numbers. Many BCI spellers
that harness the SSVEP have been proposed over the past two decades. Various paradigms of
visual stimuli, including the procedure of target selection, layout of targets, stimulus encoding,
and the combination with other triggering methods are used and considered to influence on the
BCI speller performance significantly. This paper reviews these stimulus paradigms and analyzes
factors influencing their performance. The fundamentals of BCI spellers are first briefly described.
SSVEP-based BCI spellers, where only the SSVEP is used, are classified by stimulus paradigms and
described in chronological order. Furthermore, hybrid spellers that involve the use of the SSVEP
are presented in parallel. Factors influencing the performance and visual fatigue of BCI spellers are
provided. Finally, prevailing challenges and prospective research directions are discussed to promote
the development of BCI spellers.

Keywords: brain–computer interface (BCI); speller; steady-state visual evoked potential (SSVEP);
hybrid; paradigm; triggering method

1. Introduction

The brain–computer interface (BCI) is a communication system that allows humans
to send messages and commands to the outside world without depending on peripheral
nerves and muscles [1]. The BCI can be used for control and communication such that
it provides a mode of communication for patients with motor neuron diseases (MNDs)
such as amyotropic lateral sclerosis (ALS) and locked-in syndrome (LIS), to significantly
improve their quality of life. Currently available devices for the BCI based on the electroen-
cephalograph (EEG) are the most widely used because EEG signals can be easily collected
on the subject’s scalp.

The BCI speller is a typical visual application of the BCI, and was among the earliest
implementations of the concept. The first BCI speller was proposed by Farewell and
Donchin [2]. It was based on event-related potential (ERP) P300, and featured a row and
column (RC) paradigm. The potential of the ERP P300 in EEG signals is positive, and
occurs at about 300 ms, with differences in the specific time of its occurrence, after stimulus
caused by an event with a small probability. This potential is prominent in the central
partial region of the brain. For a few years after its development, most BCI spellers that
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were proposed were based on the P300. In addition to the visual P300, the auditory P300 [3]
and tactile P300 [4] were added to the design of the BCI. A problem with the P300 speller is
its slow speed. As every output needs to traverse all stimuli of a holonomic trial, users need
to wait for a long time. In addition, the amplitude of the potential of the P300 decreases
with increasing use time and reduces its accuracy of classification [5].

The steady-state visual evoked potential (SSVEP) was proposed to design a high-speed
BCI speller to solve the above problems. The signals of the SSVEP is part of the visual
evoked potential (VEP), which is a kind of co-frequency and harmonic response caused by
a stimulus at a specific frequency. It is usually evoked in a fixed and independent position
of the occipital region of the brain and is measured by EEG equipment. The principle of
the SSVEP-based BCI speller is to present a series of visual stimuli at specific frequencies to
users and detect the SSVEP evoked by them through frequency domain analysis to find the
user’s target. Other than that, SSVEP is also applied to BCIs for control, such as control
wheelchairs [6] and robotic arms [7].

The advantage of the SSVEP-based BCI speller is that it does not require calibration
or training for its users, and does not rely heavily on a large amount of training data.
However, the frequencies that can be used to evoke the SSVEP are limited by the refresh
frequency of the screen. Another problem is that the SSVEP-based BCI speller induces
visual fatigue in the user, where such fatigue is not severe but cannot be eliminated [8]. A
performance comparison between the SSVEP-based BCI speller and the P300-based speller
has yielded differences between LIS patients and healthy subjects [9,10].

To improve the performance of BCI spellers, a number of spellers based on other
triggering methods other than that mentioned above have been proposed. These methods
include the motion-onset VEP (m-VEP) [11–13], code VEP (c-VEP) [14], and motor imagery
(MI) [5,15–17]. The m-VEP-based BCI speller is also known as the N200 speller and is
characterized by improved user experience, but is slow [13]. The c-VEP speller delivers
better performance than the SSVEP speller but is not as user friendly [18]. BCI spellers
based on MI spellers allow users to select the desired target through the imagination of
the movement of limbs which induces a sensorimotor rhythm (SMR), such as by moving a
cursor [5], and are independent of external stimuli. SMR is widely used in BCIs for control,
such as being used for continuous control of the robotic device [19], and achieves good
performance. Eye-tracking (ET) is also often used as the method to trigger visual speller
applications, although it does not belong to the category of BCI [20]. The ET speller uses a
camera to monitor the users’ eye movements to determine the target of their gaze.

BCI spellers developed using the SSVEP have received considerable research attention,
and are being developed rapidly. A comprehensive review of BCI spellers has been
provided in Reference [21], and reviews of specific classification algorithms, data analytics,
and language models can be found in Reference [22–24], respectively. The paradigm of
visual stimuli, including the procedure of target selection, layout of targets, manner of
encoding of the stimuli (i.e., frequency and phase), and their combination with other
triggering methods has an important influence on the performance of the BCI speller.
However, no review of this work has been provided in the literature to date.

This review focuses on the stimulus paradigm and performance of BCI spellers that
use the SSEVP. The prevalent SSVEP speller is classified and discussed according to the
stimulus paradigm, and methods to optimize the performance of the SSVEP speller are
discussed. The main purpose is to update the reader on progress in the area, summarize
the trends and available challenges, and present some directions for future research in
the area.

The remainder of this paper is organized as follows: Section 2 introduces the basic
contents of the SSVEP speller, including the system architecture and process, and methods
of SSVEP acquisition and detection as well as the performance evaluation. Section 3
presents several representative paradigms of SSVEP-based BCI spellers. Section 4 illustrates
the paradigms of the SSVEP combined with hybrid BCI spellers, and Section 5 details factors
influencing their performance and the problem of visual fatigue in the user. The trends in
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the area, outstanding challenges, and directions for future research are given in Section 6.
Section 7 summarizes the conclusions of this study.

2. BCI Speller Based on SSVEP
2.1. System Architecture and Process

The architecture and process of an SSVEP-based BCI speller is shown in Figure 1. The
SSVEP speller requires four devices: those for stimulus presentation, data acquisition, data
processing and feedback control. In applications, stimulus presentation, data processing
and feedback control can be carried out on the same computer, but we consider them
separately to facilitate discussion according to their process and function. This architecture
is similar to that in the BCI2000 system proposed in Reference [25].

Figure 1. The architecture and process of a steady-state visual evoked potential (SSVEP)-based
brain–computer interface (BCI) speller. The solid lines in the figure represent the data flow within
the system and the dashed lines represent the interaction between the system and the user. EEG
indicates electroencephalograph; GUI indicates graphical user interface.

The stimulus presentation device presents stimuli to the users that can evoke the
SSVEP. The data acquisition device records and digitizes the user’s scalp EEG that contains
SSVEP so that it can be processed and analyzed by the data processing device. The
data processing device converts digitized EEG signals into commands that can control
the system. These commands are sent to the feedback control device, which performs
functions corresponding to the commands received from the data processing device and
gives feedback to the user. It presents the non-visual feedback (such as sound) directly
through other devices and visual feedback on the graphical user interface (GUI) presented
on the stimulus presentation device to the user.

Users need to look at the target presented on the GUI that can evoke the SSVEP signal
when they use the speller. During this period, the user’s scalp EEG is recorded by the
data acquisition device and sent to the data processing device in digital form. These EEG
data need to be preprocessed first, where this generally includes artifact removal, baseline
correction, filtering, and data segmentation. The preprocessed data are then used for SSVEP
detection. The results of detection are classified by a classifier to determine whether the
user was staring at the target and identify the one at which they were staring. The results of
classification are translated into commands according to the system design and sent to the
feedback control device. The controller in the feedback control device changes the content
presented on the GUI according to the received commands and presents new stimuli or
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visual feedback to the users, such as displaying the selected characters in a text box so
that they can proceed to the next operation. Furthermore, this device can also control
the system states, such as pause, continue, or terminate. Other feedback such as sound
will also be presented by other devices which are not presented in this figure. Feedback
methods are proved to be a factor affecting performance [26,27], which will be mentioned
in later sections.

2.2. SSVEP Acquisition

The SSVEP usually appears in the occipital region of the brain [28]. Most studies
have used four to 11 electrode channels in the occipital region for data acquisition. Some
studies have shown that single-channel acquisition using two electrodes is also feasible for
SSVEP detection [29], whereas others have shown that SSVEP signals can also be collected
from hairless regions of the body (including the neck, behind the ears, and face), but
the signal-to-noise ratio (SNR) in this case is lower than that extracted from the occipital
region [30].

2.3. SSVEP Detection Methods

The principle of SSVEP detection is to find the crest of the wave generated by an
induced frequency and its harmonics through a frequency domain analysis of preprocessed
EEG signals. The first method of detection used to this end was power spectrum den-
sity analysis (PSDA) as represented by a fast Fourier transform (FFT) [31,32]. With the
subsequent introduction of new algorithms, PSDA has been shown to be inferior to the
spatial filtering method, including the common spatial pattern (CSP) [33], minimum energy
combination (MEC) [34], and canonical correlation analysis (CCA) [35]. CCA has attracted
the most attention among these methods because of its high robustness and efficiency. It
also outperforms the combination of linear discriminant analysis (LDA) and the support
vector machine (SVM) in the SSVEP detection of the SSVEP speller [36]. Algorithms for
SSVEP detection proposed in the same period as the spatial filtering method include the
multivariate synchronization index (MSI) [37], common feature analysis (CFA) [38], and
likelihood ratio test (LRT) [39], and have delivered good performance.

In later research, many improved algorithms based on CCA have been proposed.
Reference [40] compared eight methods of SSVEP detection based on CCA: (1) the standard
CCA [35], (2) cluster analysis of CCA coefficients (CACC) [41], (3) phase-constrained CCA
(PCCA) [42], (4) multi-way CCA (MwayCCA) [43], (5) L1-reguralized multi-way CCA
(L1-MCCA) [44], (6) multi-set CCA (MsetCCA) [45], (7) individual template-based CCA
(IT-CCA) [46], and (8) a combination of the standard CCA and IT-CCA [47].The authors
concluded that the latter achieves the best performance. Chen et al. proposed a method
to incorporate components of the fundamental and harmonic frequencies to improve the
detection of SSVEPs, named filter bank canonical correlation analysis (FBCCA) [48]. FBCCA
was found to be superior to the standard CCA in an experiment on 10 subjects, and was
long considered to be the best method for SSVEP detection. Reference [49] proposed a
hybrid method that combines SSVEP data and FBCCA, named the ensemble/extended
CCA, that recorded the best performance of available methods at the time.

In recent studies, task-related component analysis (TRCA) has been shown to be
superior to the extended CCA in terms of accuracy and speed [50]. In addition, maximal-
stage-locking value and minimal-distance spatial filter bank (MP and MD) have been
proposed to optimize FBCCA, and can outperform the extended CCA [51]. In addition,
deep learning methods have been used for SSVEP detection [29,52]. PodNet (a novel deep
convolutional neural networks, DCNN) has been shown to be superior to FBCCA while
using fewer channels [52].

Several datasets can be used for offline research, such as a 40-class SSVEP dataset
recorded from 35 subjects [53] and a 12-class SSVEP dataset recorded from 10 subjects [40].
The frequencies as well as the phases are different in the dataset proposed in Reference [53].
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Nakanishi et al. proposed a method of transfer learning across devices and montages [54,55]
that significantly improves the availability of these datasets.

2.4. Performance Evaluation

Two important parameters are used to evaluate the performance of the BCI speller:
accuracy and information transfer rate (ITR).

In most studies, accuracy has been defined as the ratio of the number of correct target
selections to the number of total selections attempted by the system. It can be calculated
as follows:

Acc =
X1

X
× 100% (1)

In Equation (1), Acc represents accuracy, X1 represents the number of correct inputs,
and X represents the total number of inputs. The accuracy value can be used to evaluate the
performance of the classification algorithm of a speller, which is an important parameter in
applications. A higher accuracy can reduce the number of repeated user inputs to improve
the efficiency of the system as well as user experience.

Although accuracy is an important index, the speller should also consider the speed
of input of the system in applications. Wolpaw introduced the ITR to the evaluation of BCI
systems [56] as a parameter for performance evaluation. The ITR (in bits per minute, bpm)
can be written as follows:

ITR =
B
T

(2)

where B is defined as the amount of information transmitted in each round of experiments,
and is written as

B = log2 N + P log2 P + (1 − P) log2
1 − P
N − 1

(3)

where N is the number of categories in the system that can output commands and P is the
probability of correctly selecting the target option. T is the time needed for each round of
experiments. In different studies, researchers have used different definitions of T. Some
did not consider the time taken by the subjects to select characters and the interval between
rounds of selection, while others have calculated these. The former is better suited to
assessing the algorithm while the latter focuses on system performance in applications.

There are three factors that affect the ITR: accuracy, the number of targets, and the
time required. Some researchers have used Nykopp’s ITR [57] to evaluate the performance
of the results of research, but this is not typical. Others have used their own standards
to evaluate performance, such as the practical ITR (PITR) [58] and information gain rate
(IGR) [59].

3. SSVEP-Based BCI Spellers

In early studies on the SSVEP-based BCI speller, most researchers used only a small
number of low-frequency stimuli as they were limited by the frequency of refresh of the
stimulus presentation devices. Hardware to present external stimuli independently of the
computer monitor and the frequency–phase hybrid coding paradigm were subsequently
proposed to enable the speller to present a large number of targets at the same time. The
one-stage paradigm was applied to the design of the SSVEP speller. With the development
of high-frequency stimulation technology, high-frequency stimuli were used in the SSVEP
speller to improve the SSVEP SNR and reduce user fatigue. We subdivide the SSVEP speller
according to paradigms and review each in chronological order, as shown in Figure 2.
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Figure 2. Subdivisions of the steady-state visual evoked potential (SSVEP) based BCI speller according to paradigms. RC:
row and column; FPHC: frequency–phase hybrid coding.

3.1. Bremen Speller

The Bremen speller is a well-known paradigm of the SSVEP speller that presents all
targets on the screen and uses five boxes to control the cursor. The five boxes flicker at
different frequencies to evoke different SSSVEP responses, as shown in Figure 3. The user
selects a target character by moving the cursor from one to five times. The relevant study
achieved an average accuracy of 92.84%, and average ITRs of 22.6 bpm at the command
level and 17.4 bpm at the speller level [60].

Figure 3. Graphical user interface (GUI) of the Bremen speller. © 2009 IEEE. Reprinted, with
permission, from [60].

In a subsequent study, Volosyak et al. improved the standard Bremen speller by
adding a dictionary for spelling prediction [61]. Based on the standard Bremen speller, a
“Go” box was added to the user interface. Compared with the standard Bremen speller,
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this had higher ITRs of 32.71 bpm at the command level and 29.98 bpm at the speller level.
In Reference [62], average ITRs of the Bremen speller of 61.70 bpm and 92.8 bpm were
recorded for the fastest subject after improvement, where this speller had the highest ITRs
at the time. However, in subsequent studies, multi-stage SSVEP spellers were shown to
provide a more efficient paradigm for users [63].

3.2. Multi-Stage SSVEP Speller

The multi-stage SSVEP speller has different paradigm designs, but they all have the
following characteristics: the user interface contains two or more stages and the number of
targets in each stage is relatively small. Compared with one-stage SSVEP spellers, such
spellers have the advantage of reducing the encoding of the frequency. However, this
paradigm also reduces the efficiency of input of the user because they can select only the
target character in the last stage. Compared with the Bremen speller, its performance is
stabler because the number of operations is certain (the number of operations is equal
to the number of layers in general), and it can realize the “what you see is what you
choose” design.

The SSVEP speller proposed in Reference [64] is considered to be a classic multi-stage
SSVEP speller that consists of three stages with five commands per stage: three commands
to choose a letter, a “Previous Action” command to cancel the previous command, and a
“Delete Character” command to delete the last written character, as shown in Figure 4. Users
can find the characters they want by using one command in each of the three layers [64].

Figure 4. The graphical user interface (GUI) of one multi-stage steady-state visual evoked potential (SSVEP) speller as an
example. © 2010 IEEE. Reprinted, with permission, from [64].

Saboor et al. proposed a three-stage SSVEP web speller that has four commands per
stage and 27 character targets, and used the MEC to detect the SSVEP. The average accuracy
and ITR of this study were 92.25% and 37.62 bpm, respectively [65]. In later research,
spelling prediction based on the Leipzig Corpora Collection was added to this web speller
to yield an average accuracy of 92.5% and an ITR of 18.8 bpm [66].

Nguyen et al. proposed a three-stage SSVEP speller with five commands per layer
and 57 character targets. A 1D CNN was used to detect the SSVEP in single-channel
EEG data. The average accuracy and ITR hence obtained were 97.38% and 48.99 bpm,
respectively [29].

Other studies have proposed multi-stage SSVEP speller paradigms to improve perfor-
mance. Sadeghi et al. used commonly occurring characters in the first stage of the interface
and infrequently occurring characters in the second stage to improve the efficiency of the
speller [67]. To estimate the ITR more accurately, a new definition of it was provided by
them. Cao et al. investigated a sliding control paradigm (ITRs of 23.45 bpm), and proved
that it outperforms the traditional static protocol on a two-stage SSVEP number speller
(ITRs of 19.85 bpm) [68].

3.3. One-Stage SSVEP Speller

Compared with the multi-stage SSVEP speller, the one-stage SSVEP speller has the
advantage that users need only one command to select their target characters, which often
implies higher input efficiency in applications. However, as the one-stage paradigm needs
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to present all targets at one level, it incurs stringent requirements on the design of the
frequency of the stimulus, especially when using a stimulus presentation device with a
refresh frequency of 60Hz. Many studies have considered this problem, and one proposed
solution is to add a phase difference to stimuli at the same frequency [47].

3.3.1. QWERTY Paradigm

Hwang et al. proposed an SSVEP speller that uses a QWERTY-style keyboard with
30 LEDs flickering at different frequencies. As shown in Figure 5a, the frequencies of flicker
of the 30 LEDs are all different, and range from 5.0 Hz to 7.9 Hz with a span of 0.1 Hz. This
speller achieved an average accuracy of 87.58% and an ITR of 40.72 bpm. In addition, they
showed that a difference of frequency of 0.1 Hz presented by the paradigm was useful for
the detection of the SSVEP [69].

Figure 5. The paradigms of one-stage steady-state visual evoked potential (SSVEP) spellers. (a) The frequency arrangement
of the QWERTY paradigm. Reprinted from [69], with permission from Elsevier. (b) Graphical user interface (GUI) of the
SSVEP speller using the RC paradigm. © 2015 IEEE. Reprinted, with permission, from [70]. (c) Mixed frequency and phase
coding. © 2014 IEEE. Reprinted, with permission, from [71]. (d) Joint frequency and phase coding. © 2014 IEEE. Reprinted,
with permission, from [71].

3.3.2. RC Paradigm

The row column (RC) paradigm is widely used in the P300 speller. Characters in the
same row or column flash simultaneously, and the system can determine the character
selected by the user through coordinates of the row and column. Yin et al. implemented
an SSVEP speller by using the RC normal form, as shown in Figure 5b. In this speller,
characters in each row and column use the same stimulus frequency to find the row and
column of the target, and the alternating flashing of columns and rows can be used to
determine the position of the target. When dynamic optimization was used, this speller
achieved a significantly higher practical ITR (PITR) than that achieved by using the fixed
optimization approach [70].



Brain Sci. 2021, 11, 450 9 of 25

3.3.3. Frequency–Phase Hybrid Coding (FPHC) Paradigm

As both frequency and phase have been shown to be identifiable, they can be used to
present more identifiable stimuli to the user without increasing the number of stimulus
frequencies. Both four (with a span of 0.5π) and five phases (with a span of 0.4π) have been
shown to be identifiable in Reference [71], which means that four or five times the original
number of target stimuli can be presented by keeping the number of stimulus frequencies
constant. The FPHC paradigm can thus reduce the number of stimulus frequencies required
by the one-stage SSVEP speller on the premise of maintaining the number of targets.

Nakanishi et al. proposed an SSVEP speller based on an FPHC paradigm. In this
speller, eight frequencies and four phases were encoded in a hybrid manner to present 32
stimuli to the user. This study achieved an average 91.35% of accuracy and an average
166.91 of bpm ITR, which was the record at the time [47]. Chen et al. proposed a 40-target
speller [71] and compared the performance of two hybrid target-coding strategies on it:
(1) mixed frequency and phase coding (using eight frequencies and five phases), and (2)
joint frequency and phase coding (using 40 frequencies and four phases), as shown in
Figure 5c,d. The results show that mixed frequency and phase coding was superior, with
an average accuracy of 89.21% and an ITR of 172.37 bpm.

3.4. Specific Paradigms

Some studies have proposed unique SSVEP spellers that do not belong to the above
two kinds of spellers. Cao et al. proposed an SSVEP speller with 42 targets in three pages.
Each page had 16 flickers arranged in a 4×4 matrix, including 14 flickers to directly select
characters and two to select pages. Ideally, users can select the target in up to two steps. The
average expense and ITR of this speller were 98.78% and 61.64 bits/min, respectively [72].

The DTU (Technical University of Denmark) speller featured three consistent areas on
the screen. The area to the left was a two-stage SSVEP speller with seven flickers. Each
corresponded to a group of seven symbols, and was active during the character selection
stage. The middle area contained a constantly active flicker to choose the stage and a
text box to display the entered characters. The area to the right contained five flickers
presenting words suggested from a built-in language model dictionary. They were active
when the user switched between the stages of word selection. The average accuracy and
ITR of this speller were 90.81% and 21.94 bits/min, respectively [73].

Akce et al. developed an SSVEP speller with adaptive queries [59]. There were 2925
distinct range queries and 20,475 character queries. It queried the given dataset dynamically
according to the content entered by the user and the content in the query pool until the user
selected the next character. A wider and more accurate spelling prediction is important for
improving the efficiency of the speller. This study used a newly defined parameter, named
the information gain rate (IGR), to evaluate the performance of the speller. This speller
achieved an IGR of 11.93 cpm.

To enhance the practicability of the SSVEP speller in application scenarios, a BCI speller
that can directly output words [74] or sentences [75] has also been designed. Although it is
not as flexible as the method that directly selects the character, it has high practical value
in specific application scenarios, such as simple question-answering systems and alarm
systems that use only a few commands.

3.5. High-Frequency Stimuli-Based SSVEP Speller

Compared with the low-frequency stimulus paradigm, the high-frequency paradigm
has better and more stable classification performance [76–78]. Won et al. proved this by
comparing high-frequency stimuli (26–34.7 Hz) with low-frequency stimuli (6–14.9 Hz) in
a scene by using the QWERTY paradigm. The difference was obtained because the SSVEP
evoked by the high-frequency stimuli was not easily disturbed by waves in the resting
state. Chabuda et al. proposed a two-stage SSVEP speller by using high-frequency stimuli.
This speller allows the user to select eight frequencies at stimuli in the range 30–39 Hz, and
achieved an average accuracy of 89% and an ITR of 36 bpm, which was the highest speed
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of all high-frequency SSVEP-based BCIs at the time [79]. In a later study on evaluating the
performance of different frequency bands in the case of high-frequency stimuli, 35–40 Hz
was found to be the frequency band that yielded good performance, with an accuracy of
99.2% and ITR of 67.1 bpm on an SSVEP speller [80].

4. SSVEP-Based Hybrid BCI Spellers

The SSVEP can be combined with other triggering methods to form a hybrid speller,
such as by using other EEG signals (e.g., the ERP P300), eye-tracking (ET), electrooculogram
(EOG), and electromyography (EMG). These hybrid spellers can be divided into three cate-
gories. The first consists of spellers that use the SSVEP to promote other triggering methods,
the second consists of those that use other triggering methods to improve performance,
and the third category consists of spellers that combine the SSVEP and other triggering
methods to form new hybrid spellers. We now discuss hybrid spellers as classified by the
triggering method used.

4.1. SSVEP-P300 Speller

As the SSVEP and the P300 are both based on EEG signals and their areas of detection
are independent of each other, a hybrid speller based on the SSVEP and the P300 is feasible
and does not require an additional data acquisition device. Although there is competition
between them—that is, when the two are triggered at the same time, the intensity of the
potential decreases—it does not affect their detection capability [81].

Panicher et al. proposed an approach using the SSVEP for controlling state (CS)
detection in the P300 speller [82]. The same method was also implemented in Reference [83].
As the CS has only two states (control and non-control), this method does not require
frequency coding, and needs only one frequency stimulus to detect the CS. This method
has been shown to improve the performance of the P300 speller.

The SSVEP-P300 speller proposed by Yin et al. is based on the P300 speller by using the
RC normal form, where the target is coded along the sub-diagonal to evoke the SSVEP [84].
As shown in Figure 6a,b, this coding method ensures that there is no target flashing at
the same frequency inside the same row or column. The target detection includes the
detection of coordinates of its row and column as well as that of the frequency of the
SSVEP. It improves spelling accuracy, yielding an average accuracy of 93.85% and an ITR
of 56.44 bpm.

In subsequent research, Yin et al. proposed an SSVEP-P300 speller based on the
subarea/location (SL) paradigm, an RC paradigm-based SSVEP-P300 speller that uses the
SSVEP as column stimulus and the P300 as row stimulus, and showed that it improves
performance [85]. In addition, two 64-target SSVEP-P300 spellers were proposed in another
study by them: the double RC (DRC) and the 4D paradigm [86]. In both spellers, the
target changes in color and angle to evoke the P300 and a two-step SSVEP is used. The
frequencies in the DRC speller are encoded according to rows and columns while those in
the 4D speller are encoded according to the diagonals and sub-diagonals. The 4D speller
achieved better performance than the DRC speller in experiments. Both spellers have been
shown to be superior to the P300 and SSVEP spellers alone when the same normal form
is used.

Xu et al. also proposed an SSVEP-P300 hybrid speller [87] in which a fixed flicker
frequency is used as background to evoke the SSVEP. When the target lights up, it evokes a
P300 potential. At the same time, the SSVEP signal disappears because the target is not
flashing. This process is known as SSVEP blocking (SSVEP-B), and the performance of the
hybrid speller based on the SSVEP-B-P300 is superior to that of the original P300 speller.
The GUI of the SSVEP-B-P300 speller proposed in Reference [88,89] is shown in Figure 6c.
It has four parallel sub-spellers, with flashing at different frequencies as the background.
The characters in each sub-speller light up randomly, and induce the P300 and SSVEP-B.
The SSVEP evoked by background flicker is used to select the sub-speller, and the SSVEP-B
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and P300 are used to select characters in the sub-speller. This speller achieved an average
accuracy of 87.8% and an ITR of 54 bpm.

Figure 6. Three examples of the SSVEP (steady-state visual evoked potential) -P300 speller. (a) The frequencies’ array where
different numbers represent different frequencies and subareas surrounded by the dashed lines flash at the same time to
evoke the P300 potential. (b) GUI of the SSVEP-P300 speller proposed in Reference [84]. © IOP publishing. Reproduced
with permission. All right reserved by [84]. (c). The graphical user interface (GUI) of the SSVEP-B-P300 speller (subareas
surrounded by the dashed lines flash at the same frequencies to evoke the SSVEP potential. Only one of the targets of
each sub-speller is enhanced to evoke a P300 potential and an SSVEP-B potential). © IOP publishing. Reproduced with
permission. All right reserved by [88,89]. (d). GUI of the SSVEP-P300 proposed by Chang et al. [90].

Chang et al. proposed an SSVEP-P300 speller that can elicit dual-frequency SSVEP [90].
As shown in Figure 6d, this speller consists of nine panels flickering at different frequencies,
each containing four targets. A dual-frequency SSVEP is evoked by the flashing panels
and periodically converted characters. This paradigm can improve the performance of the
speller by solving the limitation of the harmonic frequency of the SSVEP and the round
time of the P300.

Reference [91] reported a hybrid speller based on the P300 speller by using the RC
paradigm and adding a peripheral-field SSVEP, and the authors showed that this paradigm
has higher accuracy than the P300 speller while not causing more visual fatigue in the user.
The LSC-4Q speller proposed in Reference [92] introduced the SSVEP to the P300 speller
without directly adding frequency coding to the target to evoke the SSVEP to improve the
performance of the P300 speller. Loughnane et al. proposed a gaze-independent hybrid
BCI based on the P300, SSVEP, and alpha-band modulation [93]. This paradigm exploits
the sensitivity of the SSVEP to covert attention and parieto-occipital alpha band activity.

Rapid serial visual presentation (RSVP) is also used in conjunction with the SSVEP to
implement a hybrid speller. Jalipour et al. introduced an SSVEP to solve the problem of
reduced classification accuracy due to the evocation of the P300 by non-target stimuli in a
triple RSVP paradigm [94]. The results of experiments showed that the introduction of the
SSVEP ensures adequate accuracy while improving the ITR. The accuracy of the results
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was significantly higher than that of a single RSVP and the ITR was significantly higher
than that of the triple RSVP.

4.2. SSVEP-ET Speller

In addition to EEG signals, other methods of triggering can also be combined with the
SSVEP to design hybrid spellers. As a visual triggering method similar to the SSVEP, ET
is highly compatible with the SSVEP. ET data processing typically detects the position of
the user’s gaze from images captured by a camera to identify the area where the target is
located. Early studies used the ET as an auxiliary method to improve the performance of
the SSVEP speller [95,96]. Subsequent SSVEP-ET hybrid spellers divided the target into
groups selected by using the ET. When a group was selected, the SSVEP was used to select
a target from the group. Structurally, this type of SSVEP-ET paradigm is very similar to the
multi-stage SSVEP speller.

Reference [95] added a web-camera to the original QWERTY SSVEP speller [69] to
record ET, and its paradigm is shown in Figure 7. The ET data will be used for classification
aided judgment to select “left” or “right.” The SSVEP is still used to detect the correspond-
ing target according to frequency. When the result of detection of the SSVEP is inconsistent
with the position detected by the ET, the speller does not input the given character. The
introduction of the ET can prevent spelling errors and reduce deletion operations caused
by erroneous inputs, thus improving the accuracy and efficiency of the input. The relevant
system achieved an average accuracy of 87.58% and an ITR of 40.72 bpm.

Figure 7. Graphical user interface (GUI) of the steady-state visual evoked potential (SSVEP) -eye-
tracking (ET) speller using the QWERTY paradigm (the area to the right of the right red line is
recognized as “right.” The area to the left of the left red line is recognized as “left.” The area between
the lines is recognized as “left” or “right.”). © 2013 IEEE. Reprinted, with permission, from [95].

In the SSVEP-ET speller proposed by Mannan et al., 48 targets were divided into eight
groups and displayed in a one-stage paradigm. The same frequency set (consisting of six
frequencies) was used between groups, and each target within the same group used a
different frequency, as shown in Figure 8. The ET was used to identify the group at which
the user was gazing and the SSVEP to determine the specific target of the user within
the group. The average accuracy and ITR of this speller were 90.35% and 190.73 bpm,
respectively [97].

Reference [98] provided an opposite approach to the above-mentioned research. Both
the SSVEP and the ET were used to select the target group in the primary stage. This was
a speller consisting of two stages and 36 targets, where the latter were divided into nine
groups. The target groups were arranged on a screen in a 3 × 3 matrix in the primary stage.
Each column used the same frequency set, and the flashing frequencies in the three target
groups were different, as shown in Figure 9. In the primary stage, the ET was used to
select the left, middle, and right columns, and the SSVEP was used to determine the flicker
frequency. The results of both were used to judge the target group of the user’s gaze. Once
the target group had been selected, the secondary stage was activated. It presented four
targets in four directions of the screen, and the ET was used to select the target according
to the direction of the user’s gaze.
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Figure 8. The arrangements of the sub-areas and frequencies of the the steady-state visual evoked
potential (SSVEP) -eye-tracking (ET) speller proposed by Mannan et al. [97] (the eight sub-areas
surrounded by red lines are distinguished by the ET).

Figure 9. The steady-state visual evoked potential (SSVEP) -eye-tracking (ET) speller proposed by Saravanakumar and
Reddy [98]. (a,b) Primary stage of the paradigm. (c,d) Secondary Scheme 2018. IEEE. Reprinted, with permission, from [98].

Some studies have proposed a more flexible and dynamic paradigm [99–101] that
involves extracting a small region by first detecting fuzzy areas of the user’s gaze. The
system then encodes the targets in the extracted region by frequency to evoke the SSVEP
and uses it to detect the target in the region at which the user is staring. Yao et al. combined
the SSVEP-ET speller with virtual reality (VR) [93]. In a matrix paradigm representing
40 targets, four targets around the gaze point were obtained by detecting eye movement,
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and a 2 × 2 sub-matrix was highlighted on the interface. The sub-matrix used joint
frequency–phase modulation, i.e., the frequency and phase of each target were different,
thus presenting four targets to the user. The SSVEP was used to identify targets from
the sub-matrix. The average accuracy and ITR of this study were 95.2% and 360.7 bpm,
respectively. Reference [100] proposed a dynamic two-stage SSVEP-ET speller; once the
ET had recognized the area of the user’s gaze, this area was presented on the screen alone
instead of being enhanced (Figure 10).

Figure 10. One steady-state visual evoked potential (SSVEP) -eye-tracking (ET) speller as an example. (a) Graphical user
interface (GUI) of the primary stage. (b) GUI of the secondary stage of the SSVEP-ET speller. © 2019 IEEE. Reprinted, with
permission, from [100].

4.3. SSVEP-EOG Speller

In addition to using images to detect eye movement, the EOG can be combined
with the SSVEP to design a hybrid speller. Unlike the ET, the EOG does not detect the
user’s gaze but their specific eye movements, such as blinking. Saravanakumar et al.
proposed a one-stage hybrid speller [102] and a two-stage hybrid speller [103] based on
the EOG and the SSVEP. In both studies, the EOG was used to select regions or groups
while the SSVEP was used to identify targets. In Reference [102], an SSVEP-EOG speller
and an SSVEP-ET speller were compared on a one-stage paradigm and delivered similar
performances. In subsequent research, visual feedback was added to the SSVEP-EOG
speller, and its performance improved. Reference [103] used nine eye movements that can
be recorded by EOG to select the target group as shown in Figure 11, which means that
it is feasible to implement a more complex input by adding more frequency codes to the
SSVEP-EOG speller.

Figure 11. An example of the steady-state visual evoked potential (SSVEP) -electrooculogram (EOG)
speller. (a) The paradigm of the primary stage. (b) The arrangement of frequencies of the secondary
stage. Reprinted from [69,103], with permission from Elsevier.
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4.4. SSVEP-EMG Speller

A combination of EMG and the SSVEP can be used in the design of a hybrid BCI
speller. Lin et al. proposed a hybrid BCI speller based on EMG and the SSVEP [104]. The
GUI of this speller is shown in Figure 12, in which 60 targets are divided into four groups
using the same frequency set. EMG is used to select the group in which the target is located
and the SSVEP is used to select targets within the group according to flicker frequency.
This is similar to the multi-stage speller. This study also demonstrated that the hybrid
speller proposed is faster and more efficient than EMG or the SSVEP alone.

Figure 12. The paradigm and the arrangement of frequencies of the steady-state visual evoked potential (SSVEP) -
electromyography (EMG) speller. © IOP publishing. Reproduced with permission. All right reserved by [104].

In another study, Rezeika et al. proposed a hybrid speller based on EMG and the
SSVEP [105]. Unlike the one summarized above, this speller uses a one-stage 30-target
paradigm. EMG is not used for stage or group selection, but to confirm the results to avoid
input errors. This approach improves the control capability of people who have difficulties
when using the SSVEP speller.

5. Factors Influencing Performance and Visual Fatigue

In addition to the paradigm-based designs of the SSVEP speller, hybrid methods of
triggering, and methods of SSVEP detection, other factors influence the performance of the
BCI speller when using the SSEVP.

In terms of parameter optimization, individual differences lead to the absence of a fixed
combination of parameters to enable every user to achieve the best performance. Therefore,
it is necessary to calibrate each subject in the experiment to ensure that they can perform
at their highest level, which significantly limits the design and results of experiments on
the SSVEP speller [106]. Gembler et al. designed a system that automatically determines
user-dependent key parameters to customize SSVEP-based BCI systems. Using this wizard,
61 subjects obtained an average of accuracy of 97.02% and ITR of 21.58 in a three-stage
SSVEP speller [107]. In another study, an adaptive time segmentation method obtained an
even higher ITR by adaptively selecting thresholds [108]. These two methods can improve
the performance and efficiency of the system by reducing the time needed to calibrate users
through the SSVEP speller, which can help popularize its application.
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In terms of GUI, the currently known infusion factors include the number of targets
and methods of feedback. The impact of the number of targets on the performance of
the speller is definitive. When the speller presents more targets, the performance of the
speller degrades. In the method proposed in Reference [109], the ITR cache reached its peak
when the number of targets presented at the same time in the paradigm was 15. Different
feedback methods have also been shown to influence the accuracy and spelling time of
spellers. This influence is not identical for different users, and thus there is no superior
solution [26]. However, good user feedback can help improve the overall performance of
the speller and increase its speed of input without affecting accuracy [27].

In the experimental environment, the distance between the user and the device used
for stimulus presentation affects the performance of the speller, where the performance
deteriorates with increasing distance. One to two meters is a suitable distance [110].
Reference [111] showed that background music affects the user’s input accuracy and speed.

The age of the subject has a significant impact on performance. In two studies on
the effects of age on performance, the ITRs of young and old people were 27.36 bpm and
16.19 bpm (about 169%) in Reference [112], and 27.18 bpm and 14.42 bpm (about 188%) in
Reference [113]. On the same system, young people outperformed older subjects. In addi-
tion, practice by subjects has been shown to be effective for improving performance [114].

Considering that it is a problem that needs to be addressed by the visual BCI speller,
the literature has researched reducing the visual fatigue experienced by users. In the design
of the stimuli of the paradigm, high-frequency stimuli are thought to cause less fatigue
than low-frequency stimuli. At the same time, because the duty cycle has no prominent
effect on the user’s fatigue level, it can be designed at 50% to increase efficiency [78]. In
another study, the central-field SSVEP (cSSVEP) and the peripheral -field SSVEP (pSSVEP)
were compared in the context of reducing visual fatigue while ensuring adequate decoding
accuracy [81].

6. Trends, Challenges, Prospective Directions, and Suggestions

In the above, we reviewed past studies on SSVEP-based spellers and hybrid spellers.
Tables 1 and 2 present a summary. Our analysis has revealed four main means of perfor-
mance optimization for the SSVEP speller: improving the classification algorithm, adding
a spelling prediction function, designing better paradigms, and adding new triggering
methods. We also identified some shortcomings in current research in the area.

6.1. Development Trends

The aforementioned four methods of optimization can be summarized with regard to
the overall trend of development in BCI spellers that use SSEVP as below.

First, novel methods of SSVEP detection are constantly being proposed. From the
early power spectrum density analysis, represented by the FFT [31], to the subsequent and
widely used spatial filtering method, including the well-known CCA [35] and improved
algorithms [41–48] as well as the advanced TRCA [50], methods of SSVEP detection are
being updated quickly, as mentioned in Section 2. Deep learning-based methods are also
being used [29,52] but not widely because they require a significant amount of training data.

Second, word prediction has improved the performance of spellers [18,24,59,61,66,73].
Adding a word prediction function to the SSVEP speller can enable users to directly select
words when a spelling prompt presents it, instead of having to enter every letter of it.
This is important for improving the efficiency of the speller, especially in application
scenarios where users need to input a large amount of text. With the development of
natural language processing (NLP) technology, spelling prediction has become easier to
implement. In addition, in earlier studies, to reduce the time required to correct spelling
errors, researchers integrated error-related potentials (ErrPs) into P300 spellers [115–118].
ErrPs can be evoked by unexpected responses which contain user’s mistake and error of
the speller, and researchers use it to automatically detect these spelling errors. However, in
practical applications, limited by the difficulty of collecting sufficient training data, ErrP is
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not widely used. Some researchers considered that the ErrP corrective mechanisms can be
replaced by other methods, and proposed the corresponding alternative method [119]. At
present, the word prediction can also alleviate this problem by reducing the occurrence
of errors.

Table 1. Summary of SSVEP spellers. ITR: information transfer rate; PITR: practical information transfer rate; MEC:
minimum energy combination; CCA: canonical correlation analysis; PSD: power spectrum density; IGR: information
gain rate.

Reference SSVEP Detection
Method Paradigm Number of Com-

mands/Targets
Frequencies

of Stimuli (Hz) Subjects Accuracy
(%)

ITR
(bpm)

Volosyak et al.,
2009

Principal Component
Analysis, (PCA) Bremen speller 5 commands

32 targets 6.67, 7.5, 8.57, 10, 12 37
29 healthy 92.84 17.4

Cecotti, 2010 PCA Multi-stage speller
(3 stages)

5 commands
27 targets 6.67, 7.5, 8.57, 7.06, 8 8

8 healthy 92.25 37.62

Saboor et al.,
2018 MEC Multi-stage speller

(3 stages)
4 commands

27 targets 6, 7.5, 8, 8.5, 9, 9.5, 10 10
10 healthy 94.50 12.74

Nguyen et al.,
2018 PodNet Multi-stage speller

(3 stages)
5 commands

58 targets 6.67, 7.5, 8.57, 10, 12 8
8 healthy 97.37 48.99

Hwang et al.,
2012 Threshold One-stage speller

QWERTY 30 targets 5–7.9
(span 0.1)

10
10 healthy 87.58 40.72

Yin et al., 2015

CCA-RV (canonical
correlation analysis

with reducing
variation)

One-stage speller
RC 36 targets 8.18, 8.97, 9.98, 11.23,

12.85, 14.99
11

11 healthy 72.28 41.08
(PITR)

Nakanishi et al.,
2014

CCA with SSVEP
training data

One-stage speller
FPHC 32 targets

8–15
(span 1)
4 phases

0 0.5π, 1.5π

13
13 healthy 91.35 166.91

Chen et al., 2014 Extended CCA One-stage speller
FPHC

40 targets

8–15
(span 1)
5 phases

0 0.4π, 0.8π, 1.2π,
1.6π

6
6 healthy

89.21 172.37

8–15.8
(span 0.2)
4 phases

0 0.5π, 1.5π

88.83 170.94

Cao et al., 2011 CCA One-stage 3 pages 16 commands
42 targets

8–15.5
(span 0.5)

4
4 healthy 98.78 61.64

Kjaer et al., 2013 Threshold DTU speller
(2 stages + one stage)

8 commands
49 targets +

6 commands
5 targets

6, 6.5, 7, 7.5, 8.2, 9.3,
10, 11

9
9 healthy 90.81 21.94

Akce et al., 2015 PSD Query-based speller 5 commands
29 targets 6.67, 7.5, 8.57, 10,12 11

11 healthy 98.5 11.93
IGR (cpm)

Chabuda et al.,
2017

Time domain comb
filter

Multi-stage speller
(2 stages)

8 commands
36 targets

30–39
(span 1.0)

15
15 healthy 89 36

Third, many paradigms have been proposed. In past studies, more than 20 paradigms
have been proposed one after another, and can be mainly divided into two kinds: multi-
stage paradigms [64–68] and one-stage paradigms [69–71]. It is easy to conclude that
the multi-stage speller is easier to design and implement because of its less stringent
requirement on the number of frequencies of the stimulus, but the ITR is relatively slow.
The one-stage speller allows users to select targets in one step but the design of the
frequencies of the stimulus is more complicated, and often requires more frequencies or
frequency–phase hybrid coding. In addition to these two kinds, many paradigms have
been proposed, including those not mentioned in Section 3. It is conceivable that new
paradigms will continue to be proposed unless a prevalent paradigm proves to be optimal.

Finally, combining the SSVEP with other triggering methods has attracted significant
research attention. The SSVEP is easy to be evoked in independent positions (occipital
regions), and is compatible with most stimuli. Many SSVEP-based hybrid spellers have
been proposed, and have delivered better performance than any single triggering method-
based speller. Section 4 has provided several triggering methods that have been combined
with the SSVEP to form a hybrid speller, including the visual ERP P300 [84–89], ET [96–101],
EOG [102,103], and EMG [104,105].
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Table 2. Summary of hybrid spellers using the SSVEP. SL: subarea/location.

Reference Paradigm Triggering Number of
Targets Subjects Accuracy

(%)
ITR

(bpm)

Panicker et al., 2011 One-stage
RC SSVEP +P300 36 10

10 healthy 88 19.05

Yin et al., 2013 One-stage
RC SSVEP +P300 36 12

12 healthy 93.85 56.44

Yin et al., 2015
One-stage

DRC SSVEP +P300 64
13

13 healthy
91.33 47.14

One-stage
4D 95.18 50.14

Xu et al., 2014 One-stage
SL SSVEP-B +P300 36 11

11 healthy 87.8 54

Chang et al., 2015 One-stage
SL

Dual frequency
SSVEP +P300 36 10

10 healthy 93 31.8

Hwang et al., 2013 One-stage
QWERTY SSVEP + ET 30 10

10 healthy 87.58 40.72

Mannan et al., 2020 One-stage
matrix SSVEP +ET 48 20

20 healthy 90.35 190.73

Saravanakumar et al., 2018 Multi-stage
(2 stages) SSVEP +ET 36 10

10healthy 90.46 65.98

Yao et al., 2018
One-stage

matrix (VR)
(dynamic)

SSVEP +ET 40 3
3 healthy 95.2 360.7

Lin et al., 2019
Multi-stage

(2 stages)
(dynamic)

SSVEP +ET 40 5
5 healthy 92.1 180.8

Saravanakumar et al., 2019 One-stage
matrix SSVEP + EOG 36 10

10 healthy 98.33 69.21

Saravanakumar et al., 2020 Multi-stage
(2 stages)

SSVEP (stage 2) +
EOG (stage 1) 36 10

10 healthy 94.16 70.99

Lin et al., 2016 Multi-stage
(2 stages) SSVEP + EMG 60 10

10 healthy 85.8 90.9

Rezeika et al., 2018 One-stage
matrix SSVEP + EMG 30 8

8 healthy 93.75 31.05

6.2. Outstanding Challenges
6.2.1. Lack of Comparison of Paradigms

Although the stimulus paradigm is commonly considered to have a significant impact
on the performance of BCI spellers, no study to date has compared the available paradigms
to identify the one that delivers the best performance using the control variable method.
As shown in Table 1, when the same methods of SSVEP detection are used, the results
obtained are inconsistent owing to the different paradigms used, and thus the influence
of the paradigm on the performance of the SSVEP speller cannot be ignored. However,
the feedback method used, number of targets, calibration method used, and the relevant
parameters also affect its performance. Thus, past work cannot be used to determine the
best paradigm.

6.2.2. Lack of Research on System-Independent Factors Influencing Results

In addition to the design of the speller, system-independent factors may also affect
the results in experiments. Factors that can affect the experimental results include the
distance between subjects and the screen [110], background music [111], and the age of the
subjects [112,113]. However, the relevant results lack quantitative analyses. At the same
time, some pertinent factors have been ignored in previous studies.

6.2.3. Lack of Research on Visual Fatigue

In addition to performance, the degree of fatigue on the user when using the speller
should be considered from the perspective of applications. Visual fatigue leads to poor
user experience, and a worse user experience often means worse application prospects.
Although some studies have given methods to evaluate user fatigue [8,120,121], no unified
standard has been developed to date, and research on this issue is inadequate. The
challenge faced by such research is that it is very difficult to quantitatively analyze the
degree of fatigue, which often depends on the subjective feelings of the subjects.
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6.3. Directions for Future Research

Based on the above trends of research and challenges, the authors proposed the
following ideas for future research in the area. First, deep learning is an advanced method
of SSVEP detection but has not been widely used in the context of the SSVEP speller.
The use of deep learning as a method of SSVEP detection has been shown to improve
the classification performance of the system, and PodNet has been shown to yield better
performance than the FBCCA while using fewer channels [52]. Deep learning requires
a large amount of data that are not yet publicly available. Moreover, the methods of
collection and paradigms of these datasets are not the same, which limits their application.
However, Reference [54,55] proposed methods that use transfer learning across devices
and montages to enable the use of data collected by using different methods for the same
research. This is important for strengthening the application of deep learning to SSVEP
detection. In addition, methods besides deep learning should be examined to optimize
prevalent techniques.

Second, applying NLP methods can improve the performance of spellers. Akce et al.
used 2925 distinct range queries and 20,475 character queries in their study [59]. The
use of NLP methods in their work far exceeded that in previous studies. This marked
the introduction of advanced NLP methods to the SSVEP speller as a means of further
improving its performance. In addition, individual optimization through a statistical
analysis of users’ personal language habits, performance, and user experience of the speller
can be improved.

Third, novel paradigms for the SSVEP-based speller and hybrid speller are expected.
In addition to comparative studies on the SSVEP speller paradigm, more modes of EEG
triggering, such as the auditory P300 and MI, and non-EEG triggering methods can be
added to the design of hybrid spellers in future research.

6.4. Suggestions for Improvements

To improve the performance of prevalent SSVEP spellers, researchers should develop
optimization strategies based on the above methods. Such strategies should consist of:

i. Adding known effective and compatible auxiliary triggering methods;
ii. Adding or improving the word prediction function;
iii. Using advanced methods of SSVEP detection, such as the TRCA;
iv. Adjusting the experimental environment to avoid system-independent interference,

and
v. Optimizing methods of calibration to select better parameters for subjects.

As there is no consensus on an appropriate paradigm, we do not have any suggestions
on this issue. Some factors are known to affect the results of experiments but other factors
may also be revealed in future research. Studies on system-independent factors are valuable
for a quantitative comparison of the performance of the SSVEP speller. At the same time, if
conditions permit, experiments should be undertaken on MND patients as subjects. This is
important for testing the application prospects of SSVEP spellers for those who need them.
In addition, more attention should be paid to the level of visual fatigue induced in the user
because this is an unavoidable problem in applications.

7. Conclusions

In this review, we summarized BCI spellers that use the SSVEP from the viewpoint of
the stimulus paradigm and performance. The stimulus paradigm includes the procedure
used for target selection, layout of the targets, manner of encoding of the stimuli (i.e.,
frequency and phase), and their combination with other triggering methods. These options
within paradigms influence the performance of the BCI speller.

The one-stage SSVEP speller has higher input efficiency than the multi-stage speller,
and should be considered if the device has the capacity of presenting more frequencies of
the given stimulus. Both the frequency and the phase can be used to encode the targets
of the stimulus. A high-frequency stimulus paradigm delivers a better and more stable
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classification performance than a low-frequency one. The number of stimulus targets can
range from 30 to over 60. The SSVEP can be combined with other triggering methods,
including the ERP P300, ET, EOG, and EMG to construct hybrid BCI spellers that deliver
better performance.

In addition, the optimization of stimulus paradigms, individual calibration and user
feedback improve the performance of BCI spellers based on the SSVEP. The distance be-
tween the users and the stimulus presentation device, as well as the age of users, influences
the experimental results.

Research on [120] a comparison of paradigms, system-independent influential factors,
and visual fatigue is lacking. The performance of the BCI speller when used by MND
patients and SSVEP-illiterate users has not been well studied. Future research in the area
should focus on deep learning for SSVEP detection, combinations with NLP methods,
novel SSVEP stimulus paradigms, other methods of triggering, and an examination of
visual fatigue in the user.
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