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Heterozygous frameshift variants in HNRNPA2B1
cause early-onset oculopharyngeal muscular
dystrophy
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Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease pheno-

types, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body

myopathy. Here, we present ten independent families with a severe, progressive muscular

dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier

onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-

causing frameshift mutations abolish the native stop codon and extend the reading frame,

creating novel transcripts that escape nonsense-mediated decay and are translated to pro-

duce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to

previously reported disease-causing missense variants in HNRNPA2B1, these frameshift

variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift

variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in

cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate

the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to

include an early-onset form of OPMD caused by frameshift variants that alter its nucleocy-

toplasmic transport dynamics.
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RNA-binding proteins (RBPs) play central roles in regulating
RNA metabolism, including transcription, RNA splicing,
polyadenylation, stabilization, localization, and translation1.

In eukaryotic cells, RBPs are frequently associated with RNA in
ribonucleoprotein (RNP) granules, which are complex assemblies
that arise via liquid–liquid phase separation (LLPS)2. Many RBPs
contain intrinsically disordered low-complexity domains (LCDs)
that support LLPS through weak, multivalent interactions. The
ability of RBPs to facilitate LLPS and partition RNAs into con-
densates is an important mechanism by which they govern RNA
metabolism3.

Pathogenic missense variants in RBPs such as TDP-434,5,
hnRNPA16–9, hnRNPA2/B16,10, hnRNPDL11–14, FUS15,16, and
TIA117,18 cause a spectrum of diseases with pleomorphic phe-
notypic manifestations including amyotrophic lateral sclerosis
(ALS)/motor neuron disease, frontotemporal dementia (FTD),
inclusion body myopathy (IBM), distal myopathy, and Paget’s
disease of bone (PDB). Patients may also present with complex,
combined phenotypes impacting muscle, brain, and bone, a
syndrome that has been termed multisystem proteinopathy
(MSP)19. Remarkably, most pathogenic variants in RBPs are
located in intrinsically disordered LCDs4–6,15–18. Studies using
purified proteins and cellular expression models have demon-
strated that LCD variants can alter LLPS and ultimately result in
aggregation and fibrillization of the mutant protein6,9. We have
proposed that pathological phase separations of this sort can
drive neuronal dysfunction or demise either by altering the
function of biomolecular condensates, by producing toxic,
aggregated protein, or both20,21.

We previously reported a family with the MSP phenotype
manifesting as degeneration of muscle, bone, or brain, either
alone or in combination in different family members, caused by
a rare missense mutation in HNRNPA2B1 [NM_002137,
p.(D290V)]6. This mutation, which is within the LCD of the
protein, promotes assembly of hnRNPA2 into self-seeding fibrils
by introducing a potent steric-zipper motif, thereby dysregulating
polymerization and ultimately driving the formation of cyto-
plasmic inclusions6,22. A second heterozygous missense mutation
in HNRNPA2B1 [NM_002137, p.(P298L)], also within the LCD
and predicted to promote aggregation, was found to cause pure
PDB without additional multisystemic features10. MSP-causing
heterozygous missense mutations have been identified in the LCD
of two additional RBPs, hnRNPA16 and TIA118. Moreover, ALS/
FTD-causing mutations in the RBP TDP-43 most often impact
the LCD23, and ALS-causing mutations of the RBP FUS some-
times impact the LCD24. Similar to the observed consequences of
missense mutations to the LCD of hnRNPA2/B1, many of the
disease-causing mutations in the LCDs of hnRNPA1, hnRNPDL,
TIA1, TDP-43, and FUS have been shown or are predicted to
promote assembly of self-seeding fibrils, ultimately driving the
formation of cytoplasmic inclusions6,18,25–28.

Modest expansion of a polyalanine repeat tract in PABPN1,
which also encodes an RBP, underlies the majority of cases of
oculopharyngeal muscular dystrophy (OPMD), a late-onset (typi-
cally 5th decade) disease characterized by ptosis and dysphagia, and
in rare cases progressive limb weakness and later stage vertical
ophthalmoparesis29. OPMD is clinically distinct from the pleo-
morphic syndrome MSP, and, unlike other RBP-associated dis-
eases, has a homogeneous and recognizable phenotypic spectrum
that predominantly manifests in specific skeletal muscles.

Here, we report and characterize 10 independent families with
a severe, progressive, early-onset OPMD-like phenotype
(eoOPMD) that is distinct from MSP and is caused by a novel
class of heterozygous frameshift variants in the LCD of
hnRNPA2/B1. In contrast to the missense variants that
cause MSP or PDB, these frameshift variants do not promote

protein fibrillization. Rather, these frameshift variants alter the
C-terminal portion of the nuclear localization sequence (NLS) of
hnRNPA2 and promote cytoplasmic accumulation of the protein
by impairing its interaction with the nuclear import receptor
karyopherin β2 (Kapβ2). Furthermore, our findings demonstrate
that two classes of disease-causing mutation have distinct con-
sequences for the hnRNPA2 protein: the first (missense muta-
tions in the LCD) increases the propensity toward fibrillization,
whereas the second (frameshift mutations that partially impair
nuclear import) increases the cytoplasmic concentration of the
protein without changing its intrinsic propensity to fibrillize. Both
classes of mutation culminate in muscle pathology, albeit with
different clinical syndromes characterized by differing ages of
onset and anatomic distribution of pathology.

Results
HNRNPA2B1 frameshift variants manifest with a distinct,
early-onset progressive myopathy. We identified 11 patients
from 10 independent families with progressive early-onset myo-
pathy with ophthalmoplegia, ptosis, and respiratory insufficiency
of variable degrees (Table 1, Fig. 1a). Six patients presented with
first recognition of symptoms before 2 years of age, ranging from
respiratory insufficiency requiring tracheostomy at birth, to
delayed motor milestones or isolated ptosis and ophthalmoplegia.
All patients had axial weakness and progressive proximal and
distal weakness, which was more pronounced in the lower
extremities compared to the upper extremities (Fig. 1b).
Respiratory involvement was variable, ranging from a severely
decreased forced vital capacity (FVC) (21% predicted) to normal.
Ptosis and progressive ophthalmoparesis were uniformly present
in all patients and were noted as early as 6 months of age.
Cognition was normal and patients did not have a history of
seizures, cardiac involvement, or bone abnormalities. Serum
creatine kinase levels were elevated in all patients, ranging from 3
to 35 times the upper limit of normal (Table 1). Detailed clinical
and genetic information for each patient can be found in Sup-
plementary Table 1 and Supplementary Information.

To elucidate the genetic origin of the muscle disease, we
pursued exome sequencing and identified nine (one recurrent)
distinct heterozygous frameshift variants in HNRNPA2B1
(MIM:600124), which were absent in the Genome Aggregation
Database (gnomAD)30 (Fig. 1c and Supplementary Table 1). In
family 4, the disease was inherited in a dominant fashion and the
variant segregated with disease. The disease occurred sporadically
in the remaining nine families (Fig. 1a) and the HNRNPA2B1
variants were confirmed to be de novo (i.e., absent in unaffected
parents) in seven families for which parental samples were
available for testing.

Muscle imaging reveals myopathic changes with discrete foci of
increased T1 signal. Muscle MRI images of lower extremities
showed muscle atrophy and a heterogenous pattern of T1 signal
hyperintensity, suggestive of structural changes in the muscle
composition (Fig. 1d). Presence of patchy foci of T1 signal
hyperintensity, suggestive of focal fatty replacement of muscle,
was noted in mildly affected muscles, while more severely affected
muscles showed a diffuse pattern of T1 hyperintensity. In the
anterior thigh compartment, the rectus femoris muscle was
relatively spared. Medial and posterior thigh compartments were
selectively affected, albeit not uniformly, with the gracilis muscle
appearing relatively spared. In the lower legs, the peroneus group,
soleus, and lateral gastrocnemius muscles were selectively affec-
ted; however, the appearance of this pattern was variable among
patients. In the head and neck MRI images, T1 hyperintensity in
the tongue was notable (Fig. 1d, arrows).
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HNRNPA2B1 frameshift variants manifest pathologically with
rimmed vacuoles and intracytoplasmic aggregates. Muscle
biopsies of the patients were consistent with a chronic degen-
erative myopathy, characterized by myofiber atrophy, fiber size
variability, increased internalized nuclei, and presence of sub-
sarcolemmal and cytoplasmic rimmed vacuoles without inflam-
matory infiltrates (Fig. 2a, b). Light microscopy revealed that the
vacuoles contained proteinaceous material (Fig. 2c–f), and
ultrastructural analysis confirmed the presence of membrane-
bound vacuoles containing debris in a “myelin-like” configuration
often attributed to excess autophagy (Fig. 2g, h). Cytoplasmic,
perinuclear, and on occasion intranuclear tubulofilamentous
inclusions with ~15–20 nm thickness were also identified, indi-
cating the accumulation of microfibrillar protein aggregates
(Fig. 2i, j, arrows and inset). Immunofluorescence staining of
muscle tissue highlighted scattered myofibers with hnRNPA2/B1-
positive inclusions that partially colocalized with P62, ubiquilin 2,
TIA1, and TDP-43, and to a lesser degree with ubiquitin
(Fig. 2k–o), similar to the end-stage fibrillar accumulation of
RBPs in microfibrillar structures observed in related disorders6.
These inclusions did not stain positive for Z-disk-associated

proteins that typically aggregate in myofibrillar myopathies
(Supplementary Fig. 1) and were unvested within membrane
layers.

Frameshift variants cluster in the hnRNPA2B1 LCD and
escape RNA quality control degradation. HNRNPA2B1 is
expressed as two alternatively spliced isoforms, HNRNPA2
(NM_002137, 11 exons) and HNRNPB1 (NM_031243, 12 exons).
The shorter isoform, HNRNPA2, which lacks an exon (exon 2 of
HNRNPB1) and its associated 12 amino acids in the N-terminal
region, is the main isoform, accounting for 90% of the protein in
most tissues. All of the frameshift variants we identified in our
cohort cluster in exon 10 of HNRNPA2 and exon 11 of
HNRNPB1, which encode the highly conserved LCD and are
respectively the last coding exon in each isoform. These frame-
shifts all abolish the native stop codon and extend the reading
frame (Fig. 1c). Irrespective of the point at which each frameshift
occurred, all mutations result in the same frameshift with a
common C-terminal sequence (VMVGGADTELLPICHGLH-
CINRRG) (Supplementary Fig. 2a, b). RT-PCR analysis in muscle
tissue from patients 1 and 2 suggested that these frameshift
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Fig. 1 Clinical characteristics and genetic findings in ten independent families with HNRNPA2B1 variants. a Pedigrees of the 10 families. F family, P
patient. Filled red indicates affected individuals with eoOPMD phenotype and heterozygous HNRNPA2B1 frameshift variant. b Patient 1 with c.992delG,
p.(G331Efs*28) variant, and patient 7 with c.996_997dupTG, p.(G333Vfs*27) showing prominent ptosis and muscle atrophy. Note the progression of
ptosis in patient 7 from 4 years of age to 7 years of age. c hnRNPA2/B1 domain structure with conserved regions. Variants identified from previous studies
and in this study (in bold) are indicated in both hnRNPA2 and hnRNPB1 isoforms with their associated phenotypic features. RRM RNA-recognition motif,
LCD low complexity domain, M9-NLS M9-nuclear localization signal. d T1 MRI images of the head and lower extremities. Head and neck MRI highlights T1
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variants escape degradation by the RNA quality control system
(Supplementary Fig. 2c).

Frameshift variants alter the nucleocytoplasmic ratio of
hnRNPA2 and enhance its recruitment to RNP granules.
Nucleocytoplasmic shuttling of hnRNPA2 is regulated by its 40-
amino acid M9 sequence located within the C-terminal LCD
(Fig. 3a, b). The M9 sequence serves as both an NLS and a nuclear

export signal (NES) and is recognized by the nuclear transport
receptor Kapβ2 (also known as transportin 1, TNPO1)31–33. M9-
NLSs are structurally disordered and have an overall basic char-
acter with weakly conserved sequence motifs composed of an
N-terminal hydrophobic or basic motif followed by a C-terminal
R/H/KX2-5PY consensus sequence and its flanking region34

(Fig. 3b). Due to the strict conservation of proline-tyrosine (PY)
residues and the importance of these residues in the binding of
Kapβ2, M9-NLSs are now often defined as PY-NLSs, a more
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Fig. 2 Histological findings of hnRNPA2B1 myopathy. a Hematoxylin and eosin (H&E) image of right rectus femoris muscle biopsy obtained at 8 years of
age from patient 1 with c.992delG, p.(G331Efs*28) showing myofiber atrophy, fiber size variability, and internalized nuclei with several fibers with rimmed
subsarcolemmal vacuoles (arrow). b Modified Gömöri trichrome (GT) staining highlights similar findings and rimmed vacuoles (arrow) (patient 1 muscle
biopsy). c–f Vacuole contents (arrow) do not stain positive with NADH, suggesting they are devoid of mitochondria (c) and do not show increased non-
specific esterase (NSE) activity (d). The vacuoles (arrow) do not contain glycoproteins based on periodic acid–Schiff (PAS) stain (f) but have increased
acid phosphatase (AcidPh) activity (arrow) (e), suggesting they are lysosomal or autophagic in origin. NSE stain (d) also highlights a few angular atrophic
fibers, suggestive of mild acute neurogenic atrophy. c–f are from patient 2 muscle biopsy. g, h Electron microscopy (EM) studies showing marked
autophagic changes (black arrow) and vacuoles containing membranous myelin-like whorls. i, j Many myofibers contain areas with ~15–20-nm thick,
tubulofilamentous inclusions (i, white arrow and inset), which on occasion were also seen within the nuclei (Nu) near the vacuoles (j, white arrow). g–i are
from patient 2 muscle biopsy, j is from patient 8 muscle biopsy. k–o Immunofluorescence staining of muscle biopsy of patient 1 with c.992delG,
p.(G331Efs*28) showing cytoplasmic hnRNPA2/B1-positive inclusions that partially co-localize with P62 (k), ubiquilin 2 (m), TIA1 (n), and TDP-43 (o). Co-
localization with ubiquitin (l) is restricted to very few perinuclear and cytoplasmic puncta (arrows). Scale bars: a–f 25 µm; g 2 µm; h–j 500 nm; k–o 20 µm.
The micrographs shown are representative images of a single diagnostic muscle biopsy in each indicated patient. No independent replicates were
performed.
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Fig. 3 Frameshift mutations impair nucleocytoplasmic trafficking of hnRNPA2 by disrupting interaction between hnRNPA2 and Kapβ2. a Domain
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signal (M9-NLS) within the LCD. b Amino acid sequences of relevant domains in WT hnRNPA2 and frameshift mutants. Consensus PY-NLS motifs within
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minimal class of NLS that ends on the PY motif34 (Fig. 3b).
Because hnRNPB1 is a much less abundant isoform that uses
precisely the same mechanism of nuclear import and is expected
to be impacted in the same way as hnRNPA2, it will not be
discussed further.

All nine HNRNPA2B1 frameshift variants identified in our
cohort altered the M9-NLS amino acid sequence by shifting the
reading frame by one base pair (Supplementary Fig. 2a, b),
suggesting that nucleocytoplasmic trafficking might be impaired
by these variants. To examine the effect of these C-terminal
frameshift variants on nucleocytoplasmic trafficking of
hnRNPA2, we expressed FLAG-tagged versions of wild-type
(WT) and three different mutant hnRNPA2 proteins
(N323Tfs*36, G328Afs*31, and G331Efs*28) in HeLa cells.
Whereas hnRNPA2 WT almost exclusively localized to nuclei,
N323Tfs*36, G328Afs*31, and G331Efs*28 mutants showed
cytoplasmic accumulation at baseline, suggesting impairment of
nucleocytoplasmic transport (Fig. 3c, d). The cytoplasmic
accumulation of mutant proteins became more apparent when
cells were subjected to oxidative stress, which induces assembly of
stress granules (Supplementary Fig. 3a, b). We also evaluated the
impact of the variants on hnRNPA2 localization in a disease-
relevant cell type and found that, similar to HeLa cells, C2C12
myoblast cells (Fig. 3e, f) and differentiated myotubes (Supple-
mentary Fig. 3c) expressing either FLAG-tagged or GFP-tagged
hnRNPA2 showed increased cytoplasmic localization of mutant
hnRNPA2 proteins compared to WT.

To more clearly demonstrate the distribution of hnRNPA2
variants in cells, we next measured the signal intensities of WT, the
MSP-associated D290V mutant, and the eoOPMD-associated
N323Tfs*36 mutant hnRNPA2 in the nucleus and cytoplasm.
Line scan intensity graphs indicated that both WT and D290V
predominantly localized to the nucleus before stress (Supplemen-
tary Fig. 4a). Upon oxidative stress (500 μM sodium arsenite),
D290V, but not WT, showed association with stress granules, as
demonstrated by colocalization with eIF4G punctae (Supplemen-
tary Fig. 4b). However, the majority of the hnRNPA2 signal was
still found in the nucleus. In contrast, the N323Tfs*36 variant
showed substantial accumulation in the cytoplasm before stress
(Supplementary Fig. 4a) and strong association with stress granules
upon oxidative stress (Supplementary Fig. 4b). When not
associated with stress granules, the cytoplasmic distribution of
N323Tfs*36 was similar to that of eIF4G, which was diffuse in the
cytoplasm, demonstrating that N323Tfs*36 protein remains diffuse
rather than in aggregates.

We next introduced fluorescent C-terminal tags to WT and
frameshift hnRNPA2 mutants to characterize their respective
distributions and to determine whether the C termini of
frameshift variants might be cleaved from the full-length protein.
In C2C12 cells, C-terminally GFP-tagged hnRNPA2 proteins
showed equivalent localization patterns to N-terminally GFP-
tagged hnRNPA2 proteins, with WT protein in the nucleus and
frameshift mutant proteins showing accumulation in the
cytoplasm (Supplementary Fig. 4c). We observed no cytoplasmic
aggregation of C-terminally-tagged frameshift mutant proteins,
consistent with our observations using N-terminally tagged
mutant proteins in HeLa and C2C12 cells (Fig. 3c–f). Further-
more, the C-terminally GFP-tagged hnRNPA2 proteins migrated
on a gel with an observed molecular weight of ~62 kDa, which is
close to the estimated molecular weight of GFP-tagged full-length
protein (hnRNPA2 37 kDa+GFP 27 kDa), and no cleaved
product was observed by Western blot analyses (Supplementary
Fig. 4d). In addition, solubility assays revealed that all three
frameshift variants were more RIPA-soluble than WT proteins
(Supplementary Fig. 4e). Thus, we conclude that frameshift
variants cause diffuse cytoplasmic accumulation of hnRNPA2

protein in cells and that frameshift mutant proteins are less
intrinsically aggregation-prone compared with WT protein.

Distinct from findings in patient muscle biopsies, we did not
observe hnRNPA2-positive protein aggregates in cells within the
timeframe of our analyses. Thus, the hnRNPA2/B1-positive
inclusions observed in patient muscle biopsies may not represent
the immediate consequences of these expressed frameshift
variants on protein aggregation and homeostasis, and may
instead reflect a pathologic manifestation of the disease process
over time.

Frameshift variants impair the interaction between hnRNPA2
and its nuclear transport receptor Kapβ2. The conserved con-
sensus motifs of the PY-NLS are located proximal to the region in
which the HNRNPA2B1 reading frame is altered by the frameshift
variants (Fig. 3b and Supplementary Fig. 2b). Previous studies of
hnRNPA1, a homologous protein of hnRNPA2/B1 that also
harbors an M9-NLS, have shown that post-translational mod-
ifications of residues that are C-terminal to the conserved PY
residues inhibit the interaction of hnRNPA1 with Kapβ2 and
impair nuclear import of hnRNPA1, indicating that C-terminal
flanking regions can influence PY-NLS activity34,35. This prior
observation in the closely related hnRNPA1 protein suggests that
the cytoplasmic accumulation of frameshift mutant hnRNPA2
might reflect loss of Kapβ2 interaction and subsequent impaired
nuclear import. To test the impact of frameshift variants on
Kapβ2 binding, we synthesized WT and three frameshift mutant
peptides (Fig. 3b) with a 5′ tetramethylrhodamine (TAMRA)
label and used fluorescence polarization assays to quantify their
interaction with Kapβ236. The hnRNPA2 WT peptide bound
Kapβ2 with a Kd of 95 nM (Fig. 3g, h). All three frameshift
mutant peptides showed a significant decrease in Kapβ2 binding
(Fig. 3g, h), suggesting that frameshift variants affect the ability of
hnRNPA2 to bind Kapβ2 and thus impair its subsequent nuclear
import.

Frameshift variants cause apoptotic cell death in differentiat-
ing cells. To address the consequence of the frameshift mutants
in a physiologically relevant cell type, we expressed WT or
mutant versions of hnRNPA2 in C2C12 myoblasts and subse-
quently exposed the cells to differentiation factors to induce
differentiation to myotubes (Fig. 4a). Whereas there was no
obvious impact of exogenous expression of WT or mutant
hnRNPA2 in myoblast cells, we observed that upon differentia-
tion, the number of myotubes expressing mutant forms of
hnRNPA2 decreased dramatically over time (Fig. 4b). Thus, to
determine whether mutant forms of hnRNPA2 cause cell death in
differentiating C2C12 cells, we monitored annexin V and pro-
pidium iodide (PI) staining to assess apoptotic cell death. Nota-
bly, cell death was significantly enhanced in the presence of the
frameshift variants, with approximately 60% and 80% of frame-
shift mutant hnRNPA2-expressing cells becoming positive for
annexin V and PI staining one and two days after differentiation,
respectively (Fig. 4c, d, Supplementary Fig. 5a). In contrast, no
increased cell death was observed in the overall population of cells
expressing hnRNPA2 WT (Fig. 4c, d). However, when we spe-
cifically examined subpopulations of cells based on expression
levels, we noted that the population of cells with the highest
expression of hnRNPA2 WT did show increased cell death
relative to controls (Fig. 4e). In cells expressing frameshift mutant
forms of hnRNPA2, increased cell death was observed even in the
population of cells with the lowest levels of mutant hnRNPA2
expression (Fig. 4e). We also examined the consequences of
depleting endogenous hnRNPA2. Specifically, we found that
depletion of wild-type endogenous hnRNPA2/B1 by expressing
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small interfering RNA against HNRNPA2B1 did not cause cell
toxicity (Supplementary Fig. 5b–d). These data suggest that
despite the loss of Kapβ2 binding activity by frameshift muta-
tions, the mechanism of toxicity associated with these mutations
is mediated by a gain of function rather than simply a loss of
function.

No evidence that the frameshift mutations introduce a specific
toxic sequence. We found it intriguing that all of the eoOPMD-
associated variants we identified had a +1 frameshift resulting in
a neomorphic amino acid sequence with a shared C-terminal
end (Fig. 3b). This alteration introduces several negatively

charged amino acids and makes the C-terminal peptide more
hydrophobic compared to the WT peptide (Fig. 5a, b). It is
conceivable, therefore, that the precise sequence introduced by
the frameshift mutation is responsible for the toxic gain of
function. Thus, we tested whether the anomalous sequence was
directly responsible for the phenotypes associated with frame-
shift variants of hnRNPA2. To this end, we generated two new
constructs in which the C-terminal flanking sequence was either
deleted (Δ323–341) or +2 frameshifted by a two-base-pair
deletion (N323Lfs*31) (Fig. 5b). Interestingly, both Δ323–341
and N323Lfs*31 proteins accumulated in the cytoplasm (Fig. 5c)
and caused cell toxicity in differentiated myoblasts at levels
comparable to the eoOPMD-associated frameshift variants
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Fig. 4 Expression of frameshift variants causes increased cell toxicity during C2C12 differentiation. a Schematic of C2C12 differentiation. Differentiation
media consists of DMEM supplemented with 0.5% FBS, 1% penicillin/streptomycin, and 1% L-glutamate. b Representative images of C2C12 cells one (top)
or two (bottom) days after change to differentiation media from three independent experiments. Scale bar, 20 μm. c Representative scatter plots of GFP-
positive C2C12 cells stained with propidium iodide (PI) and annexin V, one (top) or two (bottom) days after change to differentiation media.
d Quantification of GFP-positive cells that were negative for both PI and annexin V. Values represent means ± s.e.m. (n= 3 independent experiments).
***P= 0.0004, **P= 0.0061, and **P= 0.0052 (day 1) and *P= 0.0116, *P= 0.0252, and *P= 0.0147 (day 2) for N323Tfs*36, G328Afs*31, and
G331Efs*28 mutants, respectively, by two-way ANOVA with Dunnett’s multiple comparisons test. e Quantification of cell survival for all GFP-positive cells
from day 1 post differentiation split into three categories. The range of GFP intensity was 500–140,000. Cells whose GFP intensity was below 45,000,
between 45,000 and 90,000, or above 90,000 were grouped into low, medium, or high GFP-expressing cells, respectively. Values represent
means ± s.e.m. from n= 3 independent experiments. *P= 0.0364 and **P= 0.0088 by one-way ANOVA with Tukey’s multiple comparisons test.
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Fig. 5 A loss of wild-type C-terminal sequence, not a neomorphic sequence, is responsible for frameshift variant phenotypes. a NCPR (net charge per
residue; 5-aa window) of WT and N323Tfs*36 peptides. Positively (blue) and negatively (red) charged amino acids are indicated. b Sequences in WT, +1
frameshift mutants in eoOPMD, Δ323–341, and +2 frameshift mutant (N323Lfs*31). c Localization of FLAG-tagged hnRNPA2 proteins without (left) or
with (right) 0.5 mM NaAsO2. eIF4G was used as a cytoplasmic and stress granule marker. Representative images from three independent experiments are
shown. Scale bar, 10 μm. d Representative images of C2C12 cells one (top) or two (bottom) days after change to differentiation media from three
independent experiments. Scale bar, 20 μm. e Quantification of GFP-positive cells negative for both PI and annexin V. Values represent means ± s.e.m.
(n= 3 independent experiments). ****P < 0.0001 by two-way ANOVA with Dunnett’s multiple comparisons test.
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(Fig. 5d, e, Supplementary Fig. 5e). This result suggests that loss
of the wild-type C-terminal flanking sequence, rather than
addition of a specific, negatively charged C-terminal sequence, is
responsible for the observed cellular phenotypes associated with
HNRNPA2B1 frameshift variants.

Altered nucleocytoplasmic distribution of hnRNPA2 is
responsible for the cytotoxicity associated with frameshift
variants. To further investigate the contribution of nucleocyto-
plasmic transport defects to the toxic mechanism of frameshift
variants, we generated a series of additional PY-NLS mutants.
These included the introduction of missense mutations (P318A
and Y319A) to or deletions (ΔPY and ΔPY-NLS) of key residues
in the NLS. We found that a single amino acid substitution
(P318A or Y319A) or a deletion (ΔPY) of the PY motif did not
alter nuclear localization of hnRNPA2 (Fig. 6a, b)37. In contrast,
the ΔPY-NLS mutant (in which residues spanning the two con-
served PY-NLS consensus motifs, YGPMKSGNFGGSRNMGGPY
[aa 301–319], were deleted) showed cytoplasmic accumulation of
the protein that was comparable to the N323Tfs*36 variant
(Fig. 6a, b). The Δ323–341 mutant (in which the C-terminal
flanking sequence was deleted) also showed cytoplasmic accu-
mulation of the protein that was comparable to the N323Tfs*36
variant (Fig. 5b, c). Taken together, these results confirm the
importance of PY-NLS flanking sequences in binding Kapβ2 and
are consistent with previous structural studies of hnRNPA1 that
revealed that in addition to modest energetic contributions of the
PY residues to binding Kapβ2, important electrostatic interactions
are also provided by the adjacent C-terminal flanking regions34,35.
Importantly, the partial shift to cytoplasmic localization of
hnRNPA2 was sufficient to drive toxicity. Indeed, expression of
the artificial ΔPY-NLS mutant in differentiated C2C12 cells, which
causes modest cytoplasmic accumulation of this protein, resulted
in cellular toxicity similar to the frameshift mutants (Fig. 6c, d).

To complement these additional PY-NLS mutants, we also
designed a rescue experiment. Specifically, we added the
canonical monopartite cNLS sequence from simian virus 40
(SV40) T-antigen38 to the C terminus of N323Tfs*36. Not only
did appending the NLS sequence onto this mutant hnRNPA2
fully rescue nuclear localization of N323Tfs*36 (Fig. 6a, b), but it
also prevented cell toxicity (Fig. 6c, d). Thus, we conclude that the
wild-type C-terminal flanking sequence is important for nuclear
localization of hnRNPA2 by regulating its interaction with the
nuclear transport receptor Kapβ2, that this interaction is partly
impaired by frameshift mutation, and that the altered distribution
of hnRNPA2 leads to cell toxicity.

Frameshift variants cause eye and muscle degeneration in a
Drosophila model. We next investigated the in vivo effects of
missense and frameshift mutations in a Drosophila model sys-
tem. To this end, we generated transgenic Drosophila expressing
human hnRNPA2 WT, the MSP-associated mutant D290V6, or
frameshift mutants (N323Tfs*36, G328Afs*31, and G331Efs*28)
via PhiC31 integrase-mediated site-specific insertion of a single
copy of the human HNRNPA2B1 gene. We established multiple
fly lines per genotype and observed that all lines expressing the
N323Tfs*36 mutant, and some lines expressing G328Afs*31 and
G331Efs*28, showed low or no protein expression with the eye
tissue-targeting GMR-GAL4 driver, which may reflect cytotoxi-
city associated with expression (Supplementary Fig. 6a). From
the remaining lines, we selected one G328Afs*31 line and one
G331Efs*28 line for subsequent analysis and compared the
consequences of transgene expression with flies expressing

similar levels of hnRNPA2 WT or D290V (Supplementary
Fig. 6a).

Expression of these transgenes in the fly eye revealed a
mutation-dependent rough eye phenotype that was modest at
22 °C but enhanced at 25 °C, a temperature that causes a greater
level of transgene expression (Fig. 7a)39. At 25 °C, flies expressing
G328Afs*31 showed pupal lethality, although one lethality
“escaper” G328Afs*31-expressing fly exhibited severe eye degen-
eration (Fig. 7a). When expression was driven by the muscle-
specific driver MHC-GAL4, we observed robust expression of
N323Tfs*36, G328Afs*31, and G331Efs*28 mutant proteins, in
contrast with the low expression induced by GMR-GAL4
(Supplementary Fig. 6b). Although a single copy of the
HNRNPA2B1 gene was inserted in all lines, hnRNPA2 protein
levels were consistently modestly higher in the N323Tfs*36,
G328Afs*31, and G331Efs*28 flies compared with the hnRNPA2
WT and D290V flies, suggesting that the frameshift mutations
may increase the stability of hnRNPA2 protein in fly muscles
(Supplementary Fig. 6b).

A mutation-dependent phenotype was more obvious when the
transgenes were expressed in skeletal muscle and assessed by wing
position, as previously described40. Whereas flies expressing
hnRNPA2 WT had normal wing position, flies expressing either
hnRNPA2 with a missense mutation (D290V) or a frameshift
mutation (N323Tfs*36, G328Afs*31, or G331Efs*28) exhibited a
wing position defect. In these animals, a mild mutation-
dependent wing position defect was evident on the first day after
hatching (eclosion) and was found to affect up to 100% of the
animals by day 5 after eclosion (Fig. 7b).

Consistent with the normal wing position, expression of
hnRNPA2 WT in skeletal muscle caused no histological defect in
adult skeletal muscle (Fig. 7c). Tissue architecture and myofibril
organization were normal, and hnRNPA2 protein was detected
only in the nucleus (Fig. 7c). In contrast, expression of either the
missense or frameshift mutants caused a significant disruption in
cytoarchitecture as evidenced by defects in the organization of
myofibrils and substantial redistribution of the protein from the
nucleus into the cytoplasm (Fig. 7c). However, there was a
considerable difference in the cytoplasmic distribution of the
hnRNPA2 protein in animals expressing missense vs. frameshift
mutants. The missense mutant (D290V) accumulated in dense
sarcoplasmic punctae, consistent with our prior observation in
both Drosophila and human cells that hnRNPA2 D290V
accumulates in sarcoplasmic RNP granules6,41. In contrast, the
frameshift mutants accumulated in the sarcoplasm with a diffuse
distribution (Fig. 7c–e).

We previously showed that the missense (D290V) mutant
hnRNPA2 protein shows a stark reduction in solubility relative to
WT when expressed in either human HeLa cells or Drosophila
skeletal muscle cells6. In contrast, frameshift (N323Tfs*36,
G328Afs*31, and G331Efs*28) mutants showed no reduction in
solubility in Drosophila skeletal muscle cells (Fig. 7f, g) and
indeed showed somewhat increased solubility when expressed in
human cells (Supplementary Fig. 4e). These results suggest that
the consequences of these two classes of mutations on intrinsic
properties of hnRNPA2 protein may be very different.

To directly address the consequences of the different classes of
mutation on the biophysical properties of hnRNPA2, we
examined the fibrillization kinetics of purified proteins. These
results revealed that frameshift variants exhibited decelerated
fibrillization kinetics compared to WT protein, whereas
hnRNPA2 D290V assembled into fibrils at a faster rate, as
previously reported (Supplementary Fig. 7)6. Specifically, the
N323Tfs*36 mutant formed very few fibrils over 24 h, whereas
the G328Afs*31 mutant fibrillized only after a long lag phase
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(Supplementary Fig. 7a, b). Thus, these findings suggest that the
pathogenic mechanism of the frameshift variants differs from that
of D290V and likely involves reduced efficiency of nuclear import
rather than an increased propensity toward fibrillization.

Discussion
Here we describe a distinct phenotype of early-onset myopathy
caused by specific heterozygous HNRNPA2B1 frameshift muta-
tions clinically manifesting with progressive muscle weakness,

Fig. 6 Altered nucleocytoplasmic distribution of hnRNPA2 is responsible for the cytotoxicity associated with its frameshift variants. a The amino acid
sequences of the relevant domains in WT, N323Tfs*36, P318A, Y319A, ΔPY, ΔPY-NLS and N323Tfs*36+cNLS. b Intracellular localization of FLAG-tagged
hnRNPA2 proteins. Representative images from three independent experiments are shown. Scale bar, 10 μm. c Representative scatter plots of GFP-positive
C2C12 cells stained with propidium iodide (PI) and annexin V, one (top) or two (bottom) days after change to differentiation media. d Quantification of
GFP-positive cells that were negative for both PI and annexin V. Values represent means ± s.e.m. (n= 3 independent experiments). ****P < 0.0001 by two-
way ANOVA with Dunnett’s multiple comparisons test.
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ptosis, ophthalmoplegia, dysphagia, and variable degrees of
respiratory insufficiency. With the notable exception of the very
early disease onset and rapid progression in our cohort, the
overall clinical presentation was reminiscent of classical OPMD,
such that the disease could be understood as a distinct early-onset

form of OPMD (eoOPMD). The uniform absence of bone, cog-
nitive and motor neuron involvement in our patients distin-
guishes our cohort from the previously described MSP phenotype
associated with a p.D290V HNRNPA2B1 variant6. In addition,
ptosis, ophthalmoparesis, and dysphagia were absent in the
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Fig. 7 Frameshift variants cause eye and muscle degeneration in a Drosophila model. a Expression of frameshift variants in Drosophila eye tissue using
GMR-GAL4 causes a rough eye phenotype. b Expression of frameshift variants in Drosophila muscle using MHC-GAL4 causes an abnormal wing posture
phenotype. The percentage of flies with abnormal wing posture is plotted for 5 days after eclosion. n= 26, 26, 26, 32, and 35 flies for WT, D290V,
N323Tfs*36, G328Afs*31, and G331Efs*28, respectively. c Adult flies expressing hnRNPA2 transgene using MHC-GAL4 were dissected to expose the
dorsal longitudinal indirect flight muscle and stained with rhodamine-phalloidin (purple), hnRNPA2 (red), and DAPI (blue). hnRNPA2 WT localized
exclusively to nuclei, whereas hnRNPA2 D290V accumulated extensively in cytoplasmic inclusions. Frameshift mutants showed both nuclear staining and
diffuse sarcoplasmic accumulation. Scale bar, 10 μm. d hnRNPA2 expression in thoraces of adult flies driven by MHC-GAL4 in transgenic flies.
Representative immunoblots from three independent experiments are shown. e Ratio of sarcoplasmic intensity of hnRNPA2 signal in indirect flight
muscles. Error bars represent mean ± s.d. n= 12, 9, 12, 11, and 8 fly muscle samples for WT, D290V, N323Tfs*36, G328Afs*31, and G331Efs*28,
respectively. ****P < 0.0001 by one-way ANOVA with Dunnett’s multiple comparisons test. f Thoraces of adult flies expressing hnRNPA2 transgene using
MHC-GAL4 were dissected and sequential extractions were performed to examine the solubility profile of hnRNPA2. w1118 flies are included as a non-
transgenic control. Representative immunoblots from three independent experiments are shown. g Quantification of RIPA-soluble and -insoluble fraction of
hnRNPA2. Data represent mean ± s.d., n= 3 (WT, D290V, N323Tfs*36, G328Afs*31) and 2 (G331Efs*28) independent experiments. ***P= 0.0002 by
two-way ANOVA with Dunnett’s multiple comparisons test.
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reported HNRNPA2B1 missense (D290V) family, whereas these
were consistent phenotypic features within our patient cohort,
further differentiating these distinct HNRNPA2B1-related
phenotypes.

Muscle pathologic features in our HNRNPA2B1 cohort were
overall consistent with a chronic, degenerative myopathy, with
notable histological findings of rimmed autophagic vacuoles and
cytoplasmic and intranuclear tubulofilamentous inclusions. These
non-specific findings have been reported in several myopathies,
including HNRNPA2B1 missense variant MSP, inclusion
body myositis42, MYH2-related inclusion body myopathy43,
hnRNPA1-associated inclusion body myopathy44, TIA1-related
myopathies45, hnRNPDL-related myopathies11, and OPMD46,
although the intranuclear tubulofilamentous inclusions we noted
lacked OPMD-associated palisading morphology. The relevance
of autophagic vacuoles and tubular filamentous inclusions to the
pathophysiology of the specific myopathic phenotype observed in
our patients remains unclear.

Since the identification of the first HNRNPA2B1 MSP family,
screening of MSP and large ALS patient cohorts has shown that
HNRNPA2B1 variants are a rare cause of sporadic and familial
motor neuron disease47–49; however, its potential role in myo-
pathies has remained unclear. Degenerative myopathy was
observed in several family members carrying the missense D290V
mutations6. More recently, a p.P298L missense HNRNPA2B1
mutation was found to cause isolated familial PDB without
multisystem involvement, highlighting the divergent phenotypes
that may arise from the various HNRNPA2B1 disease variants10.
In contrast with previously reported variants, the HNRNPA2B1
variants reported here are all specific frameshift mutations that
tightly cluster in the highly conserved LCD of the protein and
escape RNA quality control degradation (Supplementary Fig. 2).
These frameshift HNRNPA2B1 variants alter the C-terminal M9-
NLS amino acid sequence of the protein, while sparing the
immediately upstream PY residues. Further investigation of the
sequence features that contribute to frameshift variant-associated
phenotypes indicated that partial loss of Kapβ2 binding, rather
than gain of a neomorphic amino acid sequence in frameshift
variants, is responsible for the cellular phenotypes observed
(Fig. 5, Supplementary Fig. 5). Thus, we suggest that the
C-terminal flanking sequence after the PY-NLS of hnRNPA2/B1
contributes to Kapβ2 binding, similar to the molecular interaction
of the closely related hnRNPA1 protein with Kapβ234,35. We
propose further that loss of this C-terminal flanking sequence is
responsible for the partial loss of interaction with Kapβ2, which is
the most proximal consequence of the mutations and initiates the
slow pathological process. It remains to be seen whether the same
eoOPMD phenotype is observed in rare individuals with pure
truncations or alternative frameshifts in the HNRNPA2B1
C-terminal flanking sequence. While it is possible that loss of
hnRNPA2/B1 nuclear function may contribute to disease pro-
gression, the overall reduction in nuclear localization of
hnRNPA2/B1 is modest. Moreover, we found that strong
knockdown of endogenous hnRNPA2/B1 is well tolerated in
differentiating myotubes, at least on a time scale of days. Rather,
the data presented herein suggests that the disease mechanism
promoted by frameshift mutations is toxic gain of function in the
cytoplasm. It is important to note that Kapβ2 not only regulates
nuclear import of hnRNPA2/B1 (and other clients such as
hnRNPA1 and FUS) but also regulates higher-order assembly of
these RBPs via LLPS and fibrillization50–52. Thus it is possible
that loss of Kapβ2-mediated chaperoning of hnRNPA2/B1 in the
cytoplasm may contribute to pathogenesis, and this will require
further investigation.

The similarity in muscle pathological features of HNRNPA2B1-
associated MSP and eoOPMD may appear paradoxical, as these

two classes of mutation have distinct consequences for the
hnRNPA2 protein: the first (missense mutations in the LCD
sequence) increases the propensity toward fibrillization, whereas
the second (frameshift mutations that partially impair nuclear
import) increases the cytoplasmic concentration. The long-term
consequence of both classes of mutations is the accrual of
amorphous aggregates that include the hnRNPA2 protein. Thus,
our working model is that there are two distinct, but not
mutually exclusive mechanisms that can lead to pathological
proteinaceous deposits20,21. First, pathological aggregates can
arise from mutations that reduce the energy threshold for
fibrillization. In this category are mutations that alter key resi-
dues in the LCDs of RBPs (e.g., D290V in hnRNPA2/B1, A315T
in TDP-43). Second, pathological aggregates can also arise
through the evolution of poorly dynamic RNP granules. RNP
granules are dynamic liquids that, when perturbed, can undergo
a liquid-to-solid phase transition that culminates in pathological
aggregates similar to those that arise through primary nuclea-
tion. Such perturbations include increased concentration of
constituent proteins (e.g., RBPs) and impairment of regulatory
factors (e.g., VCP). Disease-causing mutations in this second
category include (1) NLS mutations that increase the cytosolic
concentration of RBPs (e.g., the frameshift mutations in
hnRNPA2/B1 reported here, and a series of mutations in FUS
that are clustered at the NLS), (2) hexanucleotide expansion
in C9ORF72 that produces dipeptide repeats that insinuate
into biomolecular condensates and alter their material
properties53,54, and (3) mutations in VCP that impair its ability
to disassemble RNP granules55. Although the nature and direct
molecular consequences of different classes of mutation are
clearly different (e.g., D290V vs. the eoOPMD frameshift var-
iants in HNRNPA2B1), mutations in both categories can ulti-
mately lead to pathological phase transition and deposition of
protein inclusions over time. Indeed, in human pathological
studies of ALS/FTD brain samples, which at late stages are also
characterized by presence of TDP-43 cytoplasmic aggregates,
loss of nuclear TDP-43 staining precedes the development of
cytoplasmic inclusions by several years56. Thus, we suggest that
the hnRNPA2/B1 aggregates in our patient biopsies are the end-
stage epiphenomenon of the disease process over a long period
of time and are preceded by abnormal nucleocytoplasmic
transport dynamics of frameshift variant hnRNPA2/B1 and its
accumulation in the cytoplasm. This may also explain why a
plethora of RBPs in RNP granules lead to co-deposition of
additional RBPs (e.g., TIA1 and TDP-43) that appear as
pathological features.

All the HNRNPA2B1 frameshift variants reported here were
found in heterozygosity and thus appear to act in a dominant
manner. This observation raises the possibility of loss of function
(i.e., haploinsufficiency), gain of function, or dominant-negative
pathomechanisms. As noted above, missense mutations in the
LCD of hnRNPA2 may drive primary nucleation of hnRNPA2
fibrils and culminate in the accrual of pathological aggregates,
reflecting a straightforward gain of toxic function. In contrast,
frameshift variants in hnRNPA2 partially impair nuclear import
—a partial loss of function. However, the consequence of this
impaired nuclear import is persistently increased concentration of
hnRNPA2 in the cytoplasm. Substantial evidence has now
accrued that increased concentration of an RNP granule con-
stituent is one of several mechanisms that impairs the dynamics
of RNP granules, culminating in liquid-to-solid phase transition
and evolution toward pathological aggregates that also include
hnRNPA2 protein20,21. Thus, whereas the primary consequence
of the frameshift mutations is loss of function (impaired binding
to Kapβ2), we suggest that the resulting increased cytoplasmic
concentration ultimately results in the same consequences as the
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missense mutations—a toxic gain of function in the cytoplasm.
This model is further supported by the results of knockdown
experiments showing that depletion of endogenous HNRNPA2B1
by siRNA does not cause toxicity in differentiated C2C12 cells,
arguing against a simple loss of function mechanism (Supple-
mentary Fig. 5b–d).

It is noteworthy that similar C-terminal frameshift variants in
HNRNPA1 (*321Eext*6, *321Qext*6, and G304Nfs*3) were
identified in a broad spectrum of patients with hereditary motor
neuropathy, ALS and myopathy7. The amino acid sequences
altered by these frameshift mutations in hnRNPA1 are located
far downstream of the PY-NLS, and the impact of these fra-
meshift mutations on nucleocytoplasmic transport of hnRNPA1
is not as clear as observed for the HNRNPA2B1 frameshift
variants. Nevertheless, similar to the eoOPMD-associated
HNRNPA2B1 frameshift variants, frameshift variants of
HNRNPA1 showed reduced propensity for fibrillization, and
one variant with an extension of amino acids (*321Eext*6)
accumulated in cytoplasmic stress granules in response to stress,
which can often be attributed to increased concentration of the
protein in the cytoplasm7. Thus, the frameshift variants of
HNRNPA1 and HNRNPA2B1 might share a common under-
lying pathomechanism.

Among the myopathies, emerging data suggest a specific role
for LCD-containing RBPs such as TDP-43 and hnRNPA2/B1 in
regenerating muscle, where they are thought to stabilize large
muscle-specific transcripts (e.g., TTN, NEB), aid in their trans-
port, and facilitate pre-mRNA splicing57. In particular, wild-type
hnRNPA2/B1 retains its exclusive nuclear localization during
muscle regeneration57. In association with their altered nucleo-
cytoplasmic distribution, expression of HNRNPA2B1 frameshift
variants in our study resulted in cell toxicity in differentiating
C2C12 myoblasts (Fig. 4) and degeneration of flight muscle in
Drosophila (Fig. 7), suggesting an essential role for hnRNPA2/B1
in maintaining skeletal muscle integrity. Thus, with ongoing use
and stress of the muscle, impaired hnRNPA2/B1 nuclear import
may be inadequate to maintain muscle homeostasis over time,
clinically manifesting as the progressive muscle weakness seen in
our patients. The phenotypic relationship of our patients to
typical OPMD is also of great interest, as OPMD is caused by
polyalanine expansions in PABPN1, whose normal splicing in the
nucleus is partially regulated by hnRNPA2/B158. Thus, future
studies should focus on the role of RBPs such as hnRNPA2/B1 in
specific cell types, specific subcellular compartments, and in
response to different physiologic states to identify their respective
contributions to pathogenic processes and subsequent clinical
manifestations.

Our data expand the clinical spectrum of HNRNPA2B1 var-
iants from MSP to include a distinct early-onset OPMD-like
phenotype. Understanding how these seemingly divergent phe-
notypes emerge from common molecular and cellular events will
likely uncover fundamental insights into RBP function and reg-
ulation that will be applicable to a broad array of neurodegen-
erative diseases.

Methods
Patient recruitment and sample collection. Patients were recruited through local
neurology and genetics clinics and clinical information was obtained based on the
local standard clinical care. DNA and tissues (e.g., muscle, skin biopsy) and
medical records were obtained based on standard procedures. The authors affirm
that human research participants and/or legal guardian have seen and read the
material to be published and have provided informed consent for publication of the
images in Fig. 1. Ethical approval was obtained from the NIH, National Institute of
Neurological Disorders and Stroke (NINDS), Institutional Review Broad (Protocol
12-N-0095), National Center of Neurology and Psychiatry (Protocol A2019-123),
University of Strasburg (Protocol DC-2012-1693), Cambridge South, UK Research

Ethics Committee (approval 13/EE/0325), Health Research Authority, NRES
Committee East of England—Hatfield (REC 13/EE/0398; REC 06/Q0406/33) and
National Research Ethics Service (NRES) Committee North East–Newcastle &
North Tyneside 1 (reference 08/H0906/28).

Exome sequencing. Quartet exome sequencing in family 1 was performed through
the NIH Intramural Sequencing Center (NISC) using the Illumina TruSeq Exome
Enrichment Kit and Illumina HiSeq 2500 sequencing instruments. Variants were
analyzed using seqr (Center for Mendelian Genomics, Broad Institute). Trio exome
sequencing in family 2 was performed at GeneDX with exon targets isolated by
capture using the Agilent SureSelect Human All Exon V4 (50Mb) kit or the
Clinical Research Exome (Agilent Technologies). The sequencing methodology and
variant interpretation protocol has been previously described59.

Patient 3 was sequenced as a singleton as part of the MYO-SEQ project60.
Exome sequencing was performed by the Genomics Platform at the Broad
Institute. Libraries were created with an Illumina exome capture (38 Mb target) and
sequenced with a mean target coverage of >80x. Exome sequencing data were
analyzed on seqr (https://seqr.broadinstitute.org/).

For family 4, exome sequencing of patients 4 and 5 was undertaken using
Agilent SureSelect Human All Exon 50Mb capture kit followed by sequencing on a
5500XL SOLiD sequencer. The affected mother and unaffected father were
sequenced using Nextera Rapid Capture Expanded Exome for target selection
followed by sequencing on an Illumina HiSeq2000. Genomic data were processed
as previously described61. Confirmation of variants and segregation was performed
by Sanger sequencing.

WES analysis in proband (P6) from family 5 was performed by deCODE
genetics, Iceland. The alignment to the human reference genome (hg19) and the
variant calling was done by deCODE genetics, Iceland. Data analysis was carried
out using Clinical Sequence Miner platform, NextCODE Health.

Trio exome sequencing in family 6 was performed at the Centre National de
Recherche en Génomique Humaine (Evry, France) using the Agilent SureSelect
Human All Exon V4. Sequence analysis and variant interpretation was performed
as described62.

For family 7, the patient underwent standard clinical next generation
sequencing panels that included LGMD and congenital myopathy genes. Due to
the remarkably similar phenotype to the other patients in this cohort, direct Sanger
sequencing of the terminal exon of HNRNPA2B1 was pursued and identified the de
novo variant.

For family 8, the patient’s DNA was analyzed using the Illumina Trusight ONE
Expanded kit on an Illumina NextSeq 550 sequencer as described63. Segregation
analysis was performed by Sanger sequencing.

For family 9, genome sequencing in patient 10 and her parents was performed
using the Illumina HiSeq X Ten platform and variant calling and interpretation
were performed as previously described64. Confirmation of variants was performed
by Sanger sequencing.

For family 10, exome sequencing in patient 11 was performed at Beijing
Genomics Institute (BGI) using the DNBSEQ. Exome sequencing and variant
calling were performed as previously described65. Confirmation of variants was
performed by Sanger sequencing.

Muscle histology, immunofluorescence, and confocal microscopy. Clinical
muscle biopsy slides were obtained and reviewed. These included hematoxylin and
eosin, modified Gömöri trichrome, NADH, and other histochemical stains as well
as electron microscopy images when available. For immunofluorescence and
confocal microscopy, frozen muscle biopsy tissues were cryo-sectioned (10 µm),
fixed (100% acetone, −20 °C for 10 min), and blocked and permeabilized in 5%
normal goat serum (Sigma) with 0.5% Triton X in PBS for 1 h at room tempera-
ture. Primary antibody incubation was performed overnight at 4 °C as follows:
hnRNPA2B1 (Santa Cruz, sc-32316; mouse, 1:200), TDP-43 (Proteintech, 10782-2-
AP; rabbit, 1:200), ubiquitin (Stressgen, SPA-200; rabbit, 1:200), ubiquilin-2
(Abcam, Ab190283; mouse IgG1, 1:500), TIA1 (Abcam, Ab140595; rabbit, 1:100),
P62/SQSTM1 (Santa Cruz, sc-28359; mouse IgG1, 1:250). Secondary antibody
incubation was performed for 1 h at room temperature. Sections were then washed
in PBS, the nuclei were stained with DAPI, and sections were mounted and cov-
erslipped. Z-stack images were obtained using a Leica TCS SP5 II confocal
microscope.

Muscle MRI. Muscle MRI was performed using conventional T1-weighted spin
echo and short tau inversion recovery (STIR) of the lower extremities on different
scanners at different centers.

Plasmid constructs. cDNA containing frameshift mutations of hnRNPA2 were
synthesized by GenScript. For mammalian expression, FLAG-tagged WT, D290V,
N323Tfs*36, G328Afs*31, G331Efs*28, Δ323–341, and N323Lfs*31 were cloned
into pCAGGS vector at SacI and SbfI sites. N-terminal GFP-tagged WT, D290V,
N323Tfs*36, G328Afs*31, and G331Efs*28 were cloned into pEGFP-C1 vector at
BsrGI and XhoI sites. N-terminal GFP-tagged Δ323–341, N323Lfs*31, P318A,
Y319A, ΔPY, ΔPY-NLS, and N323Tfs+cNLS were subjected to site-directed
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mutagenesis using Q5 Site Directed Mutagenesis Kit (E0554S; NEB). C-terminal
GFP-tagged WT, D290V, N323Tfs*36, G328Afs*31, and G331Efs*28 were cloned
into pEGFP-N1 vector at XhoI and PstI sites. For transgenic Drosophila, mutant
hnRNPA2 cDNAs were subcloned into the pUASTattB vector using EcoRI and
XhoI. For bacterial expression, codon optimized cDNA containing frameshift
mutations of hnRNPA2 were synthesized and subcloned into the pGST-Duet
vector using BamHI and EcoRI by GenScript. All clones were verified by restriction
enzyme digestion and sequence analysis.

Cell lines. The following cell lines were purchased from the American Type
Culture Collection: HEK293T (ATCC CRL-11268), HeLa (ATCC CCL-2), and
C2C12 (ATCC CRL-1772). Cells were authenticated by short tandem repeat pro-
filing. All cell lines were tested to be mycoplasma negative.

Cell culture, transfection, and immunofluorescence. HEK293T and HeLa cells
were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 1% penicillin/streptomycin, and 1% L-glutamate.
Cells were transfected using FuGene 6 (Promega) according to the manufacturer’s
instructions. For immunofluorescence, HeLa cells were seeded on eight-well glass
slides (Millipore) and transfected with appropriate FLAG-tagged or GFP-tagged
hnRNPA2 constructs. 24 h post transfection, cells were stressed with 500 μM
sodium arsenite (Sigma-Aldrich) for indicated times. Cells were then fixed with 4%
paraformaldehyde (Electron Microscopy Sciences), permeabilized with 0.5% Triton
X-100, and blocked in 3% bovine serum albumin. Primary antibodies used were
mouse monoclonal anti-FLAG (M2, F1804; Sigma), rabbit polyclonal anti-eIF4G
(H-300, sc-11373; Santa Cruz Biotechnology), and mouse monoclonal anti-
hnRNPA2B1 (EF-67, sc-53531; Santa Cruz Biotechnology) antibodies. For visua-
lization, the appropriate host-specific Alexa Fluor 488, 555 or 647 (Molecular
Probes) secondary antibody was used. Slides were mounted using Prolong Gold
Antifade Reagent with DAPI (Life Technologies). Images were captured using a
Leica TCS SP8 STED 3X confocal microscope (Leica Biosystems) with a ×63
objective. Images were quantified using Cell Profiler (Broad Institute) for cyto-
plasmic accumulation. Briefly, images were subjected to segmentation and inte-
grated fluorescent intensity was calculated for whole cell, nucleus, and cytoplasm.
Cytoplasmic percent is simply cytoplasmic intensity divided by whole cell intensity.
For fluorescent distribution across the cell, ImageJ (NIH) was used. A straight line
was overlaid across the cell and then the fluorescent intensity was measured across
the line using the built-in function.

Western blot analysis. Cell lysates were prepared by lysing cells in 1× lysis buffer
(150 mM NaCl, 25 mM Tris–HCl pH 7.5, 1 mM EDTA, 5% glycerol, and 1% NP-
40) with Complete Protease Inhibitor Cocktail (Clontech Laboratories). Samples
were resolved by electrophoresis on NuPAGE Novex 4–12% Bis–Tris gels (Invi-
trogen). Primary antibodies used were mouse monoclonal anti-FLAG (M2, F1804;
Sigma), rabbit polyclonal anti-FLAG (F7425; Sigma), rabbit polyclonal anti-GFP
(2555S; Cell Signaling), rabbit-polyclonal anti-hnRNPA2B1 (HPA001666, Sigma),
rabbit-polyclonal anti-hnRNPA2B1 (NBP2-56497; NOVUS Biologicals), and
mouse monoclonal anti-GAPDH antibodies (6C5, sc-32233; Santa Cruz Bio-
technology). Blots were subsequently incubated with IRDye fluorescence-labeled
secondary antibodies (LI-COR) and protein bands were visualized using the
Odyssey Fc system (LI-COR) and Image Studio (LI-COR). Quantification was
performed using ImageJ (NIH).

Cell toxicity. C2C12 cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/strep-
tomycin, and 1% L-glutamate. Cells were transfected using Lipofectamine 300
reagent (ThermoFisher Scientific) according to the manufacturer’s instructions.
C2C12 cells were counted using ADAM-CellT (NanoEntek Inc., Seoul, Korea),
plated in six-well dishes (Corning), and transfected with appropriate GFP-tagged
hnRNPA2 constructs. 24 h post transfection, the media was changed to differ-
entiation media (DMEM supplemented with 0.5% FBS, 1% penicillin/streptomycin,
and 1% L-glutamate) and counted as day 0. After 1 or 2 days, the GFP signal of the
cells were imaged with an EVOS microscope. Apoptotic cells were determined by
staining with annexin-V-APC and propidium iodide (BD Biosciences) and mea-
sured by flow cytometry. Data was analyzed using FlowJo_v10.6.1.

siRNA knockdown. C2C12 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% penicillin/
streptomycin and 1% L-glutamate. Cells were transfected using RNAiMAX reagent
(ThermoFisher Scientific; 13778075) according to the manufacturer’s instructions.
C2C12 cells were counted using ADAM-CellT (NanoEntek Inc., Seoul, Korea),
plated in six-well dishes (Corning), and transfected with either ON-TARGETplus
Non-Targeting Pool siRNA (Dharmacon; D-001810-10-05) or ON-TARGETplus
Mouse Hnrnpa2b1 siRNA (Dharmacon; L-040194-01-0005). 72 h post transfec-
tion, cells were used for subsequent experiments. Knockdown efficiency was
determined by Western blot using mouse monoclonal anti-hnRNPA2/B1 (DP3B3,
Santa Cruz Biotechnology; sc-32316) and goat polyclonal anti-actin (Santa Cruz
Biotechnology; sc-1616). Target sequences for control siRNA were: UGGUUUAC
AUGUCGACUAA, UGGUUUACAUGUUGUGUGA, UGGUUUACAUGUUU

UCUGA, UGGUUUACAUGUUUUCCUA. Target sequences for HNRNPA2B1
siRNA were: GGAUCUGAUGGAUACGGAA, GGGAUGGCUAUAAUGGGUA,
ACCGAUAGGCAGUCUGGAA, GGUGGAAUUAAGGAAGAUA.

Protein purification. GST-tagged Kapβ2 WT protein was purified as described
previously66 with modifications. Briefly, recombinant protein was expressed in
BL21 (DE3) Escherichia coli cells by induction with 1 mM isopropyl-β-D-thioga-
lactoside overnight at 16 °C. Cells were lysed by sonication in buffer containing
50 mM HEPES pH 7.5, 150 mM NaCl, 2 mM EDTA, 2 mM DTT, 15% (v/v) gly-
cerol with protease inhibitors and centrifuged. GST-Kapβ2 was then purified using
Glutathione Sepharose 4B protein purification resin and eluted in buffer described
previously with 30 mM glutathione, adjusted to pH 7.5. GST was cleaved using
TEV protease overnight at 4 °C or kept on the protein and Kapβ2 was further
purified by ion-exchange and size exclusion chromatography in buffer containing
20 mM HEPES pH 7.5, 110 mM potassium acetate, 2 mM magnesium acetate,
2 mM DTT, and 10% (v/v) glycerol. Purified proteins were flash-frozen and stored
at −80 °C. GST-tagged hnRNPA2 PY-NLS WT and N323Tfs*36 peptides were
purified similarly except no ion-exchange step was included.

GST-tagged hnRNPA2 proteins were purified as described6. Briefly, WT and
mutant hnRNPA2 with N-terminal GST tag were over-expressed into E. coli
BL21(DE3)-RIL (Invitrogen). Bacteria were grown at 37 °C until reaching an OD600

of ~0.6 and expression was induced by addition of 1 mM isopropyl 1-thio-β-D-
galactopyranoside (IPTG) for 15–18 h at 15 °C. Protein was purified over a
Glutathione-Sepharose column (GE) according to manufacturer instructions. GST-
hnRNPA2 was eluted from the Glutathione Sepharose with 40 mM HEPES–NaOH,
pH 7.4, 150 mM potassium chloride, 5% glycerol, and 20 mM reduced glutathione.
Eluted proteins were centrifuged at 16,100×g for 10 min at 4 °C to remove any
aggregated material before being flash-frozen in liquid N2 and stored at −80 °C.
Before each experiment, protein was centrifuged at 16,100×g for 10 min at 4 °C to
remove any aggregated material. After centrifugation, the protein concentration in
the supernatant was determined by Bradford assay (Bio-Rad) and these proteins
were used for aggregation reactions. TEV protease was purified as described67.
Briefly, His-tagged TEV were over-expressed into E. coli BL21(DE3)-RIL
(Invitrogen). Bacteria were grown at 37 °C until reaching an OD600 of ~0.7 and
expression was induced by addition of 1 mM IPTG for 15–18 h at 15 °C. Protein
was lysed in TEV Lysis Buffer (25 mM Tris–HCl, pH 8.0, 500 mM NaCl, 25 mM
imidazole, 10 mM β-mercaptoethanol, with protease inhibitors) and purified over
Ni-NTA resin (Qiagen). His-tagged TEV protein were eluted in buffer containing
25 mM Tris–HCl, pH 8.0, 500 mM NaCl, 300 mM imidazole, 10 mM β-
mercaptoethanol. Protein were dialyzed into buffer containing 25 mM
HEPES–NaOH, pH 7.0, 5 mM β-mercaptoethanol, 5% (v/v) glycerol, flash frozen,
and stored at −80 °C.

Fluorescence polarization. Synthesized TAMRA-tagged hnRNPA2 PY-NLS WT,
N323Tfs, G328Afs, or G331Efs peptide were incubated with increasing amounts of
purified Kapβ2 WT in buffer containing 20 mM HEPES pH 7.5, 110 mM potas-
sium acetate, 2 mM magnesium acetate, 2 mM DTT, and 10% (v/v) glycerol in
Corning 96-well solid black polystyrene plates. Fluorescence polarization was
measured with a Cytation 5 multi-mode plate reader (Biotek) using Gen5 software
with 561-nm polarization cube. Analysis was performed using MATLAB. Briefly,
fluorescence polarization was converted to anisotropy and Kd values were calcu-
lated by fitting the resulting curve to the equation

Fsb ¼
Kd þ Lþ R�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKd þ Lþ RÞ2 � 4 � L � R
q

2 � L ;

where Fsb is the fraction bound, L is the concentration of peptide, and R is the
concentration of Kapβ2. Each peptide was run in triplicate.

Generation of Drosophila lines and Drosophila stocks. The hnRNPA2 WT and
D290V Drosophila stocks have been previously published6. Flies carrying
pUASTattB-hnRNPA2 N323Tfs, G328Afs, or G331Efs transgenes were generated
by a standard injection and φC31 integrase-mediated transgenesis technique
(BestGene Inc.). GMR-GAL4 was used to express transgenes in eyes; MHC-GAL4
was used to express transgenes in muscle. All Drosophila stocks were maintained in
a 25 °C incubator with a 12-h day/night cycle.

Adult Drosophila muscle preparation and immunohistochemistry. Adult flies
were embedded in a drop of OCT compound (Sakura Finetek) on a slide glass,
frozen with liquid nitrogen, and bisected sagitally by a razor blade. After fixing with
4% paraformaldehyde in PBS, hemithoraces were stained by Texas Red-X phal-
loidin (Invitrogen) and DAPI according to manufacturer’s instructions. Stained
hemi-thoraces were mounted in 80% glycerol and the musculature was examined
by DMIRE2 (Leica). For hnRNPA2 staining, hemithoraces were permeabilized with
PBS containing 0.2% Triton X-100 and stained with anti-hnRNPA2B1 antibody
(EF-67, sc-53531; Santa Cruz Biotechnology) and Alexa-488-conjugated secondary
antibody (Invitrogen). Stained muscle fibers were dissected and mounted in
Fluormount-G (Southern Biotech) and imaged with a Marianas confocal micro-
scope (Zeiss).
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Solubility and biochemical analyses of adult Drosophila muscles and
C-terminally GFP-tagged hnRNPA2 in C2C12 cells. Sequential extractions were
performed to examine the solubility profile of hnRNPA2. Adult fly thoraces or cells
transfected with the appropriate GFP-tagged constructs were lysed in cold RIPA
buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% sodium
deoxycholate, 0.1% SDS, and 1 mM EDTA) and sonicated. Cell lysates were cleared
by centrifugation at 100,000×g for 30 min at 4 °C to generate RIPA-soluble sam-
ples. To prevent carry-overs, the resulting pellets were washed twice with PBS and
RIPA-insoluble pellets were then extracted with urea buffer (7M urea, 2 M
thiourea, 4% CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesul-
phonate), 30 mM Tris, pH 8.5), sonicated, and centrifuged at 100,000×g for 30 min
at 22 °C. Protease inhibitors were added to all buffers before use. Protein con-
centration was determined by the bicinchoninic acid method (Pierce) and proteins
were resolved by NuPAGE Novex 4–12% Bis–Tris gels (Invitrogen). For Western
blot analysis, thoraces of adult flies were prepared and ground in NuPAGE LDS
sample buffer (NP0007, Invitrogen). Samples were then boiled for 5 min and
analyzed by standard Western blotting methods provided by Odyssey system (LI-
COR) with 4–12% NuPAGE Bis–Tris gels (Invitrogen).

In vitro fibrillization assays. hnRNPA2 (5 µM) fibrillization (100 µl reaction) was
initiated by addition of 1 μl of 2 mg/ml TEV protease in A2 assembly buffer
(40 mM HEPES–NaOH, pH 7.4, 150 mM KCl, 5% glycerol, 1 mM DTT, and
20 mM glutathione). The hnRNPA2 fibrillization reactions were incubated at 25 °C
for 0–24 h with agitation at 1200 rpm in an Eppendorf Thermomixer. For sedi-
mentation analysis, at indicated time points, fibrillization reactions were cen-
trifuged at 16,100×g for 10 min at 4 °C. Supernatant and pellet fractions were then
resolved by SDS–PAGE and stained with Coomassie Brilliant Blue, and the relative
amount in each fraction was determined by densitometry in ImageJ (NIH). All
fibrillization assays were performed in triplicate. For electron microscopy, fibrilli-
zation reactions (10 μl) were adsorbed onto glow-discharged 300-mesh Formvar/
carbon coated copper grids (Electron Microscopy Sciences) and stained with 2% (w/v)
aqueous uranyl acetate. Excess liquid was removed and grids were allowed to air dry.
Samples were viewed on a JEOL 1010 transmission electron microscope.

Data collection and statistical analysis. The NCPR was collected using CIDER v1.7
(http://pappulab.wustl.edu/CIDER/). Exome sequencing data were analyzed on
seqr (https://seqr.broadinstitute.org/). FACS data was collected using BD FACS-
Canto II Flow Cytometer (Version 9.0). All flow cytometry data were analyzed by
FlowJo (Version 10.6.1). Images were quantified using Cell Profiler (Broad Insti-
tute, Version 4.1.3) and Image J (NIH, Version 2.1.0). Fluorescence polarization
analysis was performed using MATLAB (Version 8.4). Statistical analyses were
performed using Prism 9 (GraphPad, Version 9.3.1) software. Statistical tests used
for individual experiments are described in corresponding legends.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Patient-related data, including genetic sequencing data not included in the manuscript or
its supplements, were generated as part of clinical care and may be subject to patient
confidentiality. All requests for raw and analyzed data and materials related to patients
presented in this article will be reviewed by the respective institution to verify if the
request is subject to any intellectual property or confidentiality obligations. Data requests
for anonymized data are typically shared with qualified investigators after a material
transfer agreement; such requests should be directed to corresponding author Carsten G.
Bönnemann. All other data generated or analyzed during this study are included in this
published article (and its Supplementary Information/Source Data file).
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