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Abstract

Complex networks have recently become the focus of research in many fields. Their structure reveals crucial information for
the nodes, how they connect and share information. In our work we analyze protein interaction networks as complex
networks for their functional modular structure and later use that information in the functional annotation of proteins
within the network. We propose several graph representations for the protein interaction network, each having different
level of complexity and inclusion of the annotation information within the graph. We aim to explore what the benefits and
the drawbacks of these proposed graphs are, when they are used in the function prediction process via clustering methods.
For making this cluster based prediction, we adopt well established approaches for cluster detection in complex networks
using most recent representative algorithms that have been proven as efficient in the task at hand. The experiments are
performed using a purified and reliable Saccharomyces cerevisiae protein interaction network, which is then used to
generate the different graph representations. Each of the graph representations is later analysed in combination with each
of the clustering algorithms, which have been possibly modified and implemented to fit the specific graph. We evaluate
results in regards of biological validity and function prediction performance. Our results indicate that the novel ways of
presenting the complex graph improve the prediction process, although the computational complexity should be taken
into account when deciding on a particular approach.
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Introduction

A protein within a cell is rarely a single constituent of the

mechanism that performs its function. It has been observed that

proteins involved in the same cellular processes often interact with

each other [1] making the protein-protein interactions (PPI)

fundamental to almost all biological processes [2]. Significant

amount of data is produced with the advancement of high-

throughput technologies. Yeast-two-hybrid, mass spectrometry,

and protein chip technologies have allowed the construction of

large interaction networks [3], and are now scaled up to produce

extensive genome-wide data sets that are providing us with a first

glimpse of global interaction networks. However, these rapid

improvements come at the price of a vast majority of known

proteins not being experimentally characterized, and their

function is yet unknown [4]. As has been commonly realized,

the acquisition of data is but a preliminary step, and a true

challenge lies in developing effective means to analyze such data

and endow them with physical and/or functional meaning [5].

This has prompted the computational function prediction as one

of the most challenging problems of the postgenomic era.

PPI data has the nature of networks. This provides a global view

of the context of each protein. There is more information in a

protein interaction network (PIN) compared to sequence or

structure alone. A protein in a PIN is annotated with one or

more functional terms. Multiple and sometimes unrelated

annotations can occur due to multiple active binding sites or

possibly multiple stable tertiary conformations of a protein. The

annotation terms are commonly based on an ontology. A major

effort in this direction is the Gene Ontology (GO) project [6]. GO

characterizes proteins in three major aspects: molecular function,

biological process and cellular localization.

We can now characterize the computational function prediction

as the process of understanding the relationship between the

protein’s interaction context and its functions. Grouping proteins

of the PIN into sets (clusters) which show greater similarity among

proteins in the same cluster than in different clusters has been

shown as an effective approach to accomplish this goal [7]. Since

biological functions can be carried out by particular groups of

proteins, dividing networks into naturally grouped parts (clusters) is

an essential way to investigate some relationships between the

function and topology of networks or to reveal hidden knowledge

behind them. Typical graph clustering methods often result in a

poor clustering arrangement [8] so PINs have been weighted

based on topological properties such as shortest path length [9,10]

and clustering coefficients [11] in order to achieve an improve-

ment in the clustering results. In [12–15] the edge-betweenness

and its modified version, using weights generated from micro array

expression profiles, have been used as a method to find functional

modules in the PIN. A method that combines the results of

multiple, independent clustering arrangements into a single

consensus cluster structure is presented in [16].

PINs have also been analyzed by extracting protein complexes,

i.e. finding densely connected subgraphs within the network. To
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infer such complexes many methods have been proposed. The

Markov Cluster algorithm (MCL) [17] simulates a flow on the

graph by calculating successive powers of the associated adjacency

matrix. Restricted Neighborhood Search Clustering (RNSC) [18]),

is a cost-based local search algorithm that explores the solution

space to minimize a cost function, calculated according to the

numbers of intra-cluster and inter-cluster edges. Super Paramag-

netic Clustering (SPC) [19] is a hierarchical clustering algorithm

inspired from an analogy with the physical properties of a

ferromagnetic model subject to fluctuation at nonzero tempera-

ture. Molecular Complex Detection (MCODE) [20] is based on

node weighting by local neighborhood density and outward

traversal from a locally dense seed protein to isolate densely

connected regions. Detection of highly connected subgraphs

(cliques) combined with Monte Carlo optimization is considered

in [21]. The authors distinguish two types of clusters: protein

complexes and dynamic functional modules. Highly connected

subgraphs algorithm is used in [22] for discovery of protein

complexes, while the authors of [23] use spectral clustering for

generating modules, and possible functional relationships among

the members of the cluster for predicting new protein-protein

connections. More recent approaches exploit semantic similarity

measures based on GO between pairs of proteins within the PIN.

PROCOMOSS [24] uses a multi-objective evolutionary approach

in which graphical properties as well as biological properties based

on GO semantic similarity measure are considered as objective

functions for detecting protein complexes in a PIN. CSO [25]

performs clustering based on network structure and ontology

attribute similarity on GO attributed PINs. Both of these

algorithms achieve state-of-the-art performance. These results

are another proof that topological features of the PIN alone are

insufficient for proper partitioning of the PIN and the network

needs to be augmented.

In this paper we address the problem of function prediction in

twofold manner. First, we propose novel graph representations of

the PIN each having different level of complexity and different

inclusion of the annotation information within the graph. Second,

we select state-of-the-art algorithms for cluster detection that have

not yet been used on PINs and we examine their efficiency in

detecting clusters within the different graph representations of the

PIN as previously defined. Since we are interested in function

prediction the exploration of these methods goes one step further

in establishing efficient clustering in terms of accurate cluster based

function prediction and establishing the benefits and the draw-

backs of combining the methods with the different graph

representations of the PIN in the functional annotation process.

We conclude the paper with a discussion of what would be the

recommended approach of predicting a function in the PIN

depending on the priorities of the outcome i.e. what is the best

experimental setup if the prediction is done network wide versus a

prediction for a single (or a small group of) protein(s), and if the

prediction accuracy is of higher importance than its coverage, and

vice versa.

Materials and Methods

Protein-Protein Interaction Data
High-throughput techniques are prone to detecting many false

positive interactions, leading to a lot of noise and non-existing

interactions in the databases. Furthermore, some of the databases

are supplemented with interactions computationally derived with a

method for protein interaction prediction, adding additional noise

to the databases. Therefore, none of the available databases are

perfectly reliable and the choice of a suitable database should be

made very carefully.

We conduct our experiments on Saccharomyces cerevisiae PPI

data which are compiled from a number of established datasets

used in previous research on PPI. Namely, we first merge the PPI

datasets of Uetz [26], Ito [27], Ho [28], Krogan [29], and Gavin

[30]. We then filter out interaction from the merged dataset based

on the number of supporting evidence found in DIP [31], MIPS

[32], MINT [33], BIND [34] and BioGRID [35]. The resulting

dataset contains only protein-protein interactions which have

more than one experimental evidence. The functional terms for

each protein are taken from the SGD database [36], and are

unified with the GO terminology. This data is further purified as

proposed in [37]. First, the trivial functional terms, like ‘unknown

molecular function’ are erased. Then, additional terms are

calculated for each protein by the policy of transitive closure

derived from the GO. The extremely frequent terms (appearing as

annotations to more than 300 proteins) are also excluded, because

they are very general and do not carry significant information.

The final dataset is highly reliable and consists of 2502 proteins

with 6354 interactions between them and has a total of 888

functional terms and 31515 protein-term pairs. The average node

degree of the resulting protein interaction network is 5.08 and the

clustering coefficient is 0.18. Figure 1 shows the degree distribution

of the network on log-log scale.

Protein Interaction Network Representation
As previously stated, PPI data has the properties of a network

and therefore can be represented as a graph. We introduce several

different graph representations of the PIN, each of which

represents the information within the data at a different level.

Our first goal is to explore the level of detail that is sufficient for

effective clustering of the PIN and function prediction, and to

show that the novel augmented representations significantly

improve performance. We point out here that all graphs resulting

from a PIN are undirected since an interaction itself is undirected.

The different representations with ascending level of complexity

are defined as follows.

Simple Graphs. The most basic definition of a PIN graph

representation is through simple graph with G1~(V , E) where

nodes i, j[V correspond to proteins, and edges (i, j)[E corre-

spond to interaction between ‘‘proteins’’ i and j. The simple graph

is unweighted. With this graph we use only the topology of the PIN

to determine clusters. For our data we have DV D~2502 and

DED~6354.

Weighted Graphs. The simplest way to enrich the previous

representation is to add weights to edges from E and thus define a

weighted graph G2~(V , E, W ) for the PIN, where W is a matrix

whose elements wij are the weights of the edges (i, j)[E. Weights

can be calculated in three different ways [38].

a) Content-based weights: a content-based weight calculation is

one that assigns weight w1
ij to the edge (i, j) by looking at the

terms (‘‘content’’) associated with nodes i and j, not taking

their environment (the graph structure) into account. If ti is

the set of terms associated with node i and tj is the set of terms

associated with j, w1
ij can be computed using the normalized

Jaccard Index as follows:

w1
ij~

1

2

Dti\tj D
Dti D

z
Dti\tj D

Dtj D

� �
ð1Þ
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b) Structure-based weights: a structure-based weight calcula-

tion is one that takes the context of the nodes i and j into

account, but not the content of the nodes themselves, when

calculating weight w2
ij for the edge (i, j). In order to calculate

w2
ij we need to derive a way to map the context of i and j so

that the result contains all the structural information about

these nodes. The structural information of the graph G2 is

naturally encoded in its adjacency matrix A~½aij � so we can

define the weight matrix W 2~½w2
ij � as follows:

W 2~ W 1AzAW 1
� �

ð2Þ

where W 1~½w1
ij � is the content-based weight matrix. Since

aij~0, V(i, j)=[E, the first part of Eq. 2 gives the sum of all

content-based weights of edges between node i and all

neighbours of j, while the second part is the sum of all

content-based weights between node j and all neighbours of i.

PINs are known to have proteins that interact with many

other, which gives rise to hubs within the graph representing

the PIN. Eq. 2 will give high scores to nodes with high degree

and vice versa, i.e. low scores to nodes with low degree, so we

average the values to overcome this unwanted effect and get

Eq. 3. Additionally w2
ij are normalized to be in the same

range as w1
ij .

W 2~
1

2
W 1A1zA2W 1
� �

ð3Þ

where A1~½aij=
PN

n~1 anj �, A2~½aij=
PN

n~1 ain�, and N~DV D.
c) Hybrid weights: it combines both content-based and

structure-based weights; a natural way of combining them

is taking the average of the two:

W~
1

2
W 1zW 2
� �

ð4Þ

We note that many other ways of defining W 1 and W 2 are

possible. We are pointing out that multiple definitions of

weighting may make sense, and that, depending on the task,

one may be more suitable than the other. We will show how

the different weighting schemes influence the result of

clustering and function prediction.

Protein-Term Graphs. We define G3~(V|T , E|Et) as a

protein-term graph in which the terms associated to proteins in

the PIN become part of its representation. More specifically T is

the set of all terms present within the PIN and each term ti is

represented as a node in the graph. Et is the set of edges (i,tj)

where i[V , tj[T and term tj is associated with protein i in the PIN.

This definition of the representation and the set of additional edges

Et takes into account additional edges only between protein nodes

(V) and new term nodes (T), and no edges exist between two term

nodes, as shown on Figure 2. V and E have the same definition as

in the previous representations. The graph is unweighted.

In this way functional relationships between the proteins in the

PIN are directly included in the graph representation and

therefore in the process of clustering and function prediction.

When we create the protein-term graph for our data we have a

total of 3390 nodes (DV D~2502, DT D~888) and 37869 edges

(DED~6354, DEtD~31515).

Full Functional Connected Graphs. The full functional

connected (FFC) graphs are defined as G4~(V ,E|Ef ,W f ). Let ti

and tj be the sets of terms associated with nodes i and j,

respectively, then for edge (i, j) we have (i, j)[Ef if and only if

Figure 1. Degree distribution of the primary PIN on log-log scale.
doi:10.1371/journal.pone.0099755.g001
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(i, j)=[E and ti\tj=1. W f ~½wf
ij � is the weighted matrix. In other

words if two proteins in the PIN share a term, an edge is added in

the graph between them even if they don’t interact together, thus

creating ‘‘false’’ interactions. However the information for the

‘‘true’’ interactions is preserved through the weight matrix.

Namely, each edge is assigned a content-based weight, with an

additional constant being added to edges representing real

interactions. Formally we have:

w
f
ij~

1

2

Dti\tj D
Dti D

z
Dti\tj D

Dtj D

� �
zcij , ð5Þ

where

cij~
1, if(i,j)[E

0, otherwise

�
ð6Þ

for every (i, j)[E|Ef . We take the constant to be 1 since that is

the maximum value of the content-based weight in the case of

identical terms in the two connected nodes. This way we ensure

that each true interaction weight is larger (or equal in the worst

case) than any false interaction weight, but in the same time

allowing the content similarity to have at most the same effect as a

true interaction. The FFC graph for our PIN has a total of

1086948 edges (DED~6354, DEf D~1080594).

Clustering Algorithms
The modern science of networks has brought significant

advances to our understanding of complex systems, with the

organization of the vertices in clusters (also referred to as

communities) being one of the most relevant features of the

graphs representing such systems. The problem of detecting

clusters is very hard and not yet satisfactory solved, and is in the

focus of a large interdisciplinary scientific community [39]. PINs

are complex networks, and as such communities (corresponding to

functional modules and complexes) emerge in their graph

representations [10]. In our work we focus on most recently

developed methods for cluster detection in graphs which have

been classified as most efficient [40]. These algorithms are initially

employed in detecting community structure in different real-life

networks and to our knowledge have not yet been used in

clustering PINs. Taking this into account our motivation and goal

is to explore how these state-of-the-art algorithms perform when

used in a PIN, and even further explore how the combination with

the different PIN representations affect the function prediction

performance.

Modularity Function Algorithms. One of the biggest

breakthroughs in cluster detection was the Girvan and Newman

modularity function [41]. They propose an equation that

calculates the quality of a given clustering compared to a

corresponding random graph. The randomization of the edges is

done with preserving each node degree. The modularity function

is defined as:

Q~
1

2m

X
i,j

Aij{
kikj

2m

� �
d(ci,cj) ð7Þ

The term Aij has different meaning for different graph represen-

tations. When we work with unweighted graphs (G1,G3) the term

is the corresponding member of the adjacency matrix (Aij~aij ),

while in weighted graphs (G2,G4) the term is the corresponding

member of the weight matrix (Aij~wij ) since these graphs are a

simple generalization [42]. Terms ki and m are defined with

ki~
P

j Aij and m~(1=2)
P

ij Aij , and in the case of unweighted

graphs correspond to node degree and total number of nodes,

respectively. The probability of an edge existing between nodes i

and j if connections are made at random but respecting node

degrees is kikj=2m, ci defines the cluster to which node i is

attached and d(ci,cj) is the Kronecker delta symbol where

d(ci,cj)~1 if ci~cj and 0 otherwise. This function gives the

difference of the fraction of edges that fall into the cluster and the

expected number of edges distributed at random. A value less than

1 means that the number of edges in the group is greater than the

number at random i.e. the cluster is well defined, and otherwise,

values between zero and 21 mean that the analysed edges do not

form good cluster.

The ‘‘Fast Community’’ (FC) [43] community structure

inference algorithm is based on a greedy technique that maximizes

the Girvan and Newman modularity function. The algorithm uses

hierarchical agglomerative method where at the beginning each

node represents one cluster. Nodes and later clusters are merged

trying to maximize the modularity exploring the full topology of

the graph. The novelty of this algorithm is the usage of data

structures for sparse matrices, max-heaps, that make this algorithm

much faster and suitable for analysis of large graphs.

Figure 2. Protein-term graph. Terms associated to proteins and their connections are added to graph. Gray nodes 1, 2, 3 and 4 are proteins and
red nodes t1, t2 and t3 are terms. If one node is annotated with one or more terms links to these nodes are added (red links).
doi:10.1371/journal.pone.0099755.g002

Function Prediction in PINs via Clustering

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e99755



The proposed algorithm from Blondel et al. (BGLL) [44] uses a

different greedy technique using supervertices for representation of

the communities and calculating the modularity. At start all nodes

are in different clusters but as each node chooses a new cluster the

clusters are replaced with supervertices. Two supervertices are

connected if there exists an edge between any two nodes from the

two supervertices. Again at each step the modularity is calculated

from the initial topology. This algorithm finds maximum

modularity better than the algorithm used by Clauset et al. [43]

but its limitation is in the storage demands.

Multi-Resolution Algorithms. Recently it has been shown

that modularity optimization may fail to identify clusters smaller

than a scale which depends on the total number N of links of the

network and on the degree of interconnectedness of the clusters,

even in cases where clusters are unambiguously defined, charac-

terizing these methods with a so called resolution limit [45]. A new

class of methods that deals with this problem is based on multi-

scale quality functions. These quality functions incorporate a

resolution parameter allowing to tune the characteristic size of the

clusters in the optimal partition and aim at uncovering modules at

the true scale of organization of a network, i.e., not at a scale

imposed by modularity optimization. The publication of Lam-

biotte [46] gives good overview of the existing multi-resolution

quality functions also presenting a new method that tries to unify

them by looking into the dynamics of the partitioning problem.

The key idea is to measure the quality in terms of stability of

module associated to a stationary Markov process modeled as a

random walk process. The resulting quality function for detecting

modules on multiple-scales is defined as follows:

Q~(1{t)z
1

2m

X
i, j

tAij{
kikj

2m

� �
d(ci,cj) ð8Þ

where t represents the time parameter of the random walk,

equivalent to the Hamiltonian introduced by Reichard and

Bornhodt [47]. This equation is the same as the modularity

function (7) when the time parameter t is equal to 1. The

algorithm implementation suggested in [46] and [48] uses the

same greedy technique for modularity maximization as in [44].

We performed experiments for the time parameter ranging from 1

to 10 (as suggested in [48]) and we obtained the best results when

the parameter equals 5. We’ll refer to this algorithm with time

parameter set to 5 as TimeBGLL.

Edge Clustering Algorithms. Partitioning of nodes in a

graph has the disadvantage of being incompatible with the

existence of overlapping clusters, i.e. situations where nodes belong

to several clusters. This overlap is known to be present at the

interface between clusters, but can also be pervasive in the whole

graph [49]. In these situations a partition of the nodes is

questionable as it imposes undesired constraints on the cluster

detection problem. Since edges in the graphs representing the

PINs often correspond to one particular type of interaction in the

PIN, they typically belong to one single cluster. Therefore we

define clusters as partitions of edges rather than of nodes. The

edges incident at a single node may belong to several partitions

and in this sense, nodes can be members of several clusters.

We adopt the method proposed in [50] since it naturally fits the

problem at hand, and also can deal with weighted graphs as

described in [51]. Without losing generality we can assume the

definition G1(V ,E) for an unweighted node graph. The method

first transforms G1 in an unweighted line graph L1(G1) and then

uses random walk dynamics to measure the quality function. In

principle, any node clustering algorithm can be used. However

since optimisation of modularity is related to the behaviour of

random walkers on a graph and the construction of L1(G1)
preserves the dynamics of random walkers, it makes sense to apply

the modularity optimisation approach to find the partitions of the

line graph L1(G1). We use the modularity maximization algorithm

proposed in [44].

The conversion of the graph from node to line is done as

follows: first the node graph is represented using the incidence

matrix BDV D|DED, where Bia is equal to 1 if edge a is related to node i

and 0 otherwise. The matrix B can be seen as an adjacency matrix

of a bipartite network. The line graph is constructed with

projection of the bipartite graph by taking all nodes of one type

for the nodes of the projected graph. A link is added between two

nodes in the projected graph if two nodes have at least one node of

the other type in common in the original bipartite graph, resulting

in the adjacency matrix CDED|DED of the line graph L1(G1), with

elements defined by:

Cab~
X

i

BaiBib(1{dab) ð9Þ

where dab is the Kronecker delta symbol.

By calculating the adjacency matrix as in Eq. 9 nodes with high

degree, hubs, are given too much prominence in the line graph, so

normalization is used to avoid this effect and Cab is calculated

with:

Cab~
X

i;kiw1

BaiBib

ki{1
1{dab

� �
ð10Þ

where ki is the degree of node i.

When we work with weighted node graphs, G2(V ,E,W ), a

second weighted incidence matrix ~BB is introduced, where ~BBaj~wa

if edge a is incident on vertex j and has weight wa. Each node i has

strength si, defined as the sum of all weights of its incident edges.

As in the unweighted case the normalized adjacency matrix is

computed for the weighted line graph L2(G2) given with:

~CCab~
X

i;kiw1

~BBai
~BBib

si{wb
1{dab

� �
ð11Þ

The visual representation of the node to line graph transformation

is shown on Figure 3.

Random Walks and Maps Algorithms. The ability of

random walks to generate dynamics and represent information

flow in the network makes them suitable for usage in the clustering

problem. Probability flow of random walks on graph are used for

creation of efficient and accurate clustering method by Rosvall and

Bergstrom (Infomap) [52]. This algorithm additionally uses

Huffman coding to describe the path on the network that also

allows compression of the maps and speeding up the module

detection. Using this coding retention of the unique names of the

important structures formed during the random walks is provided.

The random walk equation used for undirected graphs is as

follows:

X (tz1)~(1{r)AX (t)zrS ð12Þ

where in the case of unweighted graphs (G1,G3), A is the

normalized adjacency matrix, while in the case of weighted graphs

(G2,G4), A is the weight matrix W, r is teleportation or restart

probability, X(t) is the probability vector for the random walker

Function Prediction in PINs via Clustering
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visiting a node at time t, and S is the starting probability vector

(usually S is all zeros except start node value equal 1). At beginning

X(0) = S.

Functional Annotation
There are few different methods in the literature for assigning

terms to a query protein after clusters are determined. Each of the

methods is based on calculating a score for each term associated

with a node that belongs to the same cluster as the query node,

and assigning to the query protein those terms that have a score

greater or lower than a predefined threshold depending on the

score type being used. In our work we tested hypergeometric

enrichment P-value, chi-square statistics and terms frequency

within the cluster as scores for predicting terms.

The hypergeometric enrichment P{ value for term t is

calculated with:

Pt~
XC

i~nt

T

i

� �
N{T

N{i

� �

N

C

� � ð13Þ

where N is the number of nodes in the graph representing the

PIN, T is the number of nodes in the graph that have term t

assigned to them, C is the cluster size and nt is the number of

nodes in the cluster that have term t assigned to them. The terms

enriched within the cluster (i.e. obtaining P{ value below some

threshold) are then predicted for the query node.

The chi-square statistics score for term t is defined with:

x2
t ~

(nt{et)
2

et

ð14Þ

where nt has the same meaning as in the previous score and et is

the expected number of nodes in the cluster that have term t

assigned to them. The expected number is calculated using simple

proportion et~(T=N)C, with T, N, and C having the same

meaning as in the previous score.

The simplest and most intuitive score calculation approach

would be that each term is ranked by its frequency of appearance

as a term assigned to nodes within the cluster. This approach is

derived from the well known Majority Algorithm used in [53],

where a node is assigned with the most frequent terms occurring in

its neighbours. Our definition expands the node neighbourhood

not only to the direct neighbours but to all nodes that are in the

cluster it belongs to, K:

s(j)j[TK
~
X
i[K

Zij ð15Þ

where TK is the set of terms present in the cluster K, and

Zij~
1, if i{th node from K is assigned with the j{th term from TK

0, otherwise

�
ð16Þ

We need to note here that when we work with graph

representation G3, i.e. the protein-term graph, the definition of

some quantities used in the score calculations need to be altered.

Namely, we say that a term t is present in a cluster if the

corresponding term node t belongs to the cluster. The total

number of nodes in the graph corresponds to the total number of

protein nodes, the size of the cluster corresponds to the number of

protein nodes in the cluster, the number of nodes in the graph with

term t assigned to them corresponds with the degree of term node

t, and the number of nodes in a cluster with term t assigned to

them corresponds to the number of edges between term node t

and protein nodes belonging to the cluster. For the frequency score

TK is now a set of term nodes and Zij is defined with:

Zij~
1, if i{th protein node from K has an edge to the j{th term from TK

0, otherwise

�
ð17Þ

Our experiments showed that the frequency based score for

function prediction outperforms the other two scores for any

Figure 3. The figure shows the transformation from node graph (on the left) to corresponding line graph (on the right). Edges a, b, c,
d, and e from the node graph are mapped to nodes a, b, c, d, and e on the line graph, respectively.
doi:10.1371/journal.pone.0099755.g003

(16)

Table 1. Summary table for the size of the different proposed graph representations of our PIN.

Graph representation Number of nodes Number of edges

Simple 2502 6354

Weighted 2502 6354

Protein-Term 3390 37869

Full Functional Connected 2502 1086948

doi:10.1371/journal.pone.0099755.t001

(17)
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combination of graph representation and clustering algorithm so

for simplicity all the results presented are based on this approach.

Results and Discussion

We tested representative algorithms of the previously described

clustering algorithms classes, including FC [43], BGLL [44],

TimeBGLL [48], EdgeCluster [50,51], and Infomap [52]. We

performed evaluation of the clustering validity of the different

algorithms used. Each of these algorithms was used to determine

clusters in each of the different graph representations of our

Saccharomyces cerevisiae PIN. We evaluated the clustering results

in terms of functional validity and also in terms of accuracy when

used in function prediction.

Before we proceed to the results and the discussions for the main

focus of this paper, i.e. the function prediction via clustering

methods, we give a summary of the computational complexity of

our experiments. Although resources are vast nowadays, com-

plexity should not be ignored when deciding upon an experimen-

tal setup. Table 1 gives a summary of the sizes of the proposed

graph representations of our PIN which is crucial for the expected

runtime i.e. computational complexity of the clustering algorithms

which is given in Table 2. As can be seen BGLL, TimeBGLL,

EdgeCluster and Infomap have essentially linear runtime propor-

tional to the number of edges within the graph, while FC runs in

quasilinear time proportional to the number of nodes within the

graph, but nevertheless runs faster than any polynomial with

exponent strictly greater than 1.

Clustering Validation
Clustering validation was performed using a synthetic bench-

mark graph as given in [54] in order to compare the different

clustering methods used in our work. The synthetic graph was

modeled with the parameters of the simple graph representation of

our PIN. Since the aim of this experiment is to determine the

clustering power of our chosen algorithms and compare them

among themselves and with other algorithms used in previous

research the graph representation is of no significance and any one

can be used. The resulting clusters were compared with the a

priori known clusters using the Normalized Mutual Information

(NMI) method proposed in [55]. It is based on defining a

confusion matrix M, where the rows correspond to the ‘‘real’’

clusters, and the columns correspond to the ‘‘found’’ clusters. The

element of M, Mij is the number of nodes in the real cluster i that

appear in the found cluster j. A measure of similarity between the

clusters, based on information theory, is then:

NMI(A,B)~

{2
PCA

i~1

PCB
j~1 Mij log

MijM

MiMj

� �

PCA
i~1 Mi log

Mi

M
z
XCB

j~1
Mj log

Mj

M

ð18Þ

where the number of real clusters is denoted CA and the number

of found clusters is denoted CB, the sum over row i of matrix M is

denoted Mi, the sum over column j is denoted Mj and the total

number of nodes is M. The normalized mutual information equals

1 if the clusters are identical and 0 if they are totally independent.

The definition of the measure when the clusters are overlapping

(EdgeCluster) is given in details in the appendix of [56].

Table 3 shows the resulting values for the NMI score calculated

as previously explained. These results justify the selected

representative clustering algorithms in this paper as they

outperform the algorithms, as cited in the introduction, previously

used in clustering of PINs based on the topological features of the

network, i.e. MCL, RNSC, SPC, and MCODE. Later experi-

ments show that the performance ‘‘ranking’’ on function

prediction more or less follows the one given in Table 3.

Biological Validity of the Clusters
We use many different clustering algorithms that produce

different clusters by size and structure for which we evaluate

biological relevancy, in other words we test to confirm that the

cluster structure has not arisen by chance. If a cluster is

biologically relevant, the genes belonging to the same cluster

Table 2. Summary for the different clustering algorithms used in this paper showing their computational approach and
complexity, where v is the number of nodes in the graph being clustered, and e is the corresponding number of edges.

Clustering Algorithm Computational Approach Complexity

FC modularity maximization using max heaps O(vlog2v)

BGLL modularity maximization using multi-passes and supervertices O(e)

TimeBGLL modularity maximization with resolution parameter corresponding to the time parameter
of a random walk on the graph

O(e)

EdgeCluster modularity maximization on the line graph O(e)

Infomap Minimal description length of a random walker using Huffman coding for each node O(e)

doi:10.1371/journal.pone.0099755.t002

Table 3. NMI values expressing the quality of clustering of a
synthetic graph modeled with the parameters of our PIN
achieved by employing the clustering algorithms used in this
paper (Infomap, TimeBGLL, EdgeCluster, BGLL, FC) and the
algorithms previously used in clustering of PINs (MCL, RNSC,
MCODE, SPC), as cited in the introduction.

Clustering Algorithm NMI

Infomap 0.9916

TimeBGLL 0.9062

EdgeCluster 0.8732

BGLL 0.8514

FC 0.8230

MCL 0.4979

RNSC 0.4562

MCODE 0.2360

SPC 0.2147

doi:10.1371/journal.pone.0099755.t003
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should have similar biological functions [8]. Therefore the

functional homogeneity of a cluster is an indicator for its biological

validity. Most of the methods for calculating a clusters functional

homogeneity include some form of the P{ value measure. In [21]

a modified P{ value, which combines computationally derived

clusters with ‘‘real’’ complexes derived from the protein databases,

is used:

P(overlap)~

n2

k

� �
N{n2

n1{k

� �

N

n1

� � ð19Þ

where N is the total number of nodes in the network, n1 and n2 are

the sizes of the two complexes (the derived and the real one), and k

is the number of nodes they have in common. This measure is

effective and good when evaluating a single clustering algorithm

but for two or more algorithms the evaluation is time consuming

as it requires extraction of the corresponding real complexes for

each computed cluster.

A more efficient way of testing functional homogeneity is

through functional entropy. The entropy is calculated as the sum

of the appearance frequencies of all function terms in the cluster,

and multiplies the logarithm of those frequencies [57]:

H~{
P

i

Fi logFi, Fi~
TiPn
i Ti

ð20Þ

where Fi is the appearance frequency of the term i, given with the

equation above, Ti is the number of times that term appears in the

clusters and n is the number of distinct terms present in the cluster.

If the nodes in the same cluster have consistent terms, the value of

the functional entropy will be low, being zero when nodes have

only one term. We performed the biological validation of our

clustering algorithms using entropy. We retained only clusters with

more than 2 nodes, and for each combination of graph

representation and clustering algorithm we calculated the average

entropy over all clusters.

The calculated entropy values are shown in Table 4. Taking

into account the definition of the entropy measure lower values

would yield an algorithm which is more stringent at identifying

functionally coherent clusters. A second and more interesting

aspect of the entropy in relation to our research is the correlation

of the entropy values and the results of the functional annotation of

proteins using the clustering algorithms. Namely, the lower the

entropy of an algorithm, the coverage of the average cluster is

smaller. The coverage of a cluster here is defined as the ratio

between the number of terms present in the cluster and the

number of terms present in the whole network. The lower

coverage clusters lead to fewer mistakes being made during the

Table 4. The entropy values as defined with Eq. 20 for each combination of the PIN graph representation and a clustering
algorithm.

Representation Clustering
Alg. Simple Weighted Content Weighted Structure Weighted Hybrid Protein-Term FFC

Infomap 0.2528 0.3034 0.3018 0.3002 0.3156 0.5361

TimeBGLL 0.3064 0.3381 0.3271 0.3213 0.5832 0.5783

EdgeCluster 0.2953 0.3294 0.3216 0.3172 0.5716 0.6713

BGLL 0.2707 0.3113 0.3027 0.2993 0.5613 0.6472

FC 0.2807 0.3121 0.3042 0.3001 0.5589 0.6452

Lower values yield smaller coverage of the average cluster, i.e. fewer mistakes during the term assignment process, but on the downside the necessary terms for
complete annotation of a query protein may be lacking. In terms of the definitions used for the annotation validation this would mean that lower entropy values yield
lower False Positives (FPs), but higher False Negatives (FNs). The inverse holds for higher entropy values.
doi:10.1371/journal.pone.0099755.t004

Figure 4. Results for the functional annotation for each graph representation using Infomap, showing the ROC curve (A) with H
indicating the corresponding entropy value and the corresponding AUC values (B).
doi:10.1371/journal.pone.0099755.g004
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term assignment process, but on the downside these clusters may

lack the necessary terms needed for correct and complete

annotation of a query protein. In terms of the definitions used

for the annotation validation this would mean that lower entropy

values yield lower False Positives (FPs), but higher False Negatives

(FNs). The inverse holds for higher entropy values.

Annotation Validation
The effective evaluation of protein functional annotation is

challenging. The lack of agreed measures and benchmarks used

for assessment of the methods performance makes this task

difficult. In our work we used the leave-one-out method when only

one protein at time plays the role of a query protein. In the leave-

one-out method a random annotation protein is selected and is

considered as unannotated. This assumption for no terms present

at the query protein affects different representations in different

ways. For the unweighted representations no additional changes

have to be made, while weighted graphs should be altered since

the weight computation is no longer possible as defined by the

corresponding equations. Specifically if the representation uses the

content based weight its value is substituted with the structure

based weight and everything else remains the same. For the

Protein-Term representation (G3) the unannotated query protein

assumption means that all edges to term nodes should be deleted.

Once the clustering algorithm has been applied, for each term

present in the query cluster (i.e. the cluster of the query protein) we

calculate its rank according to Eq. (15), and all ranks are then

normalized to a range between 0 and 1. We should also note here

that when the unannotated query protein assumption causes

changes within the graph representation the clustering algorithm

should be run for each query protein. The query protein is

annotated with all functions that have rank above a previously

determined threshold v. For example, for v = 0, the query protein

is assigned with all the functions present in its cluster. We change

the threshold in the [0,1] range and compute the numbers for the

four possible different classes which can occur during the

assignment process:

N True Positive (TP): When annotation is assigned and is part of

the true annotation set

N True Negative (TN): When annotation is not assigned to the

protein and is not part of the true annotation set

N False Positive (FP): When annotation is assigned but is not part

of the true annotation set

N False Negative (FN): When annotation is not assigned but is

part of the true annotation set

Figure 5. Results for the functional annotation for each graph representation using timeBGLL, showing the ROC curve (A) with H
indicating the corresponding entropy value and the corresponding AUC values (B).
doi:10.1371/journal.pone.0099755.g005

Figure 6. Results for the functional annotation for each graph representation using edgeCluster, showing the ROC curve (A) with H
indicating the corresponding entropy value and the corresponding AUC values (B).
doi:10.1371/journal.pone.0099755.g006
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Each annotation is assigned to one of the four classes. Using the

number of annotations in each class (given in brackets above) we

can calculate the following statistical measures:

Sensitivity(TruePositiveRate)~
TP

TPzFN
ð21Þ

FalsePositiveRate~
FP

FPzFN
ð22Þ

Graphed as coordinate pairs, the Sensitivity and the FalsePositi-

veRate form the Receiver Operating Characteristic curve (or

ROC curve). The ROC curve describes the performance of a

model across the entire range of classification thresholds. The Area

Under Curve (AUC) of a classifier is equivalent to the probability

that the classifier will rank a randomly chosen positive instance

higher than a randomly chosen negative instance [58].

We performed functional annotation for each combination of a

clustering algorithm and a graph representations of our Saccha-

romyces cerevisiae PIN. Figures 4–8 show the ROC curves and

the AUC values for each graph representation for Infomap,

timeBGLL, edgeCluster, BGLL and FC, respectively. Tables 5–9,

show the sensitivity and false positive rate at threshold values from

v = 0 to v = 0.9 with 0.1 step.

We can see from the results shown on Figures 4–8 and Tables 5–

9 what we previously stated about the influence of the entropy

value. As expected the more complex representations (G3 or

ProteinTerm and G4 or FFC graph) have higher entropy values

which implicitly increases the Sensitivity and fpr values (by

increasing the FP and decreasing FN). The opposite holds for the

simpler representations (G1 or Simple and G2 or Weighted graph).

If we average the AUC values for a single algorithm over all

graph representations (Table 10) the top ranking algorithm is the

edge clustering with AvgAUCedgeCluster = 0.9065, followed by

AvgAUCInfomap = 0.8963, AvgAUCtimeBGLL = 0.8913,

AvgAUCBGLL = 0.8864, and AvgAUCFC = 0.8831. This result

is in line with the well known fact that protein interaction networks

have many multifunctional proteins that perform several functions,

and are expected to interact specifically with distinct sets of

partners, simultaneously or not, depending on the function

performed. If we look in more detail at Tables 5–9 we can get a

better perspective about the quality of the different annotation

process based on each of the clustering algorithms.

Table 11 shows the corresponding sensitivity and false positive

rate values for each of the algorithms combined with each of the

representations at a fixed threshold v = 0. These values are a

Figure 7. Results for the functional annotation for each graph representation using BGLL, showing the ROC curve (A) with H
indicating the corresponding entropy value and the corresponding AUC values (B).
doi:10.1371/journal.pone.0099755.g007

Figure 8. Results for the functional annotation for each graph representation using FC, showing the ROC curve (A) with H
indicating the corresponding entropy value and the corresponding AUC values (B).
doi:10.1371/journal.pone.0099755.g008
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general indicator of the behaviour of the corresponding annotation

process. The EdgeCluster algorithm shows much greater false

positive rate as compared to the next in line (according to

AvgAUC) Infomap. In fact, Infomap has the overall lowest levels

of false positive rates with any graph representation. This means

that Infomap performs very stringent clustering of the PIN which

results in clusters that are poor in terms of function (term) diversity

therefore missing out on part of the functions (terms) which should

be associated with a query protein. This leads to a very precise, but

incomplete view of the annotation set of the query protein. On the

other hand EdgeCluster, timeBGLL, BGLL, and FC achieve

much higher sensitivity at the price of a high false positive rate,

which means that the annotation set view is much richer but more

noisy as compared to Infomap. All of these results are due to the

fact that the ratio between the number of clusters generated with

Infomap and the other algorithms (all have similar numbers of

clusters) is approximately 2.5:1.

The performance of the algorithms on the different graph

representations proposed in this research is consistent in all the

experiments as can be seen in Table 10. As expected the simple

graph representation (G1) has the lowest AUC values for all

clustering approaches. The hybrid weighting scheme (G2) outper-

forms each of the separate content and structure weighting, with

structure being more informative than the content. The rise in

performance noted when using the FFC graph representation (G4)

suggests that the actual PIN is lacking part of the real interactions

that occur between pairs of proteins. Finally, the Protein-Term

representation (G3) yields the best results in terms of AUC, but

both G3 and G4 have the noisy annotation problem as stated

before (even for the usually low noise Infomap algorithm). In terms

of complexity it is clear from Tables 1 and 2 that the G3 and G4

representations are more complex and this computational

complexity should be taken into account when deciding on the

appropriate representation for a PIN. Also a network wide

annotation would be very impractical if we use G2,G3, or G4, since

the clustering algorithm needs to be run for every query protein.

On the other hand a scenario in which a wider set of possible

annotations needs to be determined for a single (or a few) protein(s)

would greatly benefit from these augmented PIN graph represen-

tations.

In summary and considering the goals defined our results show

that all of the proposed novel representations yield a significant

improvement in the function prediction performance over the

simple unweighted graph representation. The Protein-Term graph

representation is the most informative one and if computational

resources are not scarce it is the representation that should be used

for the prediction. The next in line is the FFC graph

representation, followed by the hybrid weighted graph represen-

tation. The ease of further augmentation of these two represen-

tation (for example with similarity metrics based on GO instead of

using a simple Jaccard index) is their added value and they can be

further improved to maximize the annotation prediction perfor-

mance. All of the clustering algorithms used in this paper perform

very good on the PIN, as it was shown in the clustering validation

section, with Infomap being the best in that context. In terms of

using these clustering algorithms in the function prediction the

most accurate one is the Infomap algorithm, while edgeCluster

and timeBGLL have the highest coverage.

As a final note we point out to another potential problem in the

process of function prediction using clustering, namely the

completeness. It has been estimated that the complete S.
cerevisiae network has between 37800 and 75500 protein

interactions [59]. Currently there are between 55000 and 60000

interactions contained in publicly available repositories for S.
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cerevisiae, which means there are potentially unknown regions of

the network which can explain the high false positive rates and low

sensitivity stated before.

Conclusions

Complex protein interaction networks reveal graph properties

that can be analysed in terms of functional modules associated

with the biological function they perform. In our work we

investigated the power of the novel algorithm for complex network

clustering combined with novel graph representations of the

protein interaction networks, and assess their possibilities for

protein function prediction via clustering. We show that using

these algorithms we can gain significant knowledge for the

modular structure of the network. As these networks carry not

only interaction information but also annotations the different

representations we propose augment to the prediction process by

including this information in the clustering of the network.

The results from our experiments validate the augmented graph

representation approach. Even the simplest augmentation i.e. the

different weighted graph representations of the PIN significantly

improve the results of the function prediction. Our experiments

were performed using the simple normalized Jaccard Index as a

weighting factor and we are confident that results can be even

further improved using a more sophisticated weighting scheme.

We used the same weighting when we further augmented the

graph representation by adding artificial edges to take into account

the well known fact that protein interaction networks to this date

are still not completely captured by the experimental methods

used for their construction. This representation is very complex

and is computationally exhaustive but the potential of uncovering

new knowledge is significantly increased. Our experiments showed

that the most informative representation is the one where we

generate a graph in which every single term associated with a

protein becomes a node and the association of proteins and terms

is represented by adding an edge between each pair. The power of

unravelling the functions of a query protein of this representation

is the greatest of all proposed representations, but also the same

holds for the computational complexity.

In general if one would like to perform a network wide

annotation, usage of the weighted graph representations would be

recommended, while the exploration of a single protein, or a small

group of proteins, should the performed using either the full

functional connected graphs or the protein-terms graph. In terms

of selecting a clustering algorithm our results showed that Infomap

has the best performance in determining the modular structure of

Table 10. Values for the AUC for the functional annotation with each clustering algorithm and graph representations for the PIN
and the average AUC values per algorithm and per representation.

Clustering Alg./Representation FC BGLL TimeBGLL EdgeCluster Infomap AvgAUC

Simple 0,8432 0,8446 0,8653 0,8789 0,8589 0,8581

Weighted Content 0,8733 0,8740 0,8757 0,8902 0,8730 0,8771

Weighted Structure 0,8835 0,8868 0,8913 0,9046 0,8886 0,8909

Weighted Hybrid 0,8882 0,8917 0,8975 0,9107 0,8928 0,8961

Protein-Term 0,9267 0,9341 0,9210 0,9420 0,9660 0,9379

FFC 0,8839 0,8875 0,8979 0,9129 0,8986 0,8962

AvgAUC 0,8831 0,8864 0,8913 0,9065 0,8963

doi:10.1371/journal.pone.0099755.t010

Table 11. Values for the sensitivity (sens.) and the false positive rate (fpr), for the functional annotation for each graph
representation using each of the clustering algorithms, at a fixed threshold value (v = 0).

Clustering Alg./Representation FC BGLL TimeBGLL EdgeCluster Infomap

Simple sens. 0,8343 0,7166 0,8185 0,8184 0,7523

fpr 0,2995 0,0447 0,1724 0,1403 0,0614

Weighted Content sens. 0,8393 0,8381 0,8220 0,8992 0,7757

fpr 0,1972 0,1942 0,1525 0,2740 0,0547

Weighted Structure sens. 0,8511 0,8524 0,8426 0,9171 0,8034

fpr 0,1864 0,1833 0,1376 0,2613 0,0536

Weighted Hybrid sens. 0,8605 0,8615 0,8539 0,9232 0,8104

fpr 0,1812 0,1786 0,1389 0,2537 0,0531

Protein-Term sens. 0,9997 0,9992 0,9995 0,9997 0,9999

fpr 0,3723 0,3416 0,3927 0,4104 0,1456

FFC sens. 0,9763 0,9693 0,9573 0,9823 0,9636

fpr 0,4431 0,4361 0,3492 0,5042 0,4164

doi:10.1371/journal.pone.0099755.t011
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a PIN and is also the most accurate of all tested algorithms.

However, the high accuracy comes with the price of low coverage

(i.e. the inability to discover a larger set of functions associated

with a query protein). The opposite holds for the timeBGLL and

EdgeCluster algorithms. Depending on the required results one

can choose either a random walk and map algorithm (Infomap) if

the priority is to get a narrow set of accurate protein functions, or

either an edge clustering/overlapping clusters algorithm (Edge-

Cluster) or a multi-resolution algorithm (timeBGLL) if coverage of

the possible functions is of bigger importance.

Supporting Information

File S1 Matlab code for generation of the graph
representations.
(ZIP)
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