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ABSTRACT
Background: Whole mitochondrial DNA is being increasingly utilized for

comparative genomic and phylogenetic studies at deep and shallow evolutionary

levels for a range of taxonomic groups. Although mitogenome sequences are

deposited at an increasing rate into public databases, their taxonomic representation

is unequal across major taxonomic groups. In the case of decapod crustaceans,

several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud

lobsters) and Caridea (true shrimps) are still under-represented, limiting

comprehensive phylogenetic studies that utilize mitogenomic information.

Methods: Sequence reads from partial genome scans were generated using the

IlluminaMiSeq platform and mitogenome sequences were assembled from these low

coverage reads. In addition to examining phylogenetic relationships within the three

infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and

frequency of codon usage bias and mitogenome gene order rearrangements.

Results: We present new mitogenome sequences for five shrimp species from

Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea

australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus

lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered

among the three infraorders and significant gene order rearrangements were

observed. While the gene order rearrangements are congruent with the inferred

phylogenetic relationships and consistent with taxonomic classification, they are

unevenly distributed within and among the three infraorders.

Discussion: Our findings suggest potential for mitogenome rearrangements to be

useful phylogenetic markers for decapod crustaceans and at the same time raise

important questions concerning the drivers of mitogenome evolution in different

decapod crustacean lineages.
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INTRODUCTION
Sequencing of animal mitochondrial genomes has exploded in recent years. Over

40,000 animal mitogenomes are currently lodged on the NCBI database compared to

fewer than 5,000 sequences a decade ago. As mitogenomic data have accumulated, it has

become apparent that mitochondrial gene order is not as conserved as first thought,

and that interesting and phylogenetically useful patterns that invite further research are

emerging (Boore, 2006; Dowton, Castro & Austin, 2002; Gan et al., 2016; Gissi, Iannelli &

Pesole, 2008; Lin et al., 2012; Poulsen et al., 2013; Tan et al., 2015).

In addition to gene order evolution, properties of mitogenome sequences that are

of phylogenetic significance have emerged that are of interest to comparative

mitogenomics such as gene loss and duplications, AT bias, strand asymmetry in

nucleotide composition, length, and structure of the control region, features of intergenic

non-coding regions, codon usage, variation in gene length, variation in start and stop

codons, gene diversity levels, mutation rates, and signals of selection and secondary

structures of ribosomal genes (Bauzà-Ribot et al., 2009; Gissi, Iannelli & Pesole, 2008;

Jia & Higgs, 2008; Li, Huang & Lei, 2015; Oliveira et al., 2008; Poulsen et al., 2013; Qian

et al., 2011; Shoemaker et al., 2004). However, despite the rapidly accumulating

mitogenomic resources, there are gaps in taxonomic representation and more data are

required to fully evaluate the usefulness of mitogenome gene rearrangements as

phylogenetic markers in specific groups (Mao, Gibson & Dowton, 2014; Tan et al., 2015)

and for broadly based comparative studies to detect patterns and investigate evolutionary

hypotheses (Boore, 2006; Castellana, Vicario & Saccone, 2011; Gissi, Iannelli & Pesole, 2008;

Jiang et al., 2007).

In general, the overall structure and function of animal mitochondrial genomes are

remarkably stable. It is a circular, double-stranded DNA molecule of usually 15–20 kb in

length, generally containing a consistent set of 37 genes made up of two ribosomal

RNA genes (rRNA), 13 protein-coding genes (PCG) and 22 transfer RNA genes (tRNA)

(Bernt et al., 2013; Castellana, Vicario & Saccone, 2011; Gissi, Iannelli & Pesole, 2008).

Intergenic regions are usually minimal, although all species contain at least one large

AT-rich region associated with strand replication e.g., the control region. Mutations in the

mitochondrial DNA can range from point mutations and infrequent insertions/deletions

to gene order rearrangements. However, the type, scale and distribution of mutations

can vary widely across various taxonomic levels (Gissi, Iannelli & Pesole, 2008;

Tan et al., 2015).

The most common mitogenome gene order rearrangements involve the translocation

of single tRNA genes and occasionally with a change of transcriptional polarity or

duplication. Less frequent is the repositioning of multiple tRNAs, duplication of the

control region or changes to the order and orientation of protein coding and rRNA genes.

The paradox of mitogenome gene rearrangements is that the molecule can be highly

conserved among phylogenetically distant species such as some insect and decapod
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crustacean species but can, in a restricted number of taxonomic groups, also vary

substantially among species in the same family or genus. Examples of taxa with a

concentration of reported mitogenome gene rearrangements include ticks (Fahrein et al.,

2007; Shao et al., 2005), hymenopterans (Dowton et al., 2003), gulper eels (Poulsen

et al., 2013), salamanders (Chong & Mueller, 2013), tunicates (Gissi, Iannelli & Pesole,

2004), and in several crustacean groups (Kilpert & Podsiadlowski, 2006; Kim et al., 2012;

Miller et al., 2004; Stokkan et al., 2016; Tan et al., 2015).

Codon usage is another aspect of comparative mitogenomics that is attracting

increasing attention as research moves from describing patterns to understanding

them within an evolutionary and molecular genetic context (Castellana, Vicario &

Saccone, 2011; Gissi, Iannelli & Pesole, 2008; Jiang et al., 2007). Amino acids can be

encoded by two to six codons, but alternative codons for the same amino acid often

do not occur at equal frequencies either between species for the same gene or

between different genes in the one species. Patterns of differential codon usage have

been attributable to selection, variable mutation rates, translational efficiency, and

random factors (genetic drift) (Castellana, Vicario & Saccone, 2011; Jia & Higgs, 2008;

Prat et al., 2009; Whittle & Extavour, 2015). However, it has been rarely addressed

among crustacean species (Cook, Yue & Akam, 2005; Garcı́a-Machado et al., 1999;

Rota-Stabelli et al., 2013).

As in other major animal groups, mitogenome sequences are becoming increasingly

available for decapod crustacean species, contributing to the understanding of the

evolution of this taxonomically challenging group due to its high diversity, deep lineages,

and highly flexible body plan (Shen, Braband & Scholtz, 2013; Tan et al., 2015). In

addition, intriguing and taxonomically unevenly distributed gene order rearrangements

are emerging, requiring further investigation and raising questions regarding the

dynamics and drivers of mitogenome gene order evolution in several groups (Gan et al.,

2016b; Kilpert & Podsiadlowski, 2006; Miller et al., 2004). Two of the less well-represented

decapod crustacean infraorders in mitochondrial databases are the shrimp infraorders

Axiidea (ghost shrimps, sponge shrimps, and mud lobsters) and Caridea (true shrimps)

(Lin et al., 2012; Tan et al., 2015). Further, the phylogenetic relationships within and

among these shrimp groups remain largely unresolved and disputed (Lin et al., 2012;

Timm& Bracken-Grissom, 2015). A major limiting factor to the resolution of phylogenetic

relationships within and among these shrimp lineages and the determination of the

distribution and evolutionary significance of mitogenome gene order rearrangements is

inadequate taxon sampling (Lin et al., 2012; Shen, Braband & Scholtz, 2013; Tan et al.,

2015).

At the present time, the Axiidea, Gebiidea, and Caridea are represented by only six, five

and 17 complete mitogenomes respectively on the NCBI public database. To support

ongoing phylogenetic and comparative mitogenomic studies, this paper reports five new

mitogenome sequences of shrimp species sampled from Australia. These include two

mitogenomes from the ghost shrimp, Callianassa ceramica Fulton & Grant, 1906 and

Trypaea australiensis Dana, 1852 (Callianassidae), and three from caridean shrimps

Macrobrachium bullatum Fincham, 1987 (Paleamonidae), Alpheus lobidens De Haan,
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1849 (Alpheidae) and Caridina cf. nilotica Roux, 1833 (Atyidae), each of which represents

highly diverse superfamilies, families and genera within Caridea. This study compares

the mitogenomic features of these five species together with additional representatives

of their infraorders and Gebiidea available from the NCBI database. In addition to

exploring evolutionary relationships within each infraorder, we uncover distinctive

signatures and patterns with respect to sequence composition, codon usage bias, and

gene rearrangements that can possibly act as synapomorphies for specific shrimp

taxonomic groups, suggesting the potential of these features for phylogenetic inferences

at different evolutionary scales.

MATERIALS AND METHODS
Sample collection
Two species belonging to the infraorder Axiidea (C. ceramica, T. australiensis) and three

from Caridea (Macrobrachium bullatum, A. lobidens, Caridina cf. nilotica) were collected

from different locations in Australia (Table 1). C. ceramica is represented by two

individuals: one from a vouchered specimen (MuseumVictoria J40715; GenBank accession

number KU350630.1); and the other a previously sequenced sample published incorrectly

as T. australiensis (KM501040.1) (Gan et al., 2016). The mitogenome sequence for this

latter sample is now registered asC. ceramica under the accession number KU726823.1 and

has a genetic similarity of 99.8% to the COI region of a vouchered C. ceramica specimen

(Museum Victoria J70519) collected from the same general locality.

To maintain continuity with the original NCBI accession number and species name, the

original mitogenome sequence lodged on NCBI for T. australiensis was updated with the

newly sequenced mitogenome from a vouchered T. australiensis specimen (Museum

Victoria J40711; GenBank accession number: KM501040.2). The accession numbers for

each species and associated collecting and identification-related information are detailed

in Table 1 and Data S3, including voucher numbers for specimens lodged in Museum

Table 1 List of source and accession number of mitogenome samples.

Callianassa
ceramica

Callianassa
ceramica

Trypaea
australiensis

Alpheus lobidens Caridina cf. nilotica Macrobrachium
bullatum

Family Callianassidae Callianassidae Callianassidae Alpheidae Atyidae Palaemonidae

Subfamily Callianassinae Callianassinae Callianassinae N/A N/A Palaemoninae

Location Anglesea, South

west of Geelong,

Victoria

South of Port Authority

Pier, Queenscliff,

Victoria

Stony Point,

Western Port Bay,

Victoria

Nightcliff,

Darwin,

Northern

Territory

Amy Ward Drive,

Darwin, Northern

Territory

Rapid Creek,

Darwin, Northern

Territory

Voucher N/A NMV J40715 NMV J40711 MAGNT Cr.18581 N/A N/A

Verification 99.8%

(660 bp COI)1
N/A N/A N/A 100% (326 bp 16S)2 100% (447 bp 16S)3

Accession # KU362925.1 KU350630.1 KM501040.2 KP276147.1 KU726823.1 KM978918.1

Notes:
NMV, Museum Victoria; MAGNT, Museum and Art Galleries of the Northern Territory.
1 NMV J70519, Point Roadknight, Anglesea, Victoria.
2 Page, von Rintelen & Hughes (2007) – DQ478508.1 – MAGNT Cr. 9399.
3 Murphy & Austin (2004) – AY282778.1.
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Table 2 List of samples and their corresponding accession numbers included in phylogenetic and comparative analyses.

Infraorder Family Species Accession Reference

Axiidea Callianassidae Callianassa ceramica KU350630.1 This study

Callianassa ceramica KU362925.1 Gan et al. (2016)

Corallianassa coutierei NC_020025.1 Shen, Braband & Scholtz (2013)

Nihonotrypaea japonica NC_020351.1 Kim et al. (2013)

Nihonotrypaea thermophila NC_019610.1 Lin et al. (2012)

Paraglypturus tonganus NC_024651.1 Kim et al. (2016b)

Trypaea australiensis1 KM501040.2 This study

Strahlaxiidae Neaxius acanthus2 NC_019609.1 Lin et al. (2012)

Gebiidea Thalassinidae Thalassina kelanang NC_019608.1 Lin et al. (2012)

Upogebiidae Austinogebia edulis NC_019606.1 Lin et al. (2012)

Upogebia major NC_019607.1 Lin et al. (2012)

Upogebia pusilla NC_020023.1 Shen, Braband & Scholtz (2013)

Upogebia yokoyai NC_025943.1 Yang et al. (2016)

Caridea Alvinocarididae Alvinocaris chelys NC_018778.1 Yang et al. (2012)

Alvinocaris longirostris NC_020313.1 Yang et al. (2013)

Nautilocaris saintlaurentae NC_021971.1 Kim, Pak & Ju (2015a)

Opaepele loihi NC_020311.1 Yang et al. (2013)

Rimicaris exoculata NC_027116.1 Yu et al. (2015)

Rimicaris kairei NC_020310.1 Yang et al. (2013)

Alpheidae Alpheus distinguendus NC_014883.1 Qian et al. (2011)

Alpheus lobidens KP276147.1 This study

Atyidae Caridina gracilipes NC_024751.1 Xu et al. (2016)

Caridina cf. nilotica KU726823.1 This study

Halocaridina rubra NC_008413.1 Ivey & Santos (2007)

Neocaridina denticulata NC_023823.1 Yu, Yang & Yang (2014)

Paratya australiensis NC_027603.1 Gan et al. (2016b)

Palaemonidae Macrobrachium bullatum KM978918.1 This study

Macrobrachium lanchesteri NC_012217.1 L. Ngernsiri & P. Sangthong, 2016,

unpublished data

Macrobrachium nipponense NC_015073.1 Ma et al. (2011)

Macrobrachium rosenbergii NC_006880.1 Miller et al. (2005)

Palaemon carinicauda NC_012566.1 Shen et al. (2009)

Palaemon gravieri NC_029240.1 Kim et al. (2015b)

Palaemon serenus NC_027601.1 Gan et al. (2016b)

Dendrobranchiata (outgroup) Sergestidae Acetes chinensis NC_017600.1 Kim et al. (2012)

Penaeidae Farfantepenaeus californiensis NC_012738.1 Gutiérrez-Millán et al. (2002)

Fenneropenaeus chinensis NC_009679.1 Shen et al. (2007)

Fenneropenaeus merguiensis NC_026884.1 Zhang et al. (2016a)

Fenneropenaeus penicillatus NC_026885.1 Zhang et al. (2015)

Litopenaeus vannamei NC_009626.1 L. Ngernsiri & P. Sangthong, 2016,

unpublished data

Marsupenaeus japonicas NC_007010.1 Yamauchi et al. (2004)

(Continued)
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Victoria, Melbourne (NMV) and the Museum and Art Gallery of the Northern Territory,

Darwin (MAGNT).

Next-generation sequencing and mitogenome assembly
Purification of ethanol-preserved tissue and partial whole genome sequencing (2 � 75 bp

for T. australiensis and 2 � 250 bp for others) was performed on the Illumina MiSeq

platform as previously described (Gan et al., 2016), after which each mitogenome was

assembled with IDBA_UD v.1.1.1 (Peng et al., 2012) and annotated using MITOS (Bernt

et al., 2013). Circular mitogenome maps were drawn with BRIG v.0.9.5 (Alikhan et al.,

2011). Summary statistics including gene boundaries and length, strand, nucleotide

composition, intergenic nucleotides, and number of genes were compiled with

MitoPhAST v.1.0 (Tan et al., 2015). Alignment of whole mitogenome sequences and

calculation of pair-wise nucleotide identities were performed with SDT v.1.2 (Muhire,

Varsani & Martin, 2014).

Gene order analysis
Along with the five mitogenomes sequenced in this study, sequences from 28 other

complete mitogenomes from the three infraorders were obtained from NCBI’s RefSeq

database (Table 2) for comparative analyses. Arrangements of genes for each of these

33 mitogenomes were compared with all other existing decapod mitogenomes in RefSeq

to identify potential novel gene orders unreported by previous studies. Mitogenomes

that exhibit gene orders differing from that of the pancrustacean ground pattern (Boore,

Lavrov & Brown, 1998) were re-annotated with MITOS (Bernt et al., 2013) to confirm

that differences observed are not due to misannotations. Any observed misannotations

(e.g., missing genes, incorrect gene boundaries) were corrected before proceeding to

further comparative and phylogenetic analyses.

Phylogenetic analysis
Mitogenomes listed in Table 2 were subject to phylogenetic analysis to establish the

evolutionary relationships of species within each of the infraorders to provide a

framework for interpreting mitogenome gene rearrangements. MitoPhAST v.1.0 (Tan

et al., 2015) was used to extract individual PCG amino acid sequences, and these protein

sequences were then separately aligned with MAFFT v.7.222 (Katoh & Standley, 2013),

followed by trimming with trimAl v.1.4 (Capella-Gutiérrez, Silla-Martı́nez & Gabaldón,

Table 2 (continued).

Infraorder Family Species Accession Reference

Metapenaeopsis dalei NC_029457.1 Kim et al. (2016a)

Metapenaeus ensis NC_026834.1 Zhang et al. (2016b)

Parapenaeopsis hardwickii NC_030277.1 Mao et al. (2016)

Penaeus monodon NC_002184.1 Wilson et al. (2000)

Solenoceridae Solenocera crassicornis NC_030280.1 Y. Yuan et al., 2016, unpublished data

Note:
1 Mitogenome from taxonomically verified T. australiensis sample resubmitted as version two under same accession number.
2 Neaxius acanthus from Taiwan was wrongly identified as Neaxius glyptocercus by Lin et al. (2012).
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2009). For nucleotide level analyses, PCG nucleotide sequences were manually extracted

and fed to TranslatorX v.1.1 (Abascal, Zardoya & Telford, 2010), which aligns nucleotide

sequences guided by amino acid translations and then trimmed with Gblocks v.0.19b

(Castresana, 2000). On the other hand, rRNA was aligned with MAFFT v.7.222

(mafft-linsi) (Katoh & Standley, 2013) and trimmed with trimAl v.1.4 (Capella-Gutiérrez,

Silla-Martı́nez & Gabaldón, 2009). Finally, mitochondrial PCG and rRNA sequences were

concatenated into super-alignments to make up the following datasets:

A. 13 PCG (aa) [3,591 characters]

B. 13 PCG (nt) [9,642 characters]

C. 13 PCG (aa) + 12S rRNA + 16S rRNA [5,694 characters]

D. 13 PCG (nt) + 12S rRNA + 16S rRNA [11,755 characters]

Maximum-likelihood (ML) tree inference with ultrafast bootstrap (UFBoot) branch

supports (Minh, Nguyen & von Haeseler, 2013) was performed using IQ-TREE v.1.5.0

(Nguyen et al., 2015), which also implements model selection to find the best-fit

partitioning scheme. Super-alignments for all datasets were partitioned based on genes.

An additional analysis for Dataset B that further partitions it according to first, second

and third codon positions was also performed. For Bayesian inference, the same

super-alignments generated from all datasets were analysed using Exabayes v.1.4.2 (Aberer,

Kobert & Stamatakis, 2014). For each analysis, four independent runs were carried out

concurrently for five million iterations each with 25% of initial samples discarded as

burn-in. Convergence of chains was checked by ensuring the average standard deviation of

split frequencies (asdsf) is below 0.5%, considered to be good convergence according

to the Exabayes user guide. Alignments, partitions and best-fit partitioning schemes for

all datasets are available as Data S1.

Codon usage analysis
Codon usage (in counts) was calculated using EMBOSS v.6.5.7 (Rice, Longden & Bleasby,

2000) followed by minor adjustments based on the Invertebrate Mitochondrial Code

(genetic code = 5). Comparisons among the three lineages of shrimps were made by

applying the chi-square test to the pooled codon usage counts for species from each

infraorder. Relative synonymous codon usage (RSCU) values were calculated by taking

the ratio of the number of times a codon appears to the expected frequency of the codon if

all synonymous codons for a same amino acid are used equally (Sharp & Li, 1987).

Patterns of variation among individuals in RSCU values were summarized using

multidimensional scaling (MDS) based on Euclidean dissimilarities implemented in

XLSTAT v.2015.4.01.20978 (Addinsoft, 2010).

RESULTS
Mitogenome composition
Mitogenomes for specimen J40715 of C. ceramica (16,899 bp, 130� cov), T. australiensis

(15,485 bp, 86� cov),M. bullatum (15,774 bp, 27� cov), A. lobidens (15,735 bp, 60� cov)
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and Caridina cf. nilotica (15,497 bp, 63� cov) were assembled into complete circular

sequences, annotated (Fig. 1), and deposited in GenBank with accession numbers

listed in Table 1. Four of the mitogenomes contain the typical 13 PCG, two ribosomal

RNA genes, 22 transfer RNA genes and one long non-coding region while A. lobidens

has an additional trnQ flanked by the ND4L and trnT genes (Fig. 1). Detailed

composition of each mitogenome can be found in Table S1 while general information

on % AT and lengths for all mitogenomes included in this study are in Table S2.

The mitogenomes are AT rich (58.9–69.7%), with A. lobidens having the lowest AT

content, matching closely to Alpheus distinguendus (60.2%), the only other species of

Alpheus having a published mitogenome sequence. Gene lengths are typical but

Callianassa and Trypaea have an elevated proportion of intergenic nucleotides, with

some spacers in the order of 200 bp in length. This is significantly larger than for other

members of the Axiidea, but similar to spacers reported for the Gebiidea. C. ceramica

(KU350630.1) has an unusually long control region of 2,036 bp, whereas for all the

other taxa it is less than 1,000 bp, including the closely-related T. australiensis (587 bp).

However, the control region for the conspecific C. ceramica (KU362925.1) is very

similar (1,978 bp) and these two specimens are also very similar in terms of % AT

Figure 1 Circular representation of three caridean and two axiidean species. These figures show composition and order of protein-coding genes

(blue), ribosomal RNAs (orange), transfer RNAs (purple) and large non-coding region (grey) for the following mitogenomes: (A). Alpheus lobidens,

(B). Caridina cf. nilotica, (C). Macrobrachium bullatum, (D). C. ceramica, (E). Trypaea australiensis.
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(69.7 and 70.2%). A matrix of pair-wise identities of whole mitogenome sequence

alignments can be found in Fig. S1.

Manual inspection and MITOS annotation identified multiple
erroneously annotated crustacean mitogenomes in GenBank
RefSeq database
The re-annotated species with gene orders divergent to that of the pancrustacean ground

patterns obtained from GenBank’s RefSeq database identified several that require revision.

One was found to have a missing protein-coding gene and an extra trnS, and others

inverted rRNA and tRNA coordinates and other annotation anomalies as detailed in

Table 3. For our study, entries were edited based on MITOS annotations and the revised

GenBank files for these entries are included as Data S2.

Whole mitogenomes are consistent with monophyly of infraorders
Axiidea, Gebiidea, and Caridea
A total of 33 mitogenome sequences from the three groups of interest were utilized

(Axiidea: eight, Gebiidea: five, Caridea: 20) to elucidate phylogenetic relationships, with

an additional 12 Dendrobranchiata mitogenomes as an outgroup (Table 2). Trees

constructed from every dataset and analysis are available in Fig. S2. All trees place

M. bullatum, A. lobidens, and Caridina cf. nilotica as sister taxa to other species from their

respective genera with relatively high nodal support (UFBoot � 93%, PP 1.00). These

trees also consistently place C. ceramica as sister to T. australiensis (UFBoot 100%,

PP 1.00) within Axiidea.

The Bayesian-inferred phylogenetic tree in Fig. 2A, constructed based on amino acid

sequences of 13 PCGs and nucleotide sequences of two rRNAs (Dataset C), shows a tree

topology that is shared by most trees inferred in this study. Most nodes received maximal

support from each analysis and dataset. The greatest levels of uncertainty in terms of

phylogenetic placement are mostly relating to the relationships among closely related taxa,

such as in the Palaemon (6/10 trees), Rimicaris–Opaepele–Alvinocaris–Nautilocaris

(2/10 trees), Upogebia–Austinogebia (1/10 trees), Corallianassa–Paraglypturus (1/10 trees),

and Macrobrachium (1/10 trees) clades. The only deeper clade with low support is the

placement of Atyidae as the sister clade of Alvinocarididae within Caridea (UFBoot � 90,

PP 1.00). Within Axiidea, maximal support is observed for almost all nodes. The most

Table 3 List of samples for which annotations were corrected based on re-annotation with MITOS.

Accession # Species Genes

involved1
Correction/edits made in this study

NC_024751.1 Caridina gracilipes ND2, trnS Added ND2, removed duplicated trnS

NC_012217.1 Macrobrachium lanchesteri rrnS, rrnL Inverted coordinates for rrnS and rrnL

NC_020025.1 Corallianassa coutierei trnI, trnQ Inverted coordinates for trnI and trnQ

NC_020351.1 Nihonotrypaea japonica rrnS, rrnL Added rrnS and rrnL coordinates

Note:
1 Genes involved in discrepancies found between NCBI’s RefSeq entry and re-annotation with MITOS.

Tan et al. (2017), PeerJ, DOI 10.7717/peerj.2982 9/23

http://dx.doi.org/10.7717/peerj.2982/supp-7
http://dx.doi.org/10.7717/peerj.2982/supp-5
http://dx.doi.org/10.7717/peerj.2982/supp-8
http://www.ncbi.nlm.nih.gov/nuccore/NC_024751.1
http://www.ncbi.nlm.nih.gov/nuccore/NC_012217.1
http://www.ncbi.nlm.nih.gov/nuccore/NC_020025.1
http://www.ncbi.nlm.nih.gov/nuccore/NC_020351.1
http://dx.doi.org/10.7717/peerj.2982
https://peerj.com/


Figure 2 Phylogenetic relationships and gene order rearrangements within Axiidea, Gebiidea and

Caridea. (A). Phylogenetic tree with support values indicated at each node (top, l-r: ML and BI sup-

port for PCG (aa) + 12S + 16S dataset), bottom, l-r: ML and BI support for PCG (nt) + 12S + 16S

dataset). Square brackets [ ] around a value indicate that the shown topology is in conflict with that

constructed by the specific dataset. If values are absent at a node, maximum support was found for that

node based on all phylogenetic inference methods and datasets. Topology shown was inferred from

Bayesian analysis of PCG (aa) + 12S + 16S dataset. Codes on branches (Gr, Pa, Ap1, Ap2, Up, Ax1, Ax2)

correspond to gene order pattern listed in B while red stars indicate mitogenomes sequenced in this

study. (B). Gene order of various groups. Yellow triangles under genes indicate differences in arrange-

ment compared to the ground pancrustacean pattern.
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basal split in this infraorder separates Strahlaxiidae (Neaxius acanthus) from

Callianassidae. Within Callianassidae, the three major lineages correspond to accepted

subfamilies, two represented by one species each and Callianassinae by four species.

In as far as it goes, the phylogenetic placements of mitogenome sequences in Axiidea are

congruent with the current classification at the family, subfamily, and generic levels

(Felder & Robles, 2009) (Fig. 2A). These analyses of just four upogebiid species indicate

thatUpogebiamay be paraphyletic with respect to Austinogebia. Since these two genera are

nominally represented by over 120 and eight species respectively, any comment on their

status is premature at this stage. The degree of divergence between the species of Rimicaris

and Opaepele is small relative to the degree of divergence between congeneric species

within Macrobrachium, Alpheus, Caridina, and Alvinocaris.

Deviation from the pancrustacean ground pattern is prevalent in the
currently sequenced members of the Axiidea and Gebiidea
Most mitogenomes from caridean species have the pancrustacean ground pattern (pattern

Gr, Fig. 2B). Those that differ show only minor rearrangements involving the short

tRNA genes (patterns Pa, Ap1, and Ap2). In contrast, the mitogenomes of species within

Axiidea and Gebiidea exhibit relatively substantial differences in gene order (patterns Up,

Ax1, and Ax2) entailing rearrangements of PCG, rRNAs, and a number of tRNAs. An

example is pattern Ax2 shown in Fig. 2B, which includes the inversion of the ND1, lrRNA,

srRNA, and trnI genes as a block, in addition to the inversion and translocation of

trnD from between trnQ and trnM to a position between trnS2 and the putative control

region, as well as new placements for trnL and trnV also evident in pattern Ax1.

All gene order novelties relative to the pancrustacean ground pattern are consistent

with the relationships depicted by the molecular phylogeny, and in several cases define

taxonomic groups at different levels. In Caridea, pattern Pa is common to the three

Palaemon species and pattern Ap1 defines the two Alpheus species. Similarly, within

Gebiidea, while Thalassina kelanang (family Thalassinidae) has the ground pancrustacean

pattern, the other four species are all members of the family Upogebiidae and are united

by novel rearrangements involving several tRNA translocations (pattern Up, Fig. 2B).

Pattern Ax1, involving the rearrangements of COIII and several tRNAs, is shared among

species of Axiidea. The elements of pattern Ax2 that differ from pattern Ax1 support

the node joining Callianassa and Trypaea.

Evidence of significant codon usage bias in mitochondrial
genomes at the infraorder level
Figure 3 shows there is strong A+T bias in codon usage across the 33 shrimp

mitogenomes. RSCU frequencies demonstrate distinct preference for codons with A or

T in the third codon position compared to other synonymous codons. Counts of

codons used and RSCU values can be found in Table S3. Among the 62 available

codons, the four most used codons in all three infraorders are TTT (Phe), TTA (Leu),

ATT (Ile), and ATA (Met), all made up of solely A and T nucleotides. Even so, this

preference for A+T codons is stronger in Axiidea and Gebiidea mitogenomes and less so
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in Caridea, most obvious for amino acids Asp (D), His (H), Asn (N), and Tyr (Y).

Statistical comparisons show that, for each amino acid, there are significant differences

among the three infraorders in the proportions of the codons being used (p-values in

Fig. 3). A separate comparison for species with pattern Ax1and Ax2 within the infraorder

Figure 3 Relative synonymous codon usage values (RSCU) (y-axis) in protein-coding genes of mud shrimps and true shrimps. Encoded amino

acid and its corresponding p-value (> or <0.001) is shown at the top of each box plot while synonymous codons are indicated on the x-axis.
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Axiidea and also with those with the ground pattern (Gr) do not reveal any substantial

difference in their codon usage bias (Fig. S3). The MDS plot shows that, for the most part,

members of each infraorder cluster together and are largely distinct from the samples

from the other infraorders (Fig. 4). A sample of the Gebiidea, T. kelanang, is a maverick,

being placed well inside the Caridea cluster and remote from the other members of its

infraorder. It also has a very low AT content for this group, being more similar to caridean

shrimps. In this context, it is noteworthy that the species is placed as the most basal

member of the Gebiidea and is also the only member of the infraorder that has the

primitive pancrustacean gene order, which it shares with all other of the members of the

Caridea with the exception of some species with minor derived rearrangements (Fig. 2B).

DISCUSSION
The five new decapod mitogenomes presented in this study considerably expand the

number of samples of Axiidea and Caridea currently available for mitogenome-based

phylogenetics and comparative mitogenomic studies. Members of the infraorder Gebiidea

were also included in this analysis due to its taxonomic history of having been placed

with Axiidea in the infraorder Thalassinidea, prior to obtaining recent recognition as its

own separate infraorder (Ahyong & O’Meally, 2004; Crandal, Harris & Fetzner, 2000;

Robles et al., 2009; Timm & Bracken-Grissom, 2015). The mitogenomic features of these

taxa are generally consistent with those for the Decapoda and for the three infraorders

(Kim et al., 2013; Lin et al., 2012; Miller et al., 2005) (Table S1). In addition, the high

AT content (58.9–73.6%) observed in all of the mitogenomes utilized in this study is

typical for the Crustacea and the Arthropoda (Cameron, 2014; Cook, Yue & Akam, 2005;

Lin et al., 2012; Shen et al., 2015).

Figure 4 Patterns of variation among individuals based on RSCU values shown using

multidimensional scaling (MDS) based on Euclidean dissimilarities.
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It has been suggested that evolutionary rate and the frequency of rearrangements are

independent (Gissi, Iannelli & Pesole, 2008) and this is consistent with results depicted in

Fig. 2, which indicate no obvious correlations between the size and distribution of

rearrangements and branch lengths (substitution rate) within and between groups.

Despite this general observation, some studies have noted an association between higher

substitution rates and the occurrence of mitogenome rearrangements involving a transfer

of genes between strands (e.g., Stokkan et al., 2016). Although it is expected that codon

usage varies between major groups of organisms and among animal phyla (Castellana,

Vicario & Saccone, 2011; Gissi, Iannelli & Pesole, 2008; Prat et al., 2009), finding substantial

codon usage differences at the infraorder level is somewhat unusual. It is becoming more

apparent now that there are divergent patterns in AT content among orders in insects

and among the major taxonomic groups in the Malacostraca (see Table 1 in Sun et al.

(2009) and Shen et al. (2015)). Studies examining patterns of codon usage in mitogenomes

have failed to observe differences at finer taxonomic scales within insects and crustaceans

(Cook, Yue & Akam, 2005; Shen et al., 2015; Sun et al., 2009).

Elevated mutational pressure is thought to be a major driver of non-random

mitochondrial synonymous variation. However, selection of optimal codons for

translational efficiency and genetic drift is also thought to play a role (Castellana, Vicario &

Saccone, 2011; Jia & Higgs, 2008; Prat et al., 2009). It is tempting to speculate that

the distinctive pattern of codon usage in the Axiidea, and the frequency and extent of

mitogenome gene order rearrangements may be correlated with the acquisition of

specialized adaptations by members of this infraorder to largely burrowing lifestyles

(Lin et al., 2012; Sakai, 2011) compared to the members of the Caridea, which are mostly

free living (Bracken, De Grave & Felder, 2009).

The phylogenetic analyses using whole mitogenomes support the monophyly of

each of the three infraorders, Axiidea, Gebiidea, and Caridea, with inclusion of more

comprehensive taxon sampling than previous studies (Lin et al., 2012; Shen, Braband &

Scholtz, 2013; Shen et al., 2015; Tan et al., 2015). Further, the members of Axiidea have a

common gene rearrangement that is a potential synapomorphy of the infraorder, and

therefore also supports the monophyly of this group. A notable exception to these

results is the analysis of Shen et al. (2015), which supported a non-monophyletic Gebiidea,

by placing T. kelanang inside a lineage comprising Acheleta, Polychelida, and Caridea.

Other studies using a combination of mitochondrial and nuclear gene fragments

(Bracken, De Grave & Felder, 2009; Robles et al., 2009) also support the monophyly of

these groups, but their relationships with each other and other decapod infraorders

have yet to be resolved (Tan et al., 2015). A caveat of our findings and those of other

studies is that monophyly cannot be fully tested without comprehensive taxonomic and

gene sampling and the inclusion of species from all decapod infraorders (Timm &

Bracken-Grissom, 2015).

The contribution of mitogenomic data for more species will be particularly important

for exploring and testing evolutionary relationships within Axiidea, given its lack of

broad taxonomic representation on the current evolutionary tree. Two of the

mitogenomes contributed in this study (C. ceramica, T. australiensis) belong to the
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family Callianassidae, a diverse group of axiidean shrimps adapted to digging in soft

marine sediments. Over 100 species placed in 22 genera and divided between several

subfamilies are recognized from this family (Sakai, 2011). However, relationships among

the major groups and the definition of subfamily and generic level boundaries are

contentious within the Callianassidae (Poore et al., 2014; Sakai, 2011). It is noteworthy

that for the Axiidea, the tree-based relationships and the mitogenome rearrangements

are entirely consistent with the infraorder, family, subfamily and genus level relationships

for the samples included (Fig. 2), and that the phylogenetic tree and the Ax1

rearrangement pattern further supports the monophyly of the Axiidea.

The potential for mitochondrial rearrangement to act as “super” characters for

phylogenetic estimation for the arthropod has been recognised by a number of authors

(Boore, Lavrov & Brown, 1998; Dowton & Austin, 1999; Dowton, Castro & Austin, 2002).

This study further supports this position but also notes that the distribution of

rearrangements is uneven across the tree generated in this study and the larger analysis by

Tan et al. (2015). Thus, while novel gene order attributes act as useful phylogenetic

characters for the Axiidea and Gebiidea, their usefulness appear to be limited for the

Caridea, even though the age of the lineages overlap. Similarly, for other major crustaceans

groups, lobsters (Astacidea and Achelata), crabs (Brachyura), and penaeid shrimps

(Dendrobranchiata), rearrangements are largely absent or minor (Shen et al., 2015; Tan

et al., 2015), but freshwater crayfish (Astacidea) and anomuran crabs (Anomura) are

phylogenetic “hotspots” for mitogenome gene order evolution in both the number and

scale of rearrangements. As pointed out by Mao, Gibson & Dowton (2014), far greater

sampling is required to adequately test the phylogenetic utility of observed mitogenome

gene rearrangements and identification of suitable models for investigating the

evolutionary and molecular drivers that shape the organization and architecture of animal

mitogenomes.

In this regard, rapid and efficient methods for mitogenome sequencing using

next-generation sequencing (NGS) platforms will accelerate this task (Gan et al., 2016;

Timmermans et al., 2016). Unlike more classical methods utilizing long-range polymerase

chain reaction (PCR) to amplify the mitogenome into a smaller number of fragments

with universal primers, followed by Sanger sequencing (Lin et al., 2012;Miller et al., 2004;

Shen, Braband & Scholtz, 2013), the primer-free and shotgun nature of NGS will likely

increase the discovery of mitogenome rearrangements as it makes no assumptions about

the pre-existing gene order of the species under study. In fact, the availability of a reference

whole mitogenome will improve primer design and consequently the success rate of

complete mitogenome recovery from members of the same genus (or family) using long-

range PCR. It is envisaged with the advent of third generation sequencing technology

such as PacBio (Rhoads & Au, 2015) and Nanopore (Branton et al., 2008) sequencing,

problematic and repetitive regions commonly associated with the control region can be

readily resolved and confirmed.

Lastly, while preparing the dataset for analysis, we identified several misannotated

mitogenomes on NCBI (Table 3) although these misannotations were absent in

their related publications i.e., the correct gene coordinates and orientations were
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reported by the authors in their respective publications. We postulate that these

discrepancies may have arisen due to errors during the submission of these

mitogenomes to public databases. It is also possible, though less likely, that the

mitogenomes may have been erroneously edited when they were reviewed by NCBI

staff. Hence, this highlights that although there is tremendous gain from having a

growing number of mitogenome submissions to public databases as molecular

resources, the accuracy of annotations should not be assumed and it is prudent to

re-evaluate species with any form of gene order rearrangements or related anomalies

before inclusion in datasets for comparative analyses.
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