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Abstract: The current practice of concrete is thought to be unsuitable because it consumes large
amounts of cement, sand, and aggregate, which causes depletion of natural resources. In this study,
a step towards sustainable concrete was made by utilizing recycled concrete aggregate (RCA) as
a coarse aggregate. However, researchers show that RCA causes a decrease in the performance of
concrete due to porous nature. In this study, waste glass (WG) was used as a filler material that filled
the voids between RCA to offset its negative impact on concrete performance. The substitution ratio
of WG was 10, 20, or 30% by weight of cement, and RCA was 20, 40, and 60% by weight of coarse
aggregate. The slump cone test was used to assess the fresh property, while compressive, split tensile,
and punching strength were used to assess the mechanical performance. Test results indicated that the
workability of concrete decreased with substitution of WG and RCA while mechanical performance
improved up to a certain limit and then decreased due to lack of workability. Furthermore, a statical
tool response surface methodology was used to predict various strength properties and optimization
of RCA and WG.

Keywords: sustainable concrete; compressive strength; split tensile strength; waste glass

1. Introduction

Environmental groups are pushing for the use of RCA and solid wastes such as slag,
fly ash, and silica fume in construction projects. The global demand for aggregates for
construction is expected to reach 47 billion metric tons per year in 2023 [1]. The solution is
to reuse or include solid waste byproducts including fly ash, silica fume, bottom ash, slag,
and glass waste into the concrete manufacturing process [1–4]. These concrete advances
diminish the negative impacts of the concrete industry in affordable and natural issues by
providing low costs, high strength properties, and ecological amicability [5–7]. Currently,
the usage of reused aggregate concrete, which is made from waste concrete brought in from
building sites and demolition, is being promoted to help alleviate the global scarcity of
regular aggregate. Furthermore, by recycling waste concrete aggregate, concerns associated
with removing the massive volume of waste concrete generated on building sites and
demolition activities might be reduced up to certain extent [1].

By volume, RA is made up of 60–70 percent natural aggregates and 30–40 percent aged
cement mortar. Parent concrete qualities, workability, mix percentage, and other factors in-
fluence the compressive strength and other properties of recyled aggregate concrete [8–10].
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When compared to concrete with natural aggregates, the mechanical and durability perfor-
mance of RCA is worse. By using fractional substitution of pozzolanic components and
mineral admixtures, RCA’s inferior performance might be improved. By filling the RCA
porosity microstructure and lowering RCA permeability, these compounds and admixtures
improve durability [11,12]. Using RCA as coarse aggregate in concrete has a number of
environmental advantages. However, because of its porous nature, RCA has been shown
to reduce the mechanical performance of concrete. As a result, some filler material must be
added to RCA, filling the gaps and resulting in a more compact mass. There are various
filler materials, such as fly ash [13], silica fume [14,15], waste glass [16], wheat straw ash [4],
marble waste [17], bentonite clay [18], as well as GGBS [19]. In this study, waste glass was
used as the filler material.

As of 2005, the overall worldwide waste glass manufacture valuation was 130 Mt, in
which the European Union, China, and the USA manufactured roughly 33 Mt, 32 Mt, and
20 Mt, respectively [20]. As glass is nonrecyclable, glass-dumping in a landfill creates an
environmental problem. Because of these reasons, the use of waste glass and waste marble
materials from industries came into the picture to reduce the waste from manufacturing
units and decrease the scarcity of basic natural resources.

On the other hand, the yearly worldwide cement manufacture has moved 2.8 billion
tons and is supposed to rise to some four billion tons each year. Cement production is
challenging because of expense rises in energy resources, decreasing CO2 releases, and
depletion of natural resources [9,21,22]. Several industrial byproducts have been used
effectively in concrete, including silica fume, ground granulated blast furnace slag, and fly
ash [23,24]. The practice of waste glass to change cement could decrease the cost of concrete
and the depletion of cement, thereby precisely decreasing the CO2 production associated
with cement manufacture.

Glass exhibits pozzolanic behavior if the particle size is smaller than 75 µm. Silica in
glass interacts with calcium hydrates (Ca(OH)2) to form calcium silicate hydrate (CSH) [25].
Glass has also been found to exhibit pozzolanic properties when the particle size is smaller
than 150 µm. However, the pozzolanic behaviors increase as particle size decreases, i.e.,
35 µm shows better results than 150 µm [26,27].

It has been concluded that slump is decreased with the addition of waste glass. How-
ever, compressive and flexure strength increases up to 20% replacement and then decreases
gradually [28]. It has been concluded that the flexure strength of the beam is increased with
the addition of waste glass [29]. It has been shown that the compression strength level was
13.64% at seven days and 2.18% at 28 days at 20% replacement of glass [30]. Finely ground
glass powder has been found to exhibit pozzolanic properties which increase the strength
of concrete. [31,32]. The results show that compressive strength is about 12%, 2.5%, and
1.5% higher than that of reference concrete with substitution of waste glass. However, a
high dosage of waste glass may negatively impact the strength property of concrete due to
dilution effects. Excessive silica without the necessary calcium (CH) forms weak pockets
(the alkali-silica reaction), and as a result, strength starts to decrease [25]. Therefore, it is
essential to choose the optimum dose of waste glass for the better mechanical performance
of concrete.

The literature shows that RCA decreases the performance of concrete due to its porous
nature, and waste glass has the credibility to be used as a filler material. Therefore, waste
glass was used as a filler material that filled the voids of RCA and offset its negative impact
on the mechanical performance of concrete. Furthermore, a response surface methodology
was used to optimize RCA and WG. The overall study demonstrates that the combined
substitution of WG and RCA successfully improved mechanical performance considerably.
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2. Materials and Methods
2.1. Materials
2.1.1. Cement

As per ASTM C150 Type-1, Ordinary Portland cement (Bestway cement Islamabad
Pakistan) was used throughout the experimental work to prepare the mix for all batches.
The physical and chemical aspects of cement used in this study are shown in Table 1.

Table 1. Properties of Ordinary Portland Cement (OPC).

Chemical Name Percentage (%) Physical Name Results

CaO 63.7 Size Less than 75 µm
SiO2 22.9 Fineness 97%

Al2O3 4.2 Normal Consistency 29%
Fe2O3 3.5 Initial Setting Time 38 min
MgO 3.0 Final Setting Time 430 min
SO3 1.4 Specific surface 320 m2/kg
K2O 0.5 Soundness 1.60%

Na2O 0.8 28 days compressive Strength 42 MPa

2.1.2. Waste Glass

Waste glass was procured from a local shop Kohat Pakistan. The waste glass used
in the research was transparent soda-lime glass. The waste glass was ground using ball
mill grinding equipment at the PCSIR lab in Peshawar, Pakistan, to reach a particle size
equivalent to or less than that of the cement particle size. The physical and chemical aspects
of waste glass used in this study are shown in Table 2, while X-ray diffraction (XRD) is given
in Figure 1. At 26, 38, and 50 degrees, many amorphous peaks of quartz (Q) in the XRD
analysis of WG showed the major amorphous nature of WG. The chemical composition of
WG showed that the material may have had pozzolanic potential, which can be attributed
to the accumulative chemical composition of SiO2, Al2O3, and Fe2O3 exceeding 70%.
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Table 2. Properties of waste glass.

Chemical Name Percentage (%) Property Name Value Mineralogy Quartz

CaO 60.7 Size Less than 75 µm Loss of ignition (%) 4.8
SiO2 24.9 Fineness 98% Water content (%) 4.1

Al2O3 4.7 Specific surface 342 m2/kg Clay (%) 6.1
Fe2O3 2.0 Specific gravity 3.1 TOC (mg/kg) 64.9
MgO 1.9 Absorption 0.01 Hydrocarbons (mg/kg) 75.13
SO3 2.5 Sulphates (%) 3.08
K2O 0.2 HHV (kJ/kg) 170.5

Na2O 1.1 PCB (mg/kg) 0.28

2.1.3. Aggregates

In saturated surface dry conditions, natural river sand was employed as a fine aggre-
gate in all batches. For all batches, normal weight coarse aggregate with a maximum size
of 25 mm was employed in saturated surface dry conditions. RCA of 25 mm maximum
size was obtained by crushing waste concrete. A variety of tests were carried out on
the aggregates to assess its physical properties, and the results are given in Table 3. For
aggregate gradation (sieve analysis), an ASTM standard (ASTM33/C33M-13) was utilized,
as indicated in Figure 2.
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Table 3. Fine and coarse aggregate properties.

Property Fine Aggregate Coarse Aggregate RCA

Particle Size 4.75 to 0.075 mm 25 to 4.75 mm 25 to 4.75 mm
Fineness Modulus 2.53 3.8 2.2

Absorption Capacity 4.26% 2.28% 3.3%
Moisture Content 2.8% 0.55% 0.75%
Specific Gravity 2.91 2.45 2.35

2.2. Response Surface Methodology (RSM)

RSM is a mathematical and statistical combined technique to estimate relations be-
tween a set of input independent variables and output variables [33]. Experimental results
are required, and then based on these experimental results, a numerical model is devel-
oped [34]. Additionally, RSM is additionally used as an experimental design technique
for the modeling and analysis of difficulties in which a response of interest is assessed by
several variables [33,35]. This method is generally used when several input variables affect
the output variable. Equation (1) (first-order model) was utilized to calculate the quantity
of the experimentation [36].

Y = β0 +
k

∑
i=1
βiXi + ε (1)

Equation (2) (second-order model) illustrated the model utilized to estimate the re-
sponses and define the relationship between the independent variables.

Y = β0 +
k

∑
i=1
βiiXi +

k

∑
i=1
βiXi

2 + ∑
.

∑
i≤1
βijXiXj + ε (2)

where:
Y = response function (for this study it is the CS),
B0 = constant coefficient,
Bi, Bii, and Bij = factor of the linear, quadratic, and interactive expressions, respec-

tively [4].
In this study, the quadratic model was used for the prediction.

2.3. Test and Sample Preparation Method

The flow of concrete was determined as per ASTM [37]. The compressive strength
was measured using a standard cylinder (150 × 300 mm) in accordance with ASTM stan-
dards [38]. Similar cylinders of standard dimensions (150 × 300 mm) were cast and tested
for split tensile strength in accordance with ASTM standards [39]. Punching shear was
performed on a concrete slab specimen of 500 × 500 mm. For this test, a special kind of
assembly was made that represented the punching mechanism in the slabs in concrete
structures, as shown in Figure 3. To find out the punching shear strength of the concrete
slabs, the slab specimens were removed from the curing procedure and were left to dry in
the open air for two hours. Then, a steel baseplate was placed in the compressive testing
machine. After that, the slab specimen was placed over the baseplate, and it was made
sure that the center of the slab specimen lay at the center of the baseplate. Then, the central
point was marked on the top surface of the slab, and the punching rod was placed on the
central marked point, as shown in Figure 3. The loading was started by turning the loading
switch on and waiting until the rod punched in the slab. The maximum resistive punching
load of the slab specimen was noted down.
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Figure 3. Punching strength setup.

For each test, three specimens were tested at 7, 28, and 56 days, and the mean value of
the specimens was considered the strength of the experiment. The ASTM C-31 [40] method
was followed to prepare the specimens, and compaction was done manually by Roding in
three layers with 25 blows to each layer. Before the mixing process started, the required
quantity of concrete ingredients was weighed by the weighing system. The mixer rate
was kept constant at 30 rev/min for the blending of ingredients. Initially, coarse and RCA
were put into the drum and then sand. Each ingredient was dry-blended with the essential
amount of OPC and WG, water was inserted over time, and blending was performed for
around 10 minutes for all batches. A total of fifteen mixed proportions were prepared, i.e.,
one control mix, six mixes individually with varying percentages of WG and RCA, and
eight with combined substitutions of WG and RCA which were determined from statistical
analysis. A total of 192 standard sizes were cast and tested as per the specified period of
curing. Table 4 depicts the mixed proportion of control and individual mixes.

Table 4. Quantification of materials per cubic meter.

Mix ID Cement (kg) Fine Aggregate
(kg)

Coarse Aggregate
(kg)

WG
(kg)

RCA
(kg)

Water
(kg)

Admixture
(kg)

Control 385 550 1150 - - 180 4.25
W-10-R-0 346.5 550 1150 38.5 - 180 4.25
W-20-R-0 308 550 1150 77 - 180 4.25
W-30-R-0 265.5 550 1150 115.5 - 180 4.25
W-0-R-20 385 550 920 - 230 180 4.25
W-0-R-40 385 550 690 - 460 180 4.25
W-0-R-60 385 550 460 - 690 180 4.25

3. Results and Discussion
3.1. Workability

Workability can be defined as the ease of concrete mixing, transportation, placing, and
compacting. Workability directly affects the mechanical performance of concrete. More
workable concrete results more compact dense concrete [41]. Figure 4 depicts the slump
flow of concrete with different doses of WG. RCA slump value decreased as the percentage
of waste glass increased compared to that in the control mix.
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The maximum slump was attained at 0% replacement of waste glass, and the minimum
slump was achieved at 30% substitution of waste glass. Research also shows that the
workability of concrete reduces with the replacement of waste glass [42]. The decrease
in workability was because of a larger surface area of waste glass, as shown in Table 2,
which required more cement paste to coat them, and hence less cement paste was available
for lubrication. Although some studies show that waste glass does not absorb water
from the concrete mix, more water is available for lubrication, resulting in more workable
concrete [43]. RCA decreased the workability of concrete by absorbing more water from
the concrete due to its porous nature and as a result, there was no free water available
for lubrication. Research also reports that the workability of concrete decreases with the
substitution of RCA due to rough texture, which enhances internal friction between concrete
ingredients [42].

3.2. Compressive Strength of Concrete

Figure 5 shows compressive strength with differing dosages of WG and RCA. Based
on work results, compressive strength of concrete improved with substitution of waste
glass up 20% and then decreased due to lack of workability.
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The pozzolanic reaction of waste glass is responsible for the increased compressive
strength. Silica present in waste glass reacts with CH (formed during hydration of cement)
and converts it into CSH gel, which provides additional binding property. As a result,
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strength increases. It can also be observed that improvement in compressive strength at
an early stage (seven days) was not significant with the substitution of waste glass, as the
pozzolanic reaction proceeds slowly [44]. However, 28 and 56 days of curing considerably
improved compressive strength. It is also mentioned that improved compressive strength
is due to micro filling of WG, which gives denser concrete [4]. However, a decrease in
compressive strength was observed beyond 20% replacement of waste glass owing to a
lack of workability, resulting in more voids in hardened concrete. Additionally, a study
shows that a higher dose of waste glass (30%) results in less compressive strength due to
the dilution effect, which causes an alkali-silica reaction. The amount of calcium hydrates
(CH) is consumed by the chemical reaction with silica present in waste glass which gives
secondary cementitious material (CSH gel), but at a higher dose of waste glass, might
be caused by an alkali-silica reaction due to excessive unreactive silica. As for RCA,
compressive strength decreased with substitution of RCA as compared to that of control,
with minimum compressive strength at 60% substitution of RCA. The physical nature of
RCA causes it to absorb more water, resulting in porous concrete with lower compressive
strength. The compressive strength of recycled aggregate concrete has also been observed
to be reduced due to unreactive cement [45]. No free water is available for the hydration
process since RCA absorbs water from concrete. In addition, lack of workability tends to
cause more voids, resulting in lower compressive strength.

A relative analysis of compressive strength concerning 28 days of control concrete is
shown in Figure 6. Compressive strength at seven days of curing was 31% and 52% lower
than that of reference concrete (28 days control concrete) at 20% substitution of waste glass
and 20% substitution of RCA, respectively. Compressive strength at 20% substitution of
waste glass was 19% higher than that in reference concrete, and at 20% substitution of RCA
was 14% lower than that of reference concrete at 28 days of curing. Compressive strength
at 56 days of curing was 27% higher than that of reference concrete at 20% substitution
of waste glass and only 7.0% lower than that of reference concrete at 30% substitution of
RCA, respectively.
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Response surface and contour plot for compressive strength after 28 days of curing
are shown in Figures 7 and 8, respectively. It can be observed from the contour plot that
RCA decreased compressive strength while WG improved compressive strength. However,
concrete made with 20% WG and 30% RCA showed compressive strength (20.5 MPa)
approximately equal to the compressive strength of control (21.65 MPa), as shown in
Figure 9. Furthermore, concrete with 15% RCA and 20% WG showed a compressive
strength of 23 MPa, which was 7.0% higher than the compressive strength of control.
Similar doses (15% RCA and 20% WG) were also cast and tested in the laboratory. It can
be observed that experimental compressive and predicted compressive strength from the
contour plot were approximately equal, which validated the predicted results. Therefore,
the overall discussion suggests that RCA up to 40% with a combination of 20% WG could be
safely used in cement concrete production without adverse effects on compressive strength.
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3.3. Split Tensile Strength of Concrete

Figure 9 shows the split tensile strength of concrete with different dosages of concrete,
and relative analysis of split tensile strength with respect to reference concrete is shown
in Figure 10. Split tensile strength is a function of compressive strength. Split tensile
strength is about 10–15% of compressive strength. Similar to compressive strength, split
tensile strength increased up to 20% replacement and then decreased. Additionally, a study
concluded that split tensile strength of concrete is improved up to 20% substitution of waste
glass and then decreases due to lack of workability [42]. At 20% waste glass replacement,
the maximum split tensile strength was achieved, which was over 48% greater than that
of reference concrete after 56 days of curing. The glass had a positive impact because of a
pozzolanic reaction that provided extra binding properties, resulting in denser concrete.
Micro filling of waste glass resulted in denser concrete, which led to more split tensile
strength. It could also be observed that waste glass improved split tensile strength more
effectively than compressive strength. A study also shows that waste glass improves split
tensile strength more effectively than compressive strength due to the improvement of
cement paste strength [42]. It has also been reported that concrete has less split tensile
strength due to lower cement paste strength [4]. Substitution with waste glass improved the
split tensile strength of concrete due to the formation of secondary CSH, which increased
the binding property of cement paste. As for RCA, split tensile strength decreased with
the substitution with RCA due to its rough surface texture and porous nature. Maximum
split tensile strength was achieved at 0% substitution of RCA, and minimum split tensile
strength was achieved at 60% substitution of RCA. That was because of RCA’s physical
properties, which allowed it to absorb more water, resulting in porous concrete with lower
split tensile strength. A study also observed that the split tensile strength of concrete
decreases with the substitution of RCA [9].

Response surface and contour plot for split tensile strength after 28 days of curing are
shown in Figures 11 and 12, respectively. It can be observed from the contour plot that
RCA decreased split tensile strength while WG improved split tensile strength. Contour
plots were used to optimize WG and RCA for split tensile strength. It can be observed that
concrete made with 20% WG and 30% RCA showed split tensile strength (3.0 MPa) that
was approximately equal to the split tensile strength of control (2.87 MPa). Similar doses of
(20% WG and 40% RCA) were also cast and tested in the laboratory after 28 days of curing.
It could be observed that experimental and predicted split tensile strength from the contour
plot were approximately equal, which validated the predicted split tensile strength.
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The correlation between compressive strength and split tensile strength with varying
doses of waste glass and RCA at different days of curing is shown in Figure 13. A strong
correlation existed between compressive strength and split tensile strength with an R2

value greater than 90%.
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The following equation was developed based on experimental tests with different
doses of RCA and WG.

fsp = 0.165 × fc − 0.36 (3)

where
fsp = split tensile strength, fc = compressive strength
Experimental split tensile strength predicted from the contour plot and predicted from

Equation (3) with different doses of waste glass and RCA at 28 days of curing is shown in
Table 5. Furthermore, a regression model for experimental split tensile strength, predicted
from contour plot and Equation (3) with different doses of waste glass and RCA at 28 days
of curing is shown in Figure 14. A strong co-relation existed among experimental split
tensile strength predicted from contour plot and Equation (3), with an R2 value greater
than 90%.
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Table 5. Experimental and predicted split tensile strength.

WG%, RCA% Compressive Strength
from Contour Plot

Experimental Split
Tensile Strength

Split Tensile Strength
from Contour Plot

Split Tensile Strength
from Equation (3)

10, 10 23.0 3.60 3.40 3.43
10, 20 20.5 3.20 3.10 3.02
10, 30 19.5 2.80 2.90 2.85
10, 40 18.5 2.65 2.7 2.69
20, 10 22.5 3.80 3.9 3.35
20, 20 21.0 3.60 3.5 3.10
20, 30 20.5 3.00 3.0 3.02
20, 40 20.0 2.75 2.9 2.94

3.4. Stress-Strain Curve

Figure 15 depicts the stress-strain curve of various waste glass and RCA dosages. The
stress-strain curves for waste glass and RCA both have rising and falling sections, similar
to those of conventional concrete. The tension required to induce the first strain of the
waste glass was larger than that in reference concrete according to the test results. It was
due to the pozzolanic reaction which gave the secondary cementitious compound (CSH).
CSH increased the binding properties of cement paste, hence more stress was required
to initiate strain. Additionally, the stress required to initiate the initial strain increased
due to the micro filling of waste glass, which gave denser concrete. However, in the case
of RCA, the stress required to initiate the initial strain was lower than that of reference
concrete. It was due to the physical nature of RCA (voids), which absorbed more water
from the cement paste and hence some part of cement remained unreactive and formed
weak pockets. Similarly, due to the combined pozzolanic reaction and micro filling of
waste glass, the ultimate stress increased with substitution of waste glass up to 20% and
decreased due to the lack of workability. In the case of RCA, the ultimate stress decreased
with the substitution of RCA. Although waste glass increased ultimate stress considerably,
ultimate strain decreased with the substitution of waste, which resulted in more rigid
concrete (brittle failure), which is not acceptable for any structural member. Therefore, it is
recommended to use some tensile reinforcement (fibers) to improve the tensile capacity
of concrete (ductile failure). In the descending portion of the stress-strain curve, reference
concrete and concrete made with waste were approximately the same. However, in concrete
made with RCA, the descending portion of the stress-strain curve was steeper.
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3.5. Punching Strength of Concrete

Figure 16 shows the punching strength with varying dosages of WG and RCA. Similar
to compressive strength, the punching strength of concrete improved with the substitution
of waste glass up 20% and then decreased due to lack of workability. Maximum punching
strength was observed at 20% substitution of waste glass, and minimum punching strength
was observed at 0% substitution of waste glass. The pozzolanic reaction of waste glass,
which gives secondary cementitious material and micro filling, resulted in a more compact
mass that positively influenced the punching strength of concrete. However, a decrease
in punching strength was observed beyond 20% replacement of waste glass due to lack
of workability, which resulted in more voids in hardened concrete. Additionally, a study
shows that a higher dose of waste glass (30%) results in less strength due to the dilution
effect, which causes an alkali-silica reaction [42]. The amount of calcium hydrates (CH) is
consumed by a chemical reaction with silica present in waste glass, which gives secondary
cementitious material (CSH gel), but at a higher dose of waste glass might be caused by
an alkali-silica reaction due excessive unreactive silica. As for RCA, punching strength
decreased with substitution of RCA as compared to that of control, having minimum
punching strength at 60% substitution of RCA. The physical nature of RCA caused it to
absorb more water, resulting in porous concrete with lower punching strength. The strength
of recycled aggregate concrete has also been observed to have decreased due to unreactive
cement [45]. RCA absorbs water from concrete, leaving no water for the hydration process.
In addition, lack of workability tends to cause more voids in hardened concrete, leading to
lower punching strength.
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Figure 16. Punching strength.

A relative analysis of punching strength concerning 28 days of control concrete punch-
ing strength is shown n in Figure 17. Punching strength at 7 days of curing was 29% and
49% lower than that of reference concrete (28 days control concrete) at 20% substitution of
waste glass and 30% substitution of RCA, respectively. Punching strength at 20% substitu-
tion of waste glass was 15% higher than that of reference concrete and at 20% substitution
of RCA was 10% lower than that of reference concrete at 28 days of curing. Punching
strength at 56 days of curing was 29% higher than that of reference concrete and at 20%
substitution of RCA was approximately equal to that of reference concrete.
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Figure 17. Relative punching strength.

Response surface and contour plot for punching strength after 28 days of curing are
shown in Figures 18 and 19, respectively. It can be observed from the contour plot that
RCA decreased punching strength while WG increased punching strength.

However, concrete made with 20% WG and 40% RCA showed punching strength
(9.1 MPa) that was approximately equal to the punching strength of control (10 MPa), as
shown in Figure 19. Similar doses (40% RCA and 20% WG) were also cast and tested in
the laboratory. It could be observed that experimental punching strength and predicted
punching strength from the contour plot were approximately equal, which validated the
predicted results.
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Correlation between compressive strength and punching strength with varying doses
of waste glass and RCA at different days of curing is shown in Figure 20. A strong
correlation existed between compressive strength and punching strength with an R2 value
approximately equal to 90% (88%). The following equation was developed based on
experimental tests with different doses of RCA and WG.

fpu = 0.463 × fc − 0.207 (4)

where
fpu = punching strength, fc = compressive strength
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Experimental punching strength and punching strength predicted from the contour
plot and Equation (4) with different doses of waste glass and RCA at 28 days of curing are
shown in Table 6. Furthermore, a regression model for experimental punching strength,
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punching strength predicted from the contour plot, and punching strength predicted
from Equation (4) with different doses of waste glass and RCA at 28 days of curing is
shown in Figure 21. A strong co-relation existed among experimental punching strength,
punching strength predicted from the contour plot, and punching strength predicted from
Equation (4), with an R2 value approximately equal to 90%.

Table 6. Experimental and predicted punching strength.

WG%,
RCA%

Compressive Strength
from Contour Plot

Experimental Punching
Strength

Punching
Strength from Contour Plot

Experimental Punching
Strength from Equation (4)

10, 10 23.0 10.24 10.5 10.44
10, 20 20.5 9.88 10.8 9.28
10, 30 19.5 9.4 9.8 8.8
10, 40 18.5 9.1 9.3 8.37
20, 10 22.5 10.3 10.6 10.21
20, 20 21.0 9.5 10.1 9.51
20, 30 20.5 9.2 9.7 9.28
20, 40 20.0 8.8 9.1 9.05
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4. Conclusions

In this research, a step towards sustainable concrete was made by incorporating WG
and RCA. The substitution ratios of WG were 0%, 10%, 20%, and 30% by weight of cement,
and those of RCA were 0%, 20%, 40%, and 60% by weight of coarse aggregate. A detailed
conclusion based on test results is given below.

• As the percentage of WG and RCA increased, the workability of concrete decreased.
It was related to the physical characteristics of RCA and WG, which had a larger
surface area.

• WG did not give a significant improvement in strength in the early days (seven days),
as the pozzolanic reactions proceeded slowly. However, a considerable improvement
in strength was observed at 28 and 56 days of curing.
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• Maximum strength was obtained at 20% substitution of WG. At 28 days of curing,
compressive strength was 27% higher than that of reference concrete, while punching
strength was 29% higher than that of reference concrete.

• RCA lowered the mechanical performance of concrete by absorbing more water from
it, leaving less or no water available for hydration and workability.

• A successful statistical analysis (response surface methodology) predicted various
mechanical properties and optimized WG and RCA. The optimal doses of WG and
RCA (20% WG and 30% RCA) were predicted from the statistical analysis, which
showed compressive strength approximately equal to that of the reference concrete.
Furthermore, the same doses of WG and RCA (20% WG and 30% RCA) were cast and
tested experimentally. It could be observed that the predicted and experimental values
were comparable, which validated the predicted results.

Finally, the overall study demonstrated that RCA could be successfully utilized with
combined substitution of WG without any negative effect on the mechanical performance
of concrete. However, it could be observed that combined substitution of WG and RCA
up to some extent improved the mechanical performance of concrete. However, concrete
is still weak in tension, which results in abrupt failure. Therefore, further research is
recommended with addition of steel fibers or natural fibers (coconut fibers, etc.) to improve
the tensile capacity of concrete.
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