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Abstract

The combination of scanning transmission electron microscopy (STEM) with analytical instruments

has become one of the most indispensable analytical tools in materials science. A set of micro-

scopic image/spectral intensities collected from many sampling points in a region of interest, in

which multiple physical/chemical components may be spatially and spectrally entangled, could be

expected to be a rich source of information about a material. To unfold such an entangled image

comprising information and spectral features into its individual pure components would neces-

sitate the use of statistical treatment based on informatics and statistics. These computer-aided

schemes or techniques are referred to as multivariate curve resolution, blind source separation or

hyperspectral image analysis, depending on their application fields, and are classified as a subset

of machine learning. In this review, we introduce non-negative matrix factorization, one of these

unfolding techniques, to solve a wide variety of problems associated with the analysis of materials,

particularly those related to STEM, electron energy-loss spectroscopy and energy-dispersive X-

ray spectroscopy. This review, which commences with the description of the basic concept, the

advantages and drawbacks of the technique, presents several additional strategies to overcome

existing problems and their extensions to more general tensor decomposition schemes for further

flexible applications are described.

Key words: tensor decomposition, non-negative matrix factorization, scanning transmission electron microscopy, electron energy-
loss spectroscopy, hyperspectral image analysis

Introduction

‘Artificial intelligence (AI)’, ‘machine learning (ML)’, and ‘deep learn-
ing (DL)’ are the keywords of the present special issue of Microscopy.
These terms can be considered to be nested within one another: DL
is a subset of ML, but ML can be a subset of AI, the last of which has
become an umbrella term for any computer program (or a system)

that does something smart. Among these terms, machine learning
is vitally necessary for AI to train the system to become smart by
extracting and summarizing massive training data sets. Needless to
say, in terms of current analytical instruments and apparatus, the aid
of a computer is indispensable for their operation and subsequent
data analysis, and it should thus be considered that any attempts
to introduce technical improvements in analytical science involve

http://creativecommons.org/licenses/by/4.0/


S. Muto and M. Shiga Application of machine learning to EM data analysis 111

strategies that can, to a greater or lesser extent, be recognized as
resorting under AI. On the other hand, ML is defined as the field
of study that enables computers to learn without being explicitly
programmed and is attributed to Arthur Samuel, who coined the
term ‘machine learning’ in 1959 [1]. DL emerged more recently and
belongs to the broader family of machine learning methods based
on artificial neural networks. In this sense, this article focuses on
data processing to extract enhanced information from the originally
observed experimental data sets, a discipline currently often referred
to as ‘informatics’ among ML or DL in the broader sense of the
words.

In this article, the key equation is a simple bilinear matrix equa-
tion:

Y = AX + E (1)

where Y represents experimentally detected signals, such as a two-
dimensional (2D) image or a set of spectra in the field of electron
microscopy, the main topic of interest here. The signals contained in Y
are usually a mixture of (unknown) source signals X and noise E. A is
referred to as an (also unknown) mixing matrix that plays the role of
an instrumental function, filter or interface that mixes the source sig-
nals. Equation (1) provides a common thread in various approaches
for noise removal, model reduction, signal reconstruction, and the
purpose of blind source separation (BSS) is to replace the original
data by a lower dimensional approximate representation obtained
via a matrix or multi-way array factorization or decomposition that
plays a fundamental role in enhancing the data and extracting latent
components. It is, however, not possible to cover all the techniques
that are currently available; thus, this article mainly focuses on
several subsets of machine learning that are applied to solve a wide
variety of problems related to electron microscopy and spectroscopy,
particularly in the field of materials science. The application of ML to
medical/biological fields, some of the most important fields in which
AI has found application, is also beyond the scope of this article and
is considered in other articles in this special issue.

In this article, we attempt to concentrate on physical insights
and an intuitive understanding underlying the ideas of the concepts
and techniques presented here at the cost of mathematical details.
We assume readers to have a good background in elementary linear
algebra at the university level and to be familiar with the principles
of matrix arithmetic, matrix rank and principal component analysis,
based on singular value decomposition by eigenvalue analysis.

Non-negative matrix factorization for

hyperspectral image analysis

A ‘hyperspectral image (HSI)’ refers to a set of spectroscopic data
sampled from a region of interest (ROI) of a specimen with a
small step width by scanning using a probe tip, focused electrons,
laser or infrared beam, which is a rich source of physical/chemical
information of the specimen. The data set is sometimes known as a
‘datacube’, because of its three-dimensional structure, constructed by
two-dimensional spatial coordination together with spectral channels
as an energy or wavelength axis. Among others, we are interested in
spectroscopic data, particularly obtained using scanning transmission
electron microscopy (STEM) and the associated analytical methods
of electron energy-loss spectroscopy (EELS) and energy-dispersive
X-ray spectroscopy (EDXS), as schematically shown in Fig. 1. Each
spectrum recorded from a specific position on the specimen reflects
not only the fundamental physical/chemical states of the material but
also the subtle changes associated with local defects at the particular

location, which may overlap or overlay one another, depending on the
size of the scanning probe and specimen structure. In this respect, it
becomes possible to visualize each physical/chemical state involved as
a 2D spatial distribution map in the specimen by isolating each latent
component spectrum from the datacube obtained. This has been real-
ized by a conventional multiple linear least square (MLLS) fit using
a set of reference (standard) spectra as far as the component spectra
are known and available in a database. The strategy of MLLS fitting,
however, is no longer effective when the data set includes spectral
components associated with unknown and/or hidden features that
may be characterized by an extremely small signal-to-noise ratio. In
spectroscopic data sets, the entries of which are all non-negative, the
technique employed to isolate the constituent components is known
as non-negative matrix factorization (NMF), a particular field among
similar statistically unsupervised machine learning techniques such as
hyperspectral image analysis (HSIA), multivariate curve resolution or
BSS that can solve the aforementioned problem.

Different strategies are required for EDXS and EELS STEM-HSI
because of the different features of their peaks: EDXS data consist of
a number of discrete peaks with less background, whereas EELS data
exhibit non-definite peak profiles with higher background intensity.
In addition, the use of HSI to analyze EDXS data is intended to
separate the different phases embedded in the data and to mine
hidden small phases consisting of different sets of peaks (elements)
with different relative intensities. On the other hand, EELS is typically
used to separate different chemical states of the same element, where
the peak profiles are extensively overlapped. In this respect, EELS
analysis by NMF is more challenging and needs special care to lead
to a physically plausible solution.

A comprehensive survey of models and algorithmic aspects for
the general use of NMF and its various extensions and modifications
has been published [2]. Readers who are interested in this field can
find the mathematical details, many other associated techniques and
algorithms, and the corresponding MATLAB source codes there. In
addition, readers are referred to our GitHub repository where they
would find several useful Python source codes we have developed
and introduce below [3].

Basic concepts of NMF

Referring to Fig. 1, let X ∈ R
Nxy×Nch+ be a data matrix, a simply

expanded 2D matrix from the 3D datacube, where Nxy = Nx × Ny
and R+ is the set of all non-negative real numbers, referring to

Fig. 1. NMF factorizes X into two thin matrices C =
[
c1, . . . , cK

]
∈

R
Nxy×K
+ and S =

[
s1, . . . , sK

]
∈ R

Nch×K
+ , where ck ∈ R

Nxy
+ and

sk ∈ R
Nch+ are column vectors and the number of components K

(a priori unknown; in other words, the number of pure chemical
states, to be determined a posteriori. Further details appear in a
subsequent section.) is much smaller than both Nxy and Nch. Thus,
the factorization model has the same form as Eq. (1):

X = CST + ε, (2)

where the superscript T denotes the matrix (vector) transpose and
ε ∈ R

Nxy×Nch is a matrix of observation noise of which the elements
are statistically independent of each other. In our problem setting, X
is observed, whereas C and S are not observed. The goal of NMF is an
‘inverse problem’ to identify the optimal C and S, given experimental
data X under a suitable noise model ε, as schematically illustrated in
the upper part of Fig. 2.
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Fig. 1. Schematic of STEM-EELS/EDXS HSIA. In this example, two HSI datacubes are concurrently obtained by a single scan of the ROI in the sample.

Fig. 2. Illustration of matrix Eq. (2) (upper row) and its vector form Eq. (3) (bottom row). Entries in each cj vector are reshaped back to the original 2D order,

providing the spatial distribution of spectral component sj.

This NMF model can also be represented as the special form of a
bilinear model as shown in the lower part of Fig. 2:

X =
K∑

k=1

cksT
k + ε. (3)

Thus, we can build an approximate representation of the non-
negative data matrix X as the sum of rank-one non-negative matrices
cksT

k . Equation (3) clearly expresses the NMF model that, given an
experimental data set, is used to search the optimal set of latent
spectral basis (pure components or also endmembers) and its weight
(relative fraction) at each sampling point. Once the solution of Eq.
(2) is obtained, each column vector ck is reshaped to the original 2D
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Nx × Ny matrix form, representing the spatial abundance map of the
spectral basis (signature of a certain chemical state) sk, as shown in
Fig. 2.

ALS algorithm

As discussed in a subsequent section, the solution of Eq. (2) is
not unique and the matter of central concern is how to attain the
desired correct solution under the given constraint conditions. One
of the most unambiguous methods to solve, Eq. (2) is principal
component analysis (PCA), which is based on the singular value
decomposition (SVD) algorithm [4]. PCA successively unfolds the
components in the order of their variance, or the magnitude of the
eigenvalues by SVD, in a way analogous to finding the principal axes
of angular momentum of a rigid body in mechanics [5]. The obtained
matrix S in Eq. (2) is, however, a purely mathematical product,
with each of the column vectors, which are mutually orthogonal,
often providing components with negative entries that make little
physically interpretable sense. Nevertheless, PCA still remains useful
for effectively screening minor components such as observation noise
(unwanted random data) and providing a certain criterion for the
number of significant components included in the data set [6–8]. In
the field of signal processing, several techniques other than PCA, such
as independent component analysis (ICA) [9,10], partial least squares
[11] and canonical correlation analysis [12], are used, each imposing
an additional constraint on the optimizing algorithm that depends on
the nature of the solution specific to the problem of interest. In this
respect, the key characteristic of HSIA that ensures that the solution
is physically meaningful and interpretable is ‘non-negativity’.

The simplest way to solve the standard NMF model (2) is referred
to as the alternating least squares (ALS) algorithm [2]. Unfortunately,
the standard ALS algorithm and its simple modifications can be
relatively slow when solving large-scale problems, often returning
suboptimal solutions, which are quite sensitive with respect to noise.

Estimating the factor matrices C and S in Eq. (2) requires us
to consider a measure to quantify the difference between the data
matrix X and the approximation X̂ = CST. The similarity measure
between X and X̂, also referred to as the distance, divergence or cost
function minimization, depends on the probability distributions of
noise. The simplest and most often used measure is based on the

squared Euclidean distance or Frobenius norm, DF

(
X

∥∥∥CST
)
:

DF

(
X‖ CST

)
= 1

2

∥∥∥X − CST
∥∥∥2

F
. (4)

This measure assumes the Gaussian noise model. The ALS algo-
rithm to minimize the cost function (4) can then be described by the
following update rules, after initializing C randomly (or sometimes
using a specific deterministic strategy):

ST ←
[(

CTC
)−1

CTX
]
+

, (5)

C ←
[
XS

(
STS

)−1
]
+

, (6)

where [x]+ = max [ε0, x] is a half-wave rectifying nonlinear projec-
tion to enforce non-negativity or a positive constraint, and ε0 is set to
zero or a small constant. It should be noted that the cost function (4)
is convex with respect to either the matrix C or S, but not both, and
the ALS method is not guaranteed to converge to a global minimum
and the solution is often not sufficiently accurate. One of the simplest

modifications to escape from local minima by confirming stable
updates during optimization of C or S is referred to as modified ALS
(MALS), where a diagonal weight matrix W ∈ R

K ×R
K is introduced

by adding l2 regularization terms used in a ridge-regression algorithm
[13,14] to the original cost function of ALS. The update rules (5) and
(6) of ALS are now modified as:

ST ←
[(

CTC + WS

)−1 (
CTX + WSST

)]
+

, (7)

C ←
[(

XS + CWC
) (

STS + WC

)−1
]
+

. (8)

This modification allows the ALS updates to be stable against
collinear data. A key feature in the implementation of MALS is weight
adjustment. It is typically desirable to assign high weights in the very
early iterations such that large adjustments are made. The weights
are adjusted according to the difference in magnitude of negative
values in successive iterative cycles between the current and previous
estimates of the factors, a detailed discussion of which can be found
in the literature [13].

The MALS algorithm is simple, relatively fast and the update
rules can easily be modified at each step by imposing additional
constraints, depending on the requirements of the problem of interest.
We have applied the MALS method to solve a wide range of problems
pertaining to materials and have obtained fruitful results particularly
when analyzing the degradation of lithium-ion battery cathode mate-
rials that are subject to many charge-discharge cycles [15–19], probed
by STEM-EELS.

Non-uniqueness problem and initialization of NMF

The NMF method in general does not guarantee a unique solution
(neglecting unavoidable scaling and permutation ambiguities). Con-
sider the quadratic cost function (4) (neglecting the pre-factor):

DF

(
X‖ CST

)
=

∥∥∥X − CST
∥∥∥2

F
=

∥∥∥X − CR−1RST
∥∥∥2

F

=
∥∥∥X − ĈŜT

∥∥∥2

F
. (9)

Although a rotational matrix R can be selected in many ways,

as long as the rotated Ĉ
(

= CR−1
)

and ŜT
(

= RST
)

are non-

negative, the costs are the same. It is sufficient to incorporate a certain
degree of sparsity or smoothness constraints in the objective function
for solving the NMF problem uniquely. This has been extensively
discussed, and additional measures such as closure, unimodality,
selectivity and local rank constraints have been imposed, depending
on the prior information available in each specific problem [2,20].

When no prior information is available, it is helpful to mitigate the
rotational ambiguity issues by normalizing the columns in C and/or
the rows of ST. The columns cj of C = [c1, . . . , ck] are scaled in the
following way:

C ← CDA, where DA = diag
(∥∥c1

∥∥−1
p ,

∥∥c2
∥∥−1

p , . . . ,
∥∥ck

∥∥−1
p

)

p ∈ [0, ∞) . (10)

Extensive empirical testing has led to the recognition that the best
results can be obtained for P = 2, that is, when the columns of C are
normalized to unit l2-norms. This may be justified by the fact that the
mixing matrix should usually contain only a few dominant entries in
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each column, which is emphasized by the normalization to the unit
l2-norm. This normalization for the ALS and MALS algorithms helps
to mitigate numerical instabilities and ill-conditioning, although it
complicates the process of searching for the global minimum. On the
other hand, when normalization is applied to the rows of ST that
contain a single type of EEL spectrum [e.g. near-edge fine structure
(ELNES)] from a single element, normalization to the unit l2-norm
[the spectral intensity (the area subtended by the net spectrum above
the background)] corresponds to normalization by the cross-section
for the electron transition. This allows the interpretation of each
entry in C to be the relative concentration of the corresponding
spectral component at the spatial coordinate. Moreover, to avoid
the rotational ambiguity of NMF, the rows of ST should be sparse
or zero grounded. The sparsity condition mostly holds for STEM-
EDXSS or 3D-AP data sets, as opposed to STEM-EELS data sets,
for which the sparsity condition barely holds. This problem is dis-
cussed in more detail in the next section. On the other hand, the
zero-grounded condition can be easily achieved by removing the
baseline or background from the input data X. Strictly speaking,
the backgrounds in EELS and EDXS convey material information
at the sampling points and are in principle inseparable from the
core electron excitation/emission spectra. The removal of background
signals can sometimes distort the information incorporated therein,
and hence the unfolded spectral profiles are unnaturally biased. This
effect often has serious consequences in practical applications and is
discussed in a later section.

The solution provided by NMF algorithms usually highly depends
on the initial conditions, i.e. its starting values. Poor initialization can
result in slow convergence or entrapment in a local minimum far from
the global minimum and can even lead to an incorrect or irrelevant
solution. The following rule of thumb to obtain a stable optimization
result was proposed [2]:

(i) First, generate R (typically10 or more) initial matrices C and S.
This could be based either on random starts or on the output of
the simplest ALS-NMF algorithm.

(ii) Run a specific NMF algorithm for each set of initial matrices and
for Iinit iterative cycles. As a result, the NMF algorithm provides
R initial estimates of the matrices C(r) and S(r) accordingly.

(iii) Select the estimates corresponding to the lowest value of the
cost function among the R trials as initial values for the final
factorization.

The multi-start initialization thus selects the initial estimates for C
and S to give the steepest decrease in the assumed objective function
D(X||CST) by alternating the steps for checking the convergence
results after a number of initial alternating steps. The initial estimates
C and S, which give the lowest values of D(X||CST) after the alter-
nating steps, are expected to be the most suitable candidates for the
subsequent ALS optimization. The algorithm is generally considered
to be quite efficient when the number of steps exceeds 10.

Hierarchical ALS and soft orthogonality constraint

The standard ALS algorithm can be improved with respect to the con-
vergence rate and performance by imposing additional constraints
such as sparsity and smoothness. The update rules (5) and (6) are
not computationally optimal because for large-scale problems the
matrices C and S are enormous in size, which increases the time
required for the inverse matrix calculation in each iterative step. This
calculation can be avoided by using the hierarchical ALS (HALS)
algorithm, which updates a smaller block of a column vector in C

or S at each update [21,22]. Optimization of the block to minimize
the approximation error can be analytically solved. Then the update
rule is given by

C•k =
[
X(k)S•k

]
+, (11)

S•k =
[
X(k)TC•k

]
+/

∥∥∥∥
[
X(k)TC•k

]
+

∥∥∥∥ , (12)

where C•k and S•k, respectively, are the k-th column of C and S,
X(k) = X − CST + C•kST

•k. The updates can be implemented faster
than ALS under the assumption of K < < Nxy and K < < Nch, which
is a basic assumption of NMF.

The ALS and HALS methods generate sparse matrices for both C
and S. This behavior does not cause any problem for STEM-EDXS
HSIA where both spatial component distributions and their spectra
are sparse and mostly do not overlap with one another. However,
the amplitudes of spectra in STEM-EELS HSI data are non-zero for
most energy loss channels, meaning that the spectra are not sparse,
as mentioned in the previous section. Thus, for STEM-EELS HSI
data, the existing NMFs often generate unnatural decomposition by
biasing decomposed spectra to being sparse [15].

To overcome the above difficulties, we proposed an extended
NMF model that imposes a spatial orthogonal constraint on C [23].
To alleviate the strict constraint of spatial orthogonality, we proposed
the introduction of a weight parameter w for the constraint, known
as a soft-orthogonal (SO) constraint. This optimization for C•k
minimizes the following cost function:

min
C•k

∥∥∥X − CST
∥∥∥2

F
+ w • ξkC(k)TC•k, (13)

where w, 0 ≤ w ≤ 1, is a parameter to adjust the orthogonal
constraint, C(k) = ∑

j �=kC•k and ξk is the Lagrange multiplier for
the exact orthogonal constraint of C. The optimization (13) can
be analytically solved, after which the update can be implemented
by matrix calculations [23]. When w = 1, the optimized C is an
orthogonal matrix in which no chemical components overlap. When
w = 0, the optimized components in C may extensively overlap. The
optimal value of w depends on the situation, such as the spatial
resolution of the data (step width of STEM-HSI) and localization
of chemical states. Thus, the optimal value of w must be chosen
according to the measurement level.

A real EELS data set was acquired from a cross-sectional TEM
sample of a Si diode, prepared by a focused ion beam technique
(Fig. 3a). We measured the HSI data for Si-L2,3. Figure 3a and b
show the expected component construction and reference spectra,
respectively. In this EELS-HSI, the three existing components are
clearly separated spatially, i.e. an orthogonal matrix C would be
expected as the reference distribution. On the other hand, their
spectra are not orthogonal owing to the non-zero intensities with
different peak positions.

Figure 3c shows the decomposition results obtained by NMF
without the SO constraint (upper row: w = 0) and NMF-SO (bottom
row: w = 0.01) with K = 3. The result of using NMF without SO
exhibits an unnatural reduction in the intensity of the spectrum at
110 eV and the component maps generated by NMF are unnaturally
overlapped, which is inconsistent with the results expected on the
basis of Fig. 3c. In contrast, NMF-SO provides correct results that
are almost consistent with Fig. 3c.

We have extensively evaluated our NMF-SO schemes using sev-
eral EELS- and EDXS-HSI data sets and the results demonstrated the
effectiveness of the above-mentioned approach [23,24].
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Fig. 3. (a) ADF-STEM image of cross-sectional sample of a Si diode. (b) Si-L2,3 EEL spectra of the constituent parts in (a). (c) Isolated component spectra and their

spatial maps obtained by applying NMF to STEM-EELS HSI data with w = 0 (upper row) and 0.01 (bottom row), respectively.

Optimization of the number of components

Existing NMFs require the number of spectral components in
advance. Optimizing the number of components using only the
given data is an important practical problem. Maximum likelihood
estimations, which are equivalent to estimations based on minimizing
errors, are ineffective in such cases because they monotonically
increase as the number of components becomes larger, thereby
causing the observed HSI data to experience overfitting. The problem
of overfitting can be avoided by employing a Bayesian estimation [or
maximum a posteriori (MAP) estimation], which introduces a prior
distribution of scale parameters (relevance weights) to constrain
the optimizing parameters [25]. The process whereby only the
important components are chosen is known as automatic relevance
determination (ARD). In general, ARD is performed by assuming
a prior probability distribution that causes sparseness such as an
exponential distribution. Our proposed NMF, which we named
ARD-NMF, assumes that the probability density function of C•k
is an exponential distribution with the scale parameter λk. The
probability density function of λkis assumed by using an inverse
Gamma distribution function with a few hyper-parameters [25]. This
assumption is essentially the same as that of Dobigeon et al. [26]
to generate sparse C and to choose only a small number of vectors.
The principle underlying the ARD implementation is schematically
illustrated in Fig. 4 and the full description is given elsewhere [23].

We applied our proposed ARD-SO-NMF to this EELS-HSI data
set starting with K = 10 and with the SO penalty (w = 0.01). Figure 5
shows the (a) generated component maps, (b) their spectra and (c)
the amplitude of components λk, k = 1, . . . , K. Figure 5c shows that,
even if the initial number of components was large, only the essential

components survived after the optimization. This result demonstrated
that our ARD was able to choose only the essential components,
which are the same as the reference components. The component
distributions generated by ARD-SO-NMF and shown in Fig. 5a do
not overlap; thus, the correct solution is provided.

The ARD-SO-NMF scheme has not yet been fully tested for
detecting very weak signals of which the intensity barely exceeds the
noise level. NMF users are thus advised to crosscheck the conceivable
value of K using a combination of other well-known empirical meth-
ods, such as the standard Scree plot [4] criterion and Malinowski’s
factor indication function [27] based on SVD. The effects of including
noise on the PCA analysis were discussed before [28,29].

Signal subspace sampling preprocess

An alternative and efficient algorithm free from the non-uniqueness
problem is vertex component analysis (VCA), where the C matrix is
assumed to include ‘pure pixels’, which consist of a single spectral
component [30,31]. The VCA algorithm iteratively projects data
onto a direction orthogonal to the subspace spanned by the spectral
components already determined. The new component signature cor-
responds to the extreme of the projection, and the algorithm iterates
until the number of endmembers (spectral components) is exhausted.
The VCA principle is schematically illustrated in Fig. 6.

All spectroscopic techniques in electron microscopy are problem-
atic in that the signals generated by the sample appear strongly
mixed: core-loss spectra in EELS overlap, characteristic X-ray
emission peaks at low energies in EDXS may not be fully separated,
and, more commonly, the electron beam passes through different
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Fig. 4. Conceptual illustration of ARD scheme. Square core matrix D is introduced for ARD optimization, where two additional constraints are imposed on D,

as shown in (i) and (ii). Criterion (i): more appropriate for a more sparse solution. Criterion (ii): more appropriate for a smaller number of non-zero columns

(equivalent to fewer components).

Fig. 5. Result of ARF-SO-NMF (w = 0.01) for Si-L2,3 STEM-EELS-HSI data from silicon diode sample.
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Fig. 6. 2D schematic illustration of key concept of VCA for 2-channel detector:

each experimental point x should be expressed by a linear combination of

latent basis vectors, s1 and s2 (pure components included in the data), which

are supposed to be the outermost points if appropriately projected. The final

basis vectors excluding the scale ambiguity are the points of intersection

between sj and the simplex condition (
∑

jsj=1, sj > 0) line. The VCA algorithm

searches such basis vectors to subtend the triangle including all the data

points, subsequently projected onto the subspace [21].

phases in the sample such that the signal measured at a given pixel
in the measured spectrum image is acquired as the superposition
of overlapped signals. As mentioned above, the solution provided
by VCA is unique if the pure-pixel assumption holds and the non-
negative source spectra are orthogonal or non-overlapping in at
least one channel. This assumption, however, is often not fulfilled
experimentally; consequently, suitable data pre-processing has to be
applied to extract the desired information from the experimental
data.

Spiegelberg et al. [32] developed a novel pre-processing scheme
for VCA named signal subspace sampling (SSS). Although the pure-
pixel assumption is often violated in experimental data, the sec-
ond condition of partial orthogonality can be assumed for cer-
tain signal classes. A strategy toward unique NMF in the absence
of pure pixels in the raw data is to sample the signal subspace
while enforcing non-negativity. The key concept behind this subspace
sampling step is to artificially generate pure pixels: every point in
the signal subspace can be expressed as a linear combination of
the true source components (cf.: i-th vector si in Fig. 6), but the
source components are known to be non-negative and at least par-
tially non-overlapping. In practice, the subspace can be conveniently
accessed by using PCA and sampling can be achieved by randomly
generating artificial scores and saving those that meet the non-
negativity criterion while rejecting the others. In addition to non-
negativity, we assume that the source signals corresponding to the
different phases of the sample differ in at least one peak (but are
otherwise strongly overlapped), which is a natural constraint for X-
ray emission (EDXS) signals. After plotting sufficiently many data
points, one can safely assume that pure source spectra fulfilling
the above conditions are present in the sampled data set. The con-
ventional VCA method can then be used to efficiently extract the
pure source spectra.

In a successful example [32], the SSS + VCA strategy was
applied to the plan-view of an Al/Fe/Si3N4 multilayer and
enabled each single layer to be isolated from the overlapped
STEM-EDXS data set. The same scheme is also applicable
to unmixing strong spectral overlap only in STEM-EELS HSI
data by SSS pre-processing on the abundance C matrix instead
of S [32], because the cost function (9) is symmetric with
respect to C and ST.

A set of geometric data decomposition methods was found to
be effective for application to noisy data sets and this has been
intensively discussed [33].

Extension from matrix to tensor

Modern STEM measurement acquisition platforms allow for several
different signals, such as annular dark-field images, EELS, EDXS and
cathodoluminescence (CL) signals, to be concurrently acquired at
every measured pixel when the electron beam is swept across the ROI
without reducing the scanning speed, as shown in Fig. 1. From a data
processing perspective, the increased information obtained should
clearly yield a more complete picture of the sample, which would
usually be achieved by separately analyzing the data acquired by
different detectors. Because all detectors measure signals from a single
pixel, the spatial structures of the corresponding source components
are likely to be highly correlated. We investigated the way in which
inter-set correlations can be exploited by jointly processing them
using a recent BSS technique, namely tensor decomposition [34] and
data fusion approaches [termed ‘structured data fusion’ (SDF)] [35]
for electron microscopy. This represents an extension of the matrix
factorization (Figs. 2 and 4) explained in the preceding sections to
tensor factorization (as schematically shown in Fig. 7 for a third-
order tensor). The proposed framework, which enables different
signals from multiple detectors to be processed, assigns a different
kind of signal to the entries of the tensor with different indexes. In
addition, the SDF framework allows you to impose additional con-
straint conditions such as assigning fixed values to some components,
correlative coupling between different types of spectroscopic data
[36] and smoothing the spatial distributions of endmembers without
being conscious of the mathematically complicated tensor construc-
tion [37]. The coupling between factorizations and the structure
imposed on the factors can all be chosen freely without any changes
to the solver, the platform of which is provided as a MATLAB toolbox
[38]. Readers can find more useful and intriguing applications of
tensor decomposition to STEM-EDXS/EELS HSIA in the literature
[39–42].

SDF for concurrently obtained EELS and EDXS data

The example system we selected to highlight the use of data
fusion for extracting source components was a coupled high-
angular-resolution electron-channeling X-ray/electron spectro-
scope (HARECXS/HARECES) that was used to analyze the
Li0.2Ni0.7Mn1.6O4 system [39]. A series of EEL and EDXS spectra
were recorded by tilting the sample at different angles. This changed
the weights of the signals of Mn occupying different crystallographic
sites such that the two species could be analyzed separately.
Previously, a tedious procedure was employed to use unmixing to
separate the contributions of the two different Mn species [43].
This procedure determined the extent to which Mn occupied the
two different sites from the HAREXCS data and then solved the
matrix Eq. (2) for the HARECES data by using the occupancies and
theoretical prediction of the transition probabilities for EELS. Here,
we address this source separation problem using SDF.

When the use of SDF is attempted to achieve unmixing, it is
necessary to include additional constraints to improve the results by
minimizing the following matrix function:

DF

(
X‖ CST

)
=

∥∥∥X1 − (C + N) ST
1

∥∥∥2 + λ

∥∥∥X2 − CST
2

∥∥∥2 + γ ‖N‖F,

(14)
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Fig. 7. Schematic illustration of two representative tensor decomposition schemes: canonical polyadic decomposition (CPD) and the Tucker 3 model for a third-

order tensor, which are extensions of Figs. 2 and 5, respectively. If K = J = R, D is a diagonal tensor, and the Tucker 3 model is equivalent to CPD.

where X1 and X2 are experimental EEL and EDXS spectra,
C + N and C are the weights of the signals corresponding
to the EELS and EDXS signal components, respectively, λ and
γ are appropriate weights set according to the significance of
each term, and N expresses weak coupling between the weights
of the EELS and EDXS signals under the same illumination
condition. From a physical point of view, this process directly
enables the common site occupancies and the weakly coupled
electronic transition probabilities for EELS and EDXS, respectively,
to be predicted [39].

The resulting source components are displayed in Fig. 8a. An
excellent resemblance to the reference spectra of Mn2+ and Mn3+
[43] is achieved. Thus, using SDF, we were able to separate the
contributions of Mn into different oxidation states without requiring
reference spectra. Further analysis of the weights of the tilt series
to determine the occupancy at divalent and trivalent sites showed
excellent agreement with the theoretical results [39], as shown in
Fig. 8b.

Pre-edge background in ELNES: to be or not to be

Spectroscopic data usually include background intensities, e.g.
continuous intensities at the low-energy side mainly due to
Bremsstrahlung in EDXS and a smoothly decaying pre-edge
background obeying the power law in EELS. In most cases, the
near-edge fine structure (ELNES) of the core-loss spectrum is of
interest and the pre-edge background would be subtracted in advance
before NMF is applied. Otherwise, the algorithm may isolate many
components related to subtle features included in the background
profile particularly for data with low SNR, because the pre-edge
background comprises the majority of the spectral intensities and its
profile depends on the phase or chemistry at the sampling points.
Pre-processing the data in this manner could always be criticized:

from a statistical point of view, pre-edge background subtraction
creates zero entries in the background region, which imposes an
unnatural bias to the data because the non-negative constraint no
longer makes sense under the condition for which Gaussian noise is
assumed. Whether the background should be subtracted in advance
before the main NMF code is applied therefore remains controversial.
In principle, it is advisable to process the data without subtracting
the background because the background intensities convey physical
information of the sampling points.

On the other hand, particularly in EELS, the pre-edge background
intensity is comparable with or sometimes even larger than the net
core-loss intensity, which results in the NMF solution being partially
biased or more sensitive to background variations rather than to the
genuine spectral fine structure. An example is shown in Fig. 9, where
the two components of O-K ELNES were extracted from the STEM-
EELS-HSI data set of a representative particle of the cathode material
[Li (Mn,Co,Ni)2O3] of a lithium-ion battery (LiB). In this case,
the pre-edge background was subtracted before NMF was applied.
The corresponding abundance maps, which are shown in Fig. 9a,
exhibit the spatial distributions of the pristine, degraded phases and
an additional oxygen component that presumably originates from
the resin in which the particle is embedded. Note that the second
component exhibited a positively biased intensity in the pre-edge
background region owing to the non-negativity constraint. It is not
always obvious where the spectral biases are reflected in abundance
maps.

For this purpose, the descriptor to be minimized was that in Eq.
(15), which is mathematically equivalent to Eq. (14), but the roles of
S and C are interchanged. Thus, the first Euclidian norm includes the
experimental data set without subtracting the background as X1, and
N models the background by imposing the additional constraint of a
smooth and monotonically decaying (e.g. power law) function [40].
The second norm also includes the experimental data but with the
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Fig. 8. Source components recovered using SDF on the coupled HARECXS/HARECES data set. (a) EDXS source spectra and (b) EEL source spectra. (c)

Experimental (estimated by SDF) and theoretical normalized Mn (octahedral site) K-edge intensity of the X-ray pattern as a function of the tilt angle. The

theoretical curve is simulated by assuming tetragonal site occupancy of 0.35, consistent with the conventional analysis result [43].

Fig. 9. Isolated O-K ELNES and spatial map of each component by 3-component NMF analysis of a particle of LIB active cathode material, Li (Mn, Co, Ni)2O4. (a)

Conventional NMF applied to the data with the pre-edge background subtracted. (b) Pre-edge background taken into account in the framework of SDF, based on

Eq. (15).
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background subtracted:

DF

(
X‖ CST

)
=

∥∥∥X1 − (S + N) CT
∥∥∥2 +

∥∥∥X2 − SCT
∥∥∥2 + γ ‖N‖F.

(15)
This time, the O-K ELNES unfolded, as shown in Fig. 9b. It

should be noted that the modified model provided an additional third
significant component other than the pristine and degraded phases.
This component corresponds to the epoxy resin in which the sample
is embedded and is derived from the post-edge background of carbon
and nitrogen extending to the higher energy side and including a
slight amount of oxygen. The unnatural biased spectral intensity no
longer appeared in the pre-edge region.

Another modern data compression method for pre-edge back-
ground subtraction was introduced by Spiegelberg et al. [41].

Special remarks on noise treatment

NMF/NTF finds a set of non-negative matrices C and S by minimizing∥∥∥X − CST
∥∥∥2

such that the residual matrix E in Eq. (2) contains

statistical noise alone. In general, BSS techniques assume Gaussian
and Poisson noise. It should thus be noted that C and S would be
contaminated or irrelevantly biased if the data matrix X contained
systematic noise that was not mathematically assumed in the formu-
lation because the process performs computations on the data as the
sum of signals and statistical noise, as shown in a typical example
in Fig. 9a. EELS, mostly when using a charge-coupled device (CCD)
detector, is supposed to detect read-out noise, photon conversion
noise, gain noise, spike noise and residual signals due to afterglow
other than statistical noise, all of which are overlaid upon each other.
In this respect, NMF users should first screen these systematic noise
sources as a pre-processing step before the main algorithm is applied,
particularly for low SNR data.

NMF effectively screens a certain type of noise pattern besides
the statistical noise: this is known as the video-background sub-
traction problem [44]. The static background of the frames has
a low-rank property because it changes slightly, and the dynamic
foreground can be regarded as sparse components in the frames.
In a similar sense, the regular noise pattern on the CCD chan-
nels, such as the sparse components, can be effectively screened
out by shifting (wobbling) the spectrum on the detector during
SI data acquisition [45] (this can be achieved by using the ‘Spec-
trumWobbler’ script [46] for background processing in the control
software Gatan Microscopy Suite), followed by applying NMF to
the aligned SI data.

Noteworthy is also that the relation between the experimental
SNR and detectability of trace components in PCA is discussed in
[28,29].

Closing remarks

In this review article, we introduced selected HSIA strategies
for unmixing multiband spectral data to separate the data into
their latent pure components and spatial maps. These strategies
are designed to be particularly effective for STEM-EELS/EDXS
HSI data, although the schemes should be widely applicable to
similar spectroscopic data sets such as those generated by 3D
atom probe microscopy, Raman/FTIR microscopy and secondary
ion mass spectroscopy, by flexibly imposing appropriate constraints
depending on the characteristics of the data. We would emphasize

that the provided solution could never be relevant insofar as a
mathematical model such as Eq. (4) may not correctly reflect the data
characteristics. It is thus essential to modify or customize existing
methods or available algorithms, rather than simply applying one
of them as a black box to process your own data. In this respect,
users require deep insight to obtain an approximate impression of
the ‘correct’ solution by developing their own intuitive judgment
criteria and by accumulating solid experience of data analysis. In
this sense, the HSIA schemes should be recognized as convenient
instead of foolproof ‘tools’. Particularly, quantification requires
users to exercise the highest caution and they need to experiment
with multiple methods to crosscheck the consistency and physical
plausibility of the solution.

Recently emerged image/data reconstruction techniques are
able to perform ‘compressive sensing’, in which the proposed
random sampling schemes successfully provide highly accurate
image recovery results from only partial information [47]. The
techniques, which are particularly useful and effective for dynam-
ical time-dependent measurements, reduce the electron dose in
electron-sensitive materials, which is beyond the scope of the
present review.

Information in science should be based on measurements. A
measured value is the projection of reality by using a detector, which
is a convolution of the instrumental function and the true value
plus noise. Ongoing increases in the processing speed and memory
capacity of computers enables increasingly larger amounts of data
to be processed, thereby heralding in the current era of ‘big data’.
However, it would be too convenient to think that AI could be
relied upon for everything, as far as we attempt to unravel the
secrets of nature instead of fighting in the world of games where all
possible candidates or strategies are comprehensively sought within
the specified operational space under clearly defined rules.

Ultimately, machine learning should be considered as being com-
plementary to human abilities; it should be kept in mind that users
should continue their steady efforts to improve the quality of data and
examine intensively whether the solution provided by the computer
corresponds to their physical or empirical intuition without accepting
it uncritically if they really intend obtaining trustable results by
utilizing these tools. It would be the same as putting the cart before
the horse if the development of these useful computer tools would
lead to a gradual decline in human abilities and the knowledge
incessantly accumulated by pioneers’ wisdom and efforts. We would
like to additionally remark here that researchers could expect to
obtain unexpected spinoffs by using this approach to data analysis
that would deepen their fundamental understanding of scientific
measurements, namely to understand the characteristics of noise and
to strive to improve the quality of data.

From an appropriate perspective, the emergence of ‘data-driven
science’ beyond the conventional analysis methods could be envi-
sioned to have transformed from being a historical necessity acceler-
ated by the current trends of various database services and instrumen-
tal automation, the power of which can be superb, if appropriately
utilized. We hope that many researchers in this field could share in its
benefits and that the advice in this article is of assistance.
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