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Aims We aimed to investigate the concordance between heart rate variability (HRV) derived from the photoplethysmographic 
(PPG) signal of a commercially available smartwatch compared with the gold-standard high-resolution electrocardiogram 
(ECG)-derived HRV in patients with cardiovascular disease.

Methods 
and results

We prospectively enrolled 104 survivors of acute ST-elevation myocardial infarction, 129 patients after an ischaemic stroke, 
and 30 controls. All subjects underwent simultaneous recording of a smartwatch (Garmin vivoactive 4; Garmin Ltd, Olathe, 
KS, USA)-derived PPG signal and a high-resolution (1000 Hz) ECG for 30 min under standardized conditions. HRV mea
sures in time and frequency domain, non-linear measures, as well as deceleration capacity (DC) were calculated according 
to previously published technologies from both signals. Lin’s concordance correlation coefficient (ρc) between smartwatch- 
derived and ECG-based HRV markers was used as a measure of diagnostic accuracy. A very high concordance within the 
whole study cohort was observed for the mean heart rate (ρc = 0.9998), standard deviation of the averages of normal-to- 
normal (NN) intervals in all 5min segments (SDANN; ρc = 0.9617), and very low frequency power (VLF power; ρc =  
0.9613). In contrast, detrended fluctuation analysis (DF-α1; ρc = 0.5919) and the square mean root of the sum of squares 
of adjacent NN-interval differences (rMSSD; ρc = 0.6617) showed only moderate concordance.

Conclusion Smartwatch-derived HRV provides a practical alternative with excellent accuracy compared with ECG-based HRV for global 
markers and those characterizing lower frequency components. However, caution is warranted with HRV markers that pre
dominantly assess short-term variability.

* Corresponding author. Tel: +43 512 504 25621, Fax: +43 512 504-25622, Email: axel.bauer@i-med.ac.at
© The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits 
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-0190-5958
https://orcid.org/0000-0001-5251-6971
https://orcid.org/0000-0002-4532-5533
https://orcid.org/0000-0002-1356-2171
https://orcid.org/0000-0002-7700-1357
https://orcid.org/0000-0001-9201-8555
mailto:axel.bauer@i-med.ac.at
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/ehjdh/ztad022


156                                                                                                                                                                                             F. Theurl et al.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Graphical Abstract

STEMI cohort
n = 104

STROKE cohort
n = 129

CONTROL cohort
n = 30

signal processing 

0 1 2 3 4

0 1 2 3 4

ECG-derived HRV 
parameters

Smartwatch-derived 
HRV parameters

Concordance between ECG-derived and smartwatch-derived HRV 
parameters is excellent for low-frequency and global parameters, 
but only moderate for high-frequency metrics

Patients
n = 263

Simultaneous ECG and smartwatch- 
derived PPG signal recording

   Conclusion: Smartwatch-derived HRV parameters provide a practical alternative with sufficient accuracy compared to ECG-
   based HRV for global markers and those characterizing lower frequency components. However, caution is warranted with 
   HRV markers that primarily assess short-term variability. 

   Key Question: Can HRV parameters derived from the PPG signal of a commercially available smartwatch provide sufficient
   accurarcy compared to ECG-derived markers in patients with cardiovascular disease? 

SDANN [ms]

HF power [ms²]

rMSSD [ms]

VLF power [ms²]

Created with BioRender.com

Keywords Heart rate variability • Deceleration capacity • Smartwatch • Wearables

Introduction
Heart rate variability (HRV) reflects the variation of heartbeat intervals 
and is an established non-invasive tool to assess the functional status of 
the cardiac autonomic nervous system.1 Dysfunction of the autonomic 
nervous system, often characterized by sympathetic overactivity and 
vagal withdrawal, plays a key role in the pathogenesis of various cardio- 
and cerebrovascular diseases and is therefore associated with an im
paired prognosis.2,3 Accordingly, HRV measures have been proposed 
to predict risk in patients with cardiovascular diseases, including myo
cardial infarction, chronic heart failure, diabetes mellitus, ischaemic 
stroke, and others.4–7

Starting from the traditional standard HRV measures in the time and 
frequency domain, a variety of non-standard measures8 have been de
veloped, including, among others, markers of short-term complexity,9

entropy,10 and Poincare’ plot analysis,11 deceleration capacity (DC),12

and heart rate turbulence.13 Although some of these measures have 
shown promising results as risk predictors in large clinical studies, 
HRV has received little adoption in clinical practice so far.

Even a 5 min electrocardiogram (ECG) recording allows HRV ana
lysis.1 For the purpose of risk prediction, however, HRV analysis is usu
ally performed on longer ECG recordings, especially if HRV parameters 
are assessed that capture the lower-frequency components of HRV. 
This may limit the applicability of HRV in daily life, especially when 
HRV is intended to be used as a continuous monitoring tool in an out
patient setting. With certain limitations, HRV can also be calculated 

from photoplethysmographic (PPG) pulse-wave recordings.14 The in
creasing penetration of wearables with integrated PPG sensors in the 
population could therefore make PPG-based HRV analysis using com
mercially available smart devices a promising future approach. Two 
small studies in healthy populations demonstrated the general feasibility 
of smartwatch-derived HRV markers.15,16 However, the accuracy of 
PPG-based HRV derived from a smartwatch in larger populations suf
fering from cardio- or cerebrovascular diseases who might benefit from 
continuous risk monitoring is unknown.

Therefore, the aim of this work was to determine the accuracy of 
standard and non-standard HRV markers calculated from the PPG re
cordings of a commercially available smartwatch compared with 
ECG-derived HRV metrics in a relevant number of patients with cardio- 
and cerebrovascular diseases.

Methods
Study design and participants
We conducted a prospective, observational, single-centre study to evaluate 
the concordance of standard and non-standard HRV markers measured by 
a commercially available smartwatch compared with a standard, high- 
resolution ECG recording.

The study included three different cohorts presenting to our cardiologic 
outpatient clinic between June 2021 and July 2022: patients after 
ST-elevation myocardial infarction (STEMI cohort), patients after ischaemic 
stroke (STROKE cohort), and subjects without known structural 
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cardiovascular disease (CONTROL cohort). The study was approved by 
the local ethics committee in Innsbruck, Austria. All participants provided 
written informed consent.

Inclusion criteria for the STEMI cohort were patients presenting with 
their first STEMI treated with primary percutaneous coronary intervention 
within 24 h of symptom onset. Inclusion criteria for the STROKE cohort 
were patients suffering from a computed tomography– or magnetic reson
ance imaging–confirmed acute ischaemic stroke with symptom onset within 
30 days prior hospital admission. The CONTROL cohort included subjects 
without known history of manifest structural cardiovascular disease. 
General inclusion criteria were age ≥18 years and presence of sinus rhythm. 
Subjects with recordings with frequent premature ventricular beats (>10% 
of total beats) or low quality were excluded (Figure 1).

Recordings and signal processing
All subjects underwent simultaneous ECG and PPG recording over 30 min. 
Recordings were made under standardized conditions in supine position 
and with spontaneous breathing. External stimuli (noise, etc.) were reduced 
to a minimum and patients were instructed to relax.

ECGs were recorded in Frank lead configuration (orthogonal, XYZ) 
using the Octal Bio Amp (ADInstruments, Dunedin, New Zealand) 

connected to the PowerLab 16/35 (ADInstruments, Dunedin, New 
Zealand) with a sampling rate of 1 kHz. The detection of QRS complexes 
was done using a Pan Tompkins–based algorithm17 to obtain successive 
beat-to-beat intervals for each recording. All beat annotations were 
checked by an experienced technician and corrected, if necessary. In par
ticular, ectopic beats were eradicated according to current measurement 
standards.1 Exclusion of noisy segments was not necessary, as detection 
of QRS complexes was possible in all segments. ECG signal processing 
was done using a customized software (SMARTlab 1.5) developed with 
MATLAB (The MathWorks Inc., Natick, MA, USA). PPG signals were re
corded using the PPG sensor of a Garmin vivoactive 4® smartwatch 
(Garmin Ltd, Olathe, KS, USA) worn by the subjects on the right arm. 
Proper fit of the smartwatches was checked by an experienced study 
nurse. Beat-to-beat intervals were calculated automatically using the built-in 
PPG signal processing software18 without manual correction. Data were 
transferred to the signal processing unit by a customized Bluetooth 
interface.

Heart rate variability assessment
For all analyses, an adaptive threshold filter19 was applied to the ECG- and 
PPG-based series of heartbeat intervals.

Figure 1 Consort diagram.
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Standard HRV measures in time and frequency domain were calculated 
according to the Task Force of the European Society of Cardiology and 
the North American Society of Pacing Electrophysiology.1 Time domain 
measures included mean heart rate, the standard deviation of 
normal-to-normal (NN) intervals (SDNN), the standard deviation of the 
averages of NN-intervals in all 5 min segments (SDANN), HRV triangular 
index (HRVi), and the square mean root of the sum of squares of adjacent 
NN interval differences (rMSSD). Frequency-domain measures included the 
powers in the very low frequency (VLF; 0.0033–0.04 Hz), low frequency 
(LF; 0.04–0.15 Hz), and high frequency (HF; 0.15–0.4 Hz) ranges. In add
ition, the HRV power contents in arbitrary overlapping segments of 
0.01 Hz width were calculated from 0.01 to 0.4 Hz to assess association be
tween targeted frequency and respective concordance.

Non-linear HRV metrics included detrended fluctuation analysis (DF-α1 
and DF-α2) and Poincaré plots with calculated longitudinal and transversal 
standard deviation (SD1 and SD2).9,11

DC was calculated according to previously published technologies using 
phase-rectified signal averaging (PRSA).12 In principle, heartbeat segments 
around instances of heart rate decelerations are rectified and averaged to ob
tain the so-called PRSA signal. The central part of the PRSA signal is quantified 
by Haar wavelet analysis. The PRSA algorithm allows several adjustments, 
such as varying the number of consecutive beat-to-beat intervals used to de
fine heart rate decelerations. In the present study, we used two previously 
validated configurations: t = 1 (DCt1)

12 and t = 4 (DCt4).
20

The calculation of all markers was done in CRAN R version 4.1.2 (R 
Foundation for Statistical Computing, Vienna, Austria). Rodriguez-Linares 
et al.’s package RHRV21 was used to calculate standard HRV, DF-α1 and 
DF-α2, as well as SD1 and SD2. For the calculation of DC, a customized 
script developed by the authors was used.

Statistical analyses
Continuous data are presented as median (interquartile range) and com
pared using the Wilcoxon–Mann–Whitney rank sum test or as mean 
(standard deviation) and compared using t-test, as appropriate. 
Categorical data are summarized as numbers (frequencies; %) and com
pared using the χ2 test. Concordance between PPG- and ECG-derived me
trics was assessed using Lin’s concordance correlation coefficient (ρc), 
intraclass correlation coefficient (ICC; two-way mixed effects model), 
mean absolute error (MAE), mean absolute percentage error (MAPE), 

and Bland–Altman plots with calculated bias and limits of 
agreement (LoA). The ICC was interpreted according to previous recom
mendations, with values <0.5, 0.5–0.75, 0.76–0.9, and >0.9 being indicative 
of poor, moderate, good, and excellent reliability, respectively.22 In addition, 
HRV parameters were categorized into preserved and depressed HRV. The 
25th percentile of each ECG-based HRV metric was used as a cut-off value. 
Cohen’s kappa values were calculated to assess agreement, with kappa va
lues of <0.2, 0.2–0.4, 0.41–0.6, 0.61–0.8, and >0.81, indicating slight, fair, 
moderate, substantial, and almost perfect agreement.23 The correlation be
tween powers in spectral frequencies and Lin’s concordance correlation 
coefficient was assessed using Spearman’s rank correlation coefficient (r). 
For all analyses, a two-sided P-value <0.05 was considered statistically sig
nificant. Statistical analyses and plots were created using CRAN R version 
4.1.2 (R Foundation for Statistical Computing, Vienna, Austria).

Results
Of the 282 subjects undergoing simultaneous ECG and PPG recordings, 
263 subjects met inclusion criteria and were enrolled (Figure 1). Of 
these, 104 had STEMI, 129 had stroke, and 30 belonged to the 
CONTROL cohort. Of the overall cohort, median age was 61 (IQR 
52–71) years and 71 (27%) were females. The median recording length 
was 32.1 (IQR 32.1–32.5) min. In the STEMI and STROKE cohorts, re
cordings were performed 3 (IQR 3–4) days and 5 (IQR 4–8) days after 
the index events, respectively. Table 1 shows the characteristics of the 
study cohorts. Descriptive statistics of ECG- and smartwatch-derived 
HRV metrics are depicted in Table 2. HRV measures were significantly 
lower in the STEMI and STROKE cohorts compared with the 
CONTROL cohort (P < 0.05 for all, except for DF-α2). Poincare plots 
for each of the three cohorts are displayed in Supplementary material 
online, Figure S1.

Concordances between ECG- and PPG-derived HRV metrics are 
shown in Figure 2 and Supplementary material online, Table S1. 
Highest concordances were observed for mean heart rate (ρc =  
0.9998), SDANN (ρc = 0.9617), VLF power (ρc = 0.9613), and SD2 
(ρc = 0.9523). In contrast, SD1 (ρc = 0.6617), rMSSD (ρc = 0.6617), 
and DF-α1 (ρc = 0.5919) showed the lowest concordances. For HF 
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Table 1 Baseline characteristics

Total (n = 263) STEMI cohort (n = 104) STROKE cohort (n = 129) CONTROL cohort (n = 30)

Age (years) 61 (52–71) 59 (52–64) 67 (57–75) 44 (26–58)

Sex

Male 192 (73%) 86 (83%) 90 (70%) 16 (53%)
Female 71 (27%) 18 (17%) 39 (30%) 14 (47%)

BMI (kg/m2) 25.6 (23.4–28.2) 26.2 (24.1–28.7) 25.6 (23.7–28.1) 22.9 (21.1–25.0)

History of stroke 130 (49%) 1 (1%) 129 (100%) 0 (0%)
Ischaemic heart disease 130 (49%) 104 (100%) 26 (20%) 0 (0%)

History of myocardial infarction 118 (45%) 104 (100%) 14 (5%) 0 (0%)

Hypertension 153 (58%) 57 (55%) 91 (71%) 5 (17%)
Diabetes mellitus 40 (15%) 14 (13%) 26 (20%) 0 (0%)

Dyslipidaemia 195 (74%) 93 (89%) 95 (74%) 7 (23%)

Chronic kidney disease 16 (6%) 5 (5%) 11 (9%) 0 (0%)
COPD 10 (4%) 4 (4%) 6 (5%) 0 (0%)

PAD 6 (2%) 2 (2%) 4 (3%) 0 (0%)

LVEF (%) 56 (49–60) 50 (43–56) 59 (56–62) —
NT-proBNP (ng/L) 678 (255–1460) 982 (542–1942) 157 (76–315) —

Continuous data as median (IQR); categorical data as proportions (%). 
BMI, body mass index; COPD, chronic obstructive pulmonary disease; LVEF, left ventricular ejection fraction; PAD, peripheral artery disease.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad022#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad022#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad022#supplementary-data
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power, SD1, rMSSD, and DF-α1 concordances were lower in STEMI 
and STROKE cohorts compared with controls. For all other markers, 
concordances were similar throughout the three cohorts. Intraclass 
correlation coefficients ranged from 0.6318 for DF-α1 to 0.9998 for 
mean heart rate (see Supplementary material online, Table S1). 
Agreement was found to be excellent for 7 (50%), good for 3 (21%), 
moderate for 4 (29%), and poor for none of the markers. Figure 3 dis
plays Bland–Altman plots and Supplementary material online, Figure S2
correlation plots for all parameters. No systematic deviation could be 
observed with biases close to zero for all analyses. Cohen’s kappa values 
for distinction between preserved and depressed HRV are listed in 
Supplementary material online, Table S2. Almost perfect agreement 
was found for VLF and SD2, while DCt4, SDNN, SDANN, HRVi, and 
DF-α2 exhibited substantial agreement. On the contrary, only slight 
agreement was found for rMSSD and SD1.

Additionally, concordance between ECG- and PPG-derived power 
content in arbitrary overlapping frequency bands were calculated, to 
evaluate a possible relationship between HRV spectral frequency and 
respective concordance. As shown in Figure 4, an inverse relationship 
between HRV spectral frequency and concordance between ECG- 
and PPG-derived HRV metrics was observed (r = −0.94, P < 0.0001). 
This trend was apparent in all three cohorts.

Discussion
The results of our study show that HRV measures obtained from the 
PPG signals of a commercially available smartwatch can have high agree
ment with those derived from high-resolution ECGs in patients with 
cardio- and cerebrovascular diseases as well as controls. However, 
this applies only to measures that either reflect global variability or 
quantify variability in the low frequency ranges. Lower concordance, 

especially in disease, is shown by HRV markers that quantify short-term 
variability in the higher frequency range.

Two previous studies compared smartwatch-derived HRV markers 
with ECG-derived markers. Hernando et al.15 investigated the validity 
of the Apple Watch to estimate several time- and frequency-domain 
HRV measures in 20 healthy subjects. Reported concordance correl
ation coefficients on a beat-to-beat level were as high as 0.989, indicat
ing excellent agreement. In contrast, Miller et al.16 reported conflicting 
results when investigating the validity of HRV assessment by 6 different 
wearable devices, including 3 smartwatches, in 53 healthy subjects. 
Intraclass correlation coefficient in one of the 3 smartwatches studied 
(Garmin Forerunner®) was as low as 0.41 and 0.24 for estimating mean 
heart rate and rMSSD, respectively, indicating poor agreement. On the 
contrary, ICC for the 2 other smartwatches investigated were as high as 
0.96 and 0.67 for the Apple Watch® and 0.93 and 0.65 for the Polar 
Vantage®. The results of our study (ICC > 0.99 and 0.69 for heart 
rate and rMSSD, respectively) were similar to those reported in the 
study by Miller for Apple Watch® and Polar Vantage®. Our study, 
however, differs from the aforementioned studies not only by a 
much larger sample size but also by several important other aspects. 
Patients in our study were significantly older (61 (IQR 52–71) years 
vs. 25.4 ± 5.9 years) and suffered from cardio- and cerebrovascular dis
eases. Since HRV may be impaired in cardiovascular disease, it is import
ant to investigate the concordance between two HRV measurement 
modalities in these patients. And indeed, our results suggest that the 
agreement of smartwatch- and ECG-based HRV reflecting short-term 
variability is lower in patients after infarction or stroke compared with 
control subjects. Finally, HRV metrics in previous studies were limited 
to traditional HRV metrics, while our study evaluated a broader spec
trum of HRV measures, including markers of short-term complexity, 
Poncairé plot analysis, and DC.

Figure 2 Agreement between ECG-derived and smartwatch-derived HRV metrics.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad022#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad022#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztad022#supplementary-data
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Basically, inaccuracies between smartwatch- and ECG-derived 
HRV markers can arise for several reasons. First, ECG and PPG meas
ure different physiological signals with electrical activity and pulse 
waves, respectively. Based on the influence of various factors such 
as arterial stiffness and blood pressure on the pulse transit from the 
heart to the measurement site, practical consequences of HRV ana
lysis were investigated in healthy volunteers already 30 years ago.24

Thereby physiological discordances in pulse-wave-derived HRV ana
lysis were described, affecting primarily the HF spectra. The same 
phenomena can now be observed three decades later in the results 

of our study in the new setting of wearable smart devices. Second, in
accuracies could be due to inaccurate peak detection. QRS morph
ology is almost identical within an ECG recording, and due to the 
R-peak’s steep slope, its detection is accurate within a few millise
conds. On the contrary, peak detection within the PPG signal is lim
ited by the variability and shallower slope of the signal compared to 
the ECG. Due to methodological reasons, beat annotations in the 
ECG signal could be visually inspected and corrected manually, while 
peak positions determined by the built-in algorithm of the smart
watch could not be revised. Third, some of the differences may be 
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HF power [ms²]LF power [ms²]

VLF power [ms²]
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Figure 3 Bland–Altman plots with calculated bias (dashed black line) and limits of agreement (dashed grey lines) for mean heart rate (A), DCt1 (B), 
DCt4 (C ), SDNN (D), SDANN (E), HRVi (F ), rMSSD (G), VLF power (H ), LF power (I ), HF power (J ), SD1 (K ), SD2 (L), DF-α1 (M ), and DF-α2 (N ).
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due to inaccuracies of the smartwatch’s PPG sensor itself, caused by 
contact errors, lower sampling frequency, and others. Although these 
sources of error could affect all evaluated HRV markers, their influ
ence on the respective concordance varies substantially. Markers re
flecting short-term variability in the higher frequency ranges depend 
on accurate measurement of each single beat and are therefore 
more susceptible to single missing or inaccurate values. In contrast, 
markers quantifying variability in lower frequency ranges are more ro
bust to these influences, resulting in generally excellent agreement. 
Therefore, these markers seem more promising for future implemen
tation in smartwatch-based HRV technologies.

The implementation of HRV into commercially available wearables 
might have important clinical implications as it may extend the use of 
HRV to the outpatient setting and, in perspective, enable the vision of 

continuous risk assessment. This could benefit patients with chronic 
diseases and dynamic disease progression such as heart failure, myo
cardial infarction, or ischaemic heart disease, where early intervention 
in the subclinical stage is crucial. However, the results of our study 
show that the selection of the right parameter is crucial for this pur
pose. According to our results, clinical implementation of 
smartwatch-derived HRV should focus on low-frequency and global 
variability parameters, while caution should be exercised with high- 
frequency parameters. However, for the goal of risk stratification in 
cardiovascular patients, this does not imply a significant limitation. 
Numerous clinical studies could demonstrate high prognostic values 
for markers SDNN,25 SDANN,5 VLF,25 LF,25 DF-α2,26 and DC,12

for which good agreements were found in our study. However, future 
studies need to show which of these markers—either alone or in 

A B

C D

Figure 4 Concordance as a function of target frequency in HRV power spectra: concordance between ECG-derived and smartwatch-derived power 
content in arbitrary overlapping segments of 0.01 Hz width for all participants (A) as well as STEMI cohort (B), STROKE cohort (C ), and CONTROL 
cohort (D) alone. r, Spearman’s rank correlation coefficient; ρc, Lin’s concordance correlation coefficient.
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combination—are best suited for smart-device-based continuous risk 
assessment.

The limitations of our study should be recognized. First, this study 
does not reflect a real-life scenario, since recordings were performed 
under standardized conditions in supine position at rest and the proper 
fit of the smartwatches was checked by an experienced study nurse. 
Thus, motion artefacts, contact errors, and external stimuli were re
duced to a minimum and algorithms used in this study cannot be un
modified applied to data from real-life settings. Second, recordings 
were limited to 30 min. The predictive value of most HRV markers is 
better validated for longer recordings. Third, patients with conditions 
other than sinus rhythm and frequent premature complexes were ex
cluded, which may limit the clinical use of HRV. For exploratory pur
pose concordance analysis without exclusion of recordings with 
multiple ectopic beats is depicted in Supplementary material online, 
Table S3. Fourth, the study examined PPG signals originating from 
only one smartwatch manufacturer. Although PPG signals from devices 
of different manufacturers are likely comparable, confirmation is 
needed on this.

Conclusions
In summary, our study provides sufficient evidence that calculation 
of HRV markers from a smartwatch’s PPG signal is feasible in resting 
conditions. The concordance between smartwatch-derived and high- 
resolution ECG-derived HRV is excellent for low-frequency para
meters but only moderate for high-frequency metrics, especially in 
patients with known cardio- or cerebrovascular diseases. Future studies 
are needed to validate these results in real-life settings. However, only 
prospective clinical studies will be able to prove the added value of a 
smartwatch-based HRV assessment.
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