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Abstract How phenotypically distinct states in isogenic cell populations appear and stably co-

exist remains unresolved. We find that within a mature, clonal yeast colony developing in low

glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and

experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a

uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity

state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells

in the colony produce and provide a resource, which we identify as trehalose. Above threshold

concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-

organized system establishes, where cells in this new state are sustained by trehalose consumption,

which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work

suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-

organize into structured assemblies in complimentary, specialized states.

Introduction
During the course of development, groups of isogenic cells often form spatially organized, interde-

pendent communities. The emergence of such phenotypically heterogeneous, spatially constrained

sub-populations of cells is considered a requisite first step towards multicellularity. Here, clonal cells

proliferate and differentiate into phenotypically distinct cells that stably coexist, and organize spa-

tially with distinct patterns and shapes (Newman, 2016; Niklas, 2014). Through such collective

behavior, groups of cells can maintain orientation, stay together, and specialize in different tasks

through the division of labor, while remaining organized with intricate spatial arrangements (Acker-

mann, 2015; Newman, 2016). In both eukaryotic and prokaryotic microbes, such organization into

structured, isogenic but phenotypically heterogeneous communities, is widely prevalent, and also

reversible (Ackermann, 2015). Such phenotypic heterogeneity within groups of clonal cells enables

several microbes to persist in fluctuating environments, thereby providing an adaptive benefit for

the cell community (Wolf et al., 2005; Thattai and van Oudenaarden, 2004).

A well studied example of spatially organized, phenotypically heterogeneous groups of cells

comes from the Dictyostelid social amoeba, which upon starvation transition from individual protists

to collective cellular aggregates that go on to form slime-molds, or fruiting bodies (Bonner, 1949;

Du et al., 2015; Kaiser, 1986). Indeed, most microbes show some such complex, heterogeneous

cell behavior, for example in the extensive spatial organization within clonal bacterial biofilms and

swarms (Kearns et al., 2004; Kolter, 2007), or in the individuality exhibited in Escherichia coli popu-

lations (Spudich and Koshland, 1976). Despite its popular perception as a unicellular microbe, natu-

ral isolates of the budding yeast, Saccharomyces cerevisiae, also form phenotypically

heterogeneous, multicellular communities (Cáp et al., 2012; Koschwanez et al., 2011; Palková and
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Váchová, 2016; Ratcliff et al., 2012; Váchová and Palková, 2018; Veelders et al., 2010; Wloch-

Salamon et al., 2017). However, despite striking descriptions on the nature and development of

phenotypically heterogeneous states within groups of cells, the rules governing the emergence and

maintenance of new phenotypic states within isogenic cell populations remain unclear.

Current studies emphasize genetic and epigenetic changes that are required to maintain pheno-

typic heterogeneity within a cell population (Ackermann, 2015; Sneppen et al., 2015). In particular,

many studies emphasize stochastic gene expression changes that can drive phenotypic heterogene-

ity (Süel et al., 2007; Ackermann, 2015; Balázsi et al., 2011; Blake et al., 2003). Further, groups of

cells can produce adhesion molecules to bring themselves together (Halfmann et al., 2012;

Halme et al., 2004; Octavio et al., 2009; Váchová and Palková, 2018), or support possible co-

dependencies (such as commensal or mutual dependencies on shared resources) within the popula-

tions (Ackermann, 2015). Such studies now provide insight into why such heterogeneous cell groups

might exist, and what the evolutionary benefits might be. However, an underlying biochemical logic

to explain how distinct, specialized cell states can emerge and persist in the first place is largely

absent. This is particularly so for isogenic (and therefore putatively identical) groups of cells in seem-

ingly uniform environments. In essence, are there simple chemical or physical constraints, derived

from existing biochemical rules and limitations, that explain the emergence and maintenance of het-

erogeneous phenotypic states of groups of clonal cells in space and over time?

Contrastingly, a common theme occurs in nearly all described examples of phenotypically hetero-

geneous, isogenic groups of cells. This is a requirement of some ‘metabolic stress’ or nutrient limita-

tion that is necessary for the emergence of phenotypic heterogeneity and spatial organization,

typically in the form of metabolically inter-dependent cells (Ackermann, 2015; Campbell et al.,

2016; Cáp et al., 2012; Johnson et al., 2012; Liu et al., 2015). This idea has been explored experi-

mentally, where approaches that systems-engineer metabolic dependencies between non-isogenic

cells can result in interdependent populations that constitute mixed communities (Campbell et al.,

2016; Campbell et al., 2015; Embree et al., 2015; Wintermute and Silver, 2010). These findings

suggest that biochemical constraints derived from metabolism may determine the nature of pheno-

typic heterogeneity, and the spatial organization of cells in distinct states within the population.

Therefore, if we can understand what these biochemical constraints are, and discern how metabolic

eLife digest Under certain conditions, single-celled microbes such as yeast and bacteria form

communities of many cells. In some cases, the cells in these communities specialize to perform

specific roles. By specializing, these cells may help the whole community to survive in difficult

environments. These co-dependent communities have some similarities to how cells specialize and

work together in larger living things – like animals or plants – that in some cases can contain trillions

of cells.

Research has already identified the genes involved in creating communities from a population of

identical cells. It is less clear how cells within these communities become specialized to different

roles. The budding yeast Saccharomyces cerevisiae can help to reveal how genetic and

environmental factors contribute to cell communities.

By growing yeast in conditions with a low level of glucose, Varahan et al. were able to form cell

communities. The communities contained some specialized cells with a high level of activity in a

biochemical system called the pentose phosphate pathway (PPP). This is unusual in low-glucose

conditions. Further examination showed that many cells in the community produce a sugar called

trehalose and, in parts of the community where trehalose levels are high, cells switch to the high

PPP state and gain energy from processing trehalose.

These findings suggest that the availability of a specific nutrient (in this case, trehalose), which

can be made by the cells themselves, is a sufficient signal to trigger specialization of cells. This

shows how simple biochemistry can drive specialization and organization of cells. Certain infections

are caused by cell communities called biofilms. These findings could also contribute to new

approaches to preventing biofilms. This knowledge could in turn reveal how complex multi-cellular

organisms evolved, and it may also be relevant to studies looking into the development of cancer.
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states can be altered through these constraints, this may address how genetically identical cells can

self-organize into distinct states.

In this study, using clonal yeast cells, we experimentally and theoretically show how metabolic

constraints imposed on a population of isogenic cells can determine the production, accumulation,
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Figure 1. Cells within S.cerevisiae colonies exhibit ordered metabolic specialization. (A) Low glucose is required for rugose colonies to develop. The

panel shows the morphology of mature yeast colonies in rich medium, with supplemented glucose as the sole variable. Scale bar: 2 mm. (B)

Reconstructed bright-field images of a mature wild-type colony. Within the colony, a network of dark and bright regions is clearly visible, as classified

based purely on optical density. We classify the cells in the dark region as dark cells, and in the peripheral light region as light cells. Scale bar: 2 mm.

(C) Spatial distribution of mCherry fluorescence across a colony, indicating the activity of (i) a reporter for hexokinase (HXK1) activity, or (ii) a

gluconeogenesis dependent reporter (PCK1), in two different colonies. The percentage of fluorescent cells (in isolated light and dark cells from the

respective colonies) were also estimated by flow cytometry, and is shown as bar graphs. Scale bar: 2 mm. Also see Figure 1—figure supplement 1A–B

and Figure 1—figure supplement 2A for more information. (D) Western blot based detection of proteins involved in gluconeogenesis (Fbp1p and

Pck1p), or associated with increased gluconeogenic activity (Icl1p), in isolated dark or light cells. The blot is representative of three biological replicates

(n = 3). Also see Figure 1—figure supplement 2B for more information. (E) Comparative steady-state amounts of trehalose and glycogen (as

gluconeogenesis end point metabolites), in light and dark cells (n = 3). Statistical significance was calculated using unpaired t test (*** indicates

p<0.001) and error bars represent standard deviation.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Gluconeogenesis activity is spatially restricted.

Figure supplement 2. Gluconeogenesis activity is spatially restricted.
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and utilization of a specific, shared resource. The selective utilization of this resource enables the

spontaneous emergence and persistence of cells exhibiting a counter-intuitive metabolic state, with

spatial organization. These metabolic constraints create inherent threshold effects, enabling some

cells to switch to new metabolic states, while restraining other cells to the original state which produ-

ces the resource. This thereby drives the overall self-organization of cells into specialized, spatially

ordered communities. Finally, this group of spatially organized, metabolically distinct cells confer a

collective growth advantage to the community of cells, rationalizing why such spatial self-organiza-

tion of cells into distinct metabolic states benefits the cell community.

Results

Cells within S. cerevisiae colonies exhibit ordered metabolic
specialization
Using a well-studied S. cerevisiae isolate as a model (Reynolds and Fink, 2001), we established a

simple system to study the formation of a clonal colony with irregular morphology. On 2% agar

plates containing a complex rich medium with low glucose concentrations, S. cerevisiae forms

rugose colonies with distinct architecture, after ~5–6 days (Figure 1A). Such colonies do not form in

the typical, high (1–2%) glucose medium used for yeast growth (Figure 1A). Thus, as previously well

established (Granek and Magwene, 2010; Reynolds and Fink, 2001), glucose limitation (with other

nutrients such as amino acids being non-limiting) drives this complex colony architecture formation.

Currently, the description of such colonies is limited to this external rugose morphology, and does

not describe the phenotypic states of cells and/or any spatial organization in the colony. With only

such a description, as observed in Figure 1A, the mature colony surface has an internal circle and

some radial streaks near the periphery. We carried out a more detailed observation of entire colo-

nies under a microscopic bright-field (using a 4x lens). Here, we unexpectedly noticed what

appeared to be distinct internal patterning, and apparent spatial organization of cells within the col-

ony (Figure 1B). As categorized purely based on these observed differences in visual optical density

(‘dark’ or ‘light’), regions between the colony center and periphery had optically dense (dark) net-

works spanning the circumference of the colony, interspersed with optically rare regions. In contrast,

the periphery of the mature colony appeared entirely light (Figure 1B). Based simply on these opti-

cal traits alone, we categorized cells present in these regions of the colony as dark cells and light

cells (Figure 1B). At this point, our description is visual and qualitative, and does not imply any other

difference in the cells in either region. However, this visual description is both robust and simple,

and hence we use this nomenclature for the remainder of this manuscript.

Since these structured colonies form only in glucose-limited conditions, we hypothesized that dis-

secting the expected metabolic requirements during glucose limitation might reveal drivers of this

internal organization within the colony. The expected metabolic requirements of cells growing in glu-

cose limited conditions are as follows: first, all cells would be expected to have constitutively high

expression of the high-affinity hexokinase (Hxk1p) (Lobo and Maitra, 1977; Rodrı́guez et al., 2001).

Further, during glucose-limited growth, all cells are expected to carry out extensive gluconeogene-

sis, as the default metabolic state (Broach, 2012; Haarasilta and Oura, 1975; Yin et al., 2000).

Indeed, we confirmed this second expectation by measuring the amounts of the gluconeogenic

enzymes Pck1 (phosphoenolpyruvate carboxykinase) and Fbp1 (fructose-1,6-bisphosphatase), in

short-term (4–5 hr) liquid cultures of log-phase cells growing in either high glucose medium, or in

the same glucose-limited medium we used for colony growth. Expectedly, we observed very high

amounts of these gluconeogenic enzymes in cells growing in glucose-limited medium (Figure 1—fig-

ure supplement 1A), reiterating that even in well-mixed glucose-limited, cells are in a strongly glu-

coneogenic state. In order to now examine the mature colony and dissecting expected metabolic

requirements in these conditions, we first designed visual indicators for these metabolic hallmarks of

yeast cell growth in low glucose. We engineered two different fluorescent reporters, one dependent

on HXK1 expression (mCherry under the HXK1 gene promoter), and the second on PCK1 expression

as an indicator of gluconeogenic activity (mCherry under the PCK1 gene promoter) (Figure 1—fig-

ure supplement 1B). Cells carrying these reporters were seeded to develop into colonies, and the

expression levels of these reporters were monitored in the mature, rugose colony (5–6 days). Expect-

edly, the HXK1-promoter dependent reporter showed constitutive, high expression in all cells across
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the entire colony (Figure 1C). Contrastingly, only the dark cells exhibited high gluconeogenesis

reporter activity (Figure 1C). Notably, the light cells entirely lacked detectable gluconeogenic

reporter activity (Figure 1C). To better quantify this phenomenon, cells were dissected out from

dark or light regions respectively (under the light microscope, using a fine needle), and the percent-

age of fluorescent cells in each region was measured using flow cytometry. Based on flow cytometric

readouts,~80% of the isolated dark cells showed strong fluorescence for the gluconeogenic reporter,

while ~97% of the light cells were non-fluorescent for gluconeogenic activity (Figure 1C, Figure 1—

figure supplement 1C). This spatial distribution of gluconeogenic activity is shown as a quantitative

heat-map histogram overlaid on the entire colony, in Figure 1—figure supplement 2A. Since this

Table 1. Mass transitions used for LC-MS/MS experiments.

Nucleotides Formula
Parent/Product
(positive polarity) Comment (for 15N experiment)

AMP C10H14N5O7P 348/136 Product has all N

15N_AMP_1 349/137

15N_AMP_2 350/138

15N_AMP_3 351/139

15N_AMP_4 352/140

15N_AMP_5 353/141

GMP C10H14N5O8P 364/152 Product has all N

15N_GMP_1 365/153

15N_GMP_2 366/154

15N_GMP_3 367/155

15N_GMP_4 368/156

15N_GMP_5 369/157

CMP C9H14N3O8P 324/112 Product has all N

15N_CMP_1 325/113

15N_CMP_2 326/114

15N_CMP_3 327/115

UMP C9H13N2O9P 325/113 Product has all N

15N_UMP_1 326/114

15N_UMP_2 327/115

Trehalose and sugar phosphates Formula Parent/Product
(negative polarity)

Comment (for 13C experiment)

Trehalose C12H22O11 341.3/179.3

13C_Trehalose_12 353.3/185.3 Product has 6 C all of which are labeled

G3P C3H7O6P 169/97 Monitoring the phosphate release

13C_G3P_3 172/97

3 PG C3H7O7P 185/97 Monitoring the phosphate release

13C_3 PG_3 188/97

G6P C6H13O9P 259/97 Monitoring the phosphate release

13C_G6P_6 265/97

6 PG C6H13O10P 275/97 Monitoring the phosphate release

13C_6 PG_6 281/97

R5P C5H11O8P 229/97 Monitoring the phosphate release

13C_R5P_5 234/97

S7P C7H15O10P 289/97 Monitoring the phosphate release

13C_S7P_5 294/97

Varahan et al. eLife 2019;8:e46735. DOI: https://doi.org/10.7554/eLife.46735 5 of 28

Research article Cell Biology Physics of Living Systems

https://doi.org/10.7554/eLife.46735


A)

Dark cells

Light cells

 Nucleotide

B)

O
D

6
0

0
n

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(i) Growth in gluconeogenic medium

Dark cells

Light cells

Glucose grown cells
**

PPP (TKL1) reporter 

0.0

0.3

0.6

0.9

1.2

1.5
(ii) Growth in glycolytic medium

Dark cells

Light cells

Glucose grown cells **
**

**

Time (hrs)

Glucose

Glucose-6-Phosphate

Glycolysis PPP

6-phosphoglucono-

lactone

Ribose-5-phosphate

TKL1/TKL2

Nucleotides

C)

D)

0 3 6 9

Time (hrs)
0 3 6 9

O
D

6
0

0
n

m

Experiment 2

AMP       GMP        CMP       UMP

Experiment 1

0

1

2

3

R
e
a
ti
v
e
 l
a
b
e
l 
in

c
o
rp

o
ra

ti
o
n

0

2

4

6

8

10

R
e
la

ti
v
e
 l
a
b
e
l 
in

c
o
rp

o
ra

ti
o
n

AMP       GMP        CMP       UMP

 Nucleotide

  Brightfield Fluorescence Overlay

E)

F)

150000

100000

50000

0
0 1 2 3

Retention time (min)

R-5-P

 Dark cells
 Light cells

0

0.2

0.4

0.6

0.8

1.0

In
te

n
s
it
y

Light cells Dark cells

R
e
la

ti
v
e
 l
a
b
e
l 
in

c
o
rp

o
ra

ti
o
n

  
  

  
  

  
  

  
  
  

R
-5

-P

***

Wild-type

Light

cells

 

Low glucose7 days

Dark

cells
 

15N Aspartate

+15N (NH
4
)
2
SO

4

 

30 mins

Light

cells
Dark

cells
 

Metabolite extraction and 

mass spectrometry

 Wild-type

7
 D

a
y
s

 Rich medium (Low glucose)

 Isolation of light 

and dark cells

Light

cells

Dark

Cells 7
 D

a
y
s

7
 D

a
y
s

 Rich medium (Low glucose)

Figure 2. Cells organize into spatially restricted, contrary metabolic states within the colony. (A) Comparative immediate growth of isolated light cells

and dark cells, transferred to a ‘gluconeogenic medium’ (2% ethanol as carbon source), or a ‘glycolytic medium’ (2% glucose as carbon source), based

on increased absorbance (OD600) in culture. Wild-type cells growing in liquid medium (2% glucose) in log phase (i.e. in a glycolytic state) were used as

controls for growth comparison (n = 3). (B) A schematic showing metabolic flow in glycolysis and the pentose phosphate pathway (PPP), and also

Figure 2 continued on next page
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observation was based solely on reporter activity, in order to more directly examine this observation,

we estimated native protein amounts of enzymes associated with gluconeogenesis (Pck1, Fbp1, and

Icl1- Isocitrate lyase from the glyoxylate shunt) in isolated light cells and dark cells. Only the dark

cells showed expression of the gluconeogenic enzymes (Figure 1D, Figure 1—figure supplement

2B). Finally, we measured steady-state amounts of trehalose and glycogen within dark and light

cells, using these metabolites as unambiguous biochemical readouts of the end-point biochemical

outputs of gluconeogenesis (François et al., 1991). We observed that the dark cells had substan-

tially higher amounts of both trehalose and glycogen (Figure 1E), indicating greater gluconeogenic

activity in these cells. Collectively, these results strikingly reveal that intracellular gluconeogenic

activity is spatially restricted to specific regions, resulting in a distinct pattern of metabolically spe-

cialized zones within the colony.

Cells organize into spatially restricted, contrary metabolic states within
the colony
In the given nutrient conditions of low glucose, gluconeogenesis is an expected, constitutive meta-

bolic process, essential for cells. This can therefore be considered as a necessary, permitted meta-

bolic state in this condition. Paradoxically, in these mature colonies, gluconeogenic activity was

spatially restricted to only within the dark cell region, with no discernible gluconeogenic activity in

the cells located in the light region. This absence of gluconeogenic activity in these light cells, while

concomitant with a constitutively high level of hexokinase activity, therefore poses a biochemical

paradox. What might the metabolic state of these light cells be? To quickly address this using a

crude but useful readout, we compared the ability of freshly isolated light and dark cells to prolifer-

ate in both gluconeogenic (low glucose), and non-gluconeogenic (high glucose) growth conditions.

For simplicity, isolated light cells and dark cells were inoculated either into a medium where gluco-

neogenesis is essential (2% ethanol +glycerol as a sole carbon source), or in high (2%) glucose

medium where cells rely on high glycolytic and pentose phosphate pathway (PPP) activity, and initial

cell proliferation was monitored. Here, cells that had been growing in high glucose were used as a

control. Expectedly, the dark cells grew robustly and reached significantly higher cell numbers

(0D600) compared to the light cells in the gluconeogenic condition (Figure 2A). Conversely, light

cells grew robustly when transferred to the high glucose medium, as compared to the dark cells

(Figure 2A). While this was an overly simple, and not definitive experiment, counter-intuitively, this

result suggested that despite being in a low-glucose environment, the light cells were well suited for

growth in high glucose, and therefore might be in a metabolic state suited for growth in glucose.

We therefore decided to more systematically investigate this phenomenon.

In the presence of glucose, yeast cells typically show high glycolytic and PPP activities, as part of

the Crabtree (analogous to the Warburg) effect (Crabtree, 1929; De Deken, 1966; Figure 2B).

Therefore, if the light cells in the colony were indeed behaving as though present in more glucose-

replete conditions, they should exhibit high PPP activity. To test this, we first designed a fluorescent

PPP-activity reporter (mCherry under the control of the transketolase 1 (TKL1) (Walfridsson et al.,

1995) gene promoter, Figure 1—figure supplement 1B), and monitored reporter activity across the

mature colony. Indeed, only the light cells exhibited high PPP-reporter activity (Figure 2C, Fig-

ure 2—figure supplement 1A). This spatial restriction of high PPP activity across the colony is also

Figure 2 continued

illustrating the synthesis of nucleotides (dependent upon pentose phosphate pathway). TKL1 controls an important step in the PPP, and is strongly

induced during high PPP flux. (C) Spatial distribution of mCherry fluorescence across a colony, based on the activity of a PPP- dependent reporter.

Scale bar: 2 mm. Also see Figure 1—figure supplement 1A and Figure 2—figure supplement 1A. (D) LC-MS/MS based metabolite analysis, using

exogenously added 13C Glucose, to compare flux of 13C Glucose into the PPP metabolite ribulose-5-phosphate (R-5-P), in light and dark cells. The red

circles represent 13C labeled carbon atoms (n = 3). Also see Figure 2—figure supplement 1B. (E) Comparative metabolic-flux based analysis

comparing 15N incorporation into newly synthesized nucleotides, in dark and light cells. Also see S2, and Materials and methods. (F) Light cells and

dark cells isolated from a 7 day old wild-type complex colony re-form indistinguishable mature colonies when re-seeded onto fresh agar plates, and

allowed to develop for 7 days. Scale bar = 2 mm. Statistical significance was calculated using unpaired t test (*** indicates p<0.001, ** indicates p<0.01)

and error bars represent standard deviation.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Light cells exhibit high PPP activity.
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shown as an overlaid quantitative heat-map histogram in Figure 2—figure supplement 1A. Next,

we directly addressed the possibility of these light cells exhibiting relatively high PPP activity. For

unambiguously testing this, we utilized a stable-isotope based metabolic flux experiment to assess

the flux towards PPP in light and dark cells. Light and dark cells isolated from colonies were pulsed

with 13C-labeled glucose (for ~5 min), metabolites extracted, and the incorporation of this carbon

label into the late PPP intermediates ribulose-5-phosphate (R-5-P) and sedoheptulose-7-phosphate

(S-7-P) was measured by liquid chromatography/mass spectrometry (LC/MS/MS). The relative

amounts of these all-carbon labeled PPP intermediates were compared between the two cell types

(light or dark). Notably, light cells incorporated significantly higher levels of 13C labeled glucose into

PPP metabolites compared to the dark cells (Figure 2D, and Figure 2—figure supplement 1B, and

see Table 1 for MS parameters), showing that the light cells are in a high PPP activity state. Finally,

we assessed if other biochemical end-point outputs requiring high PPP activity/flux were also high in

the light cells. High nucleotide synthesis is a canonical consequence of enhanced PPP activity

Table 2. Strains and plasmids used in this study.

Strain/genotype Information Source/reference

Wild-type (WT) YBC16G1, prototrophic sigma1278b, MAT a Isolate via Fink Lab

WT (pPCK1-mCherry) Wild-type strain with gluconeogenesis
reporter plasmid (mCherry with PCK1 promoter)

this study

WT (pHXK1-mCherry) Wild-type strain with constitutive reporter plasmid
(mCherry with HXK1 promoter)

this study

WT (pTKL1-mCherry) Wild-type strain with pentose
phosphate pathway reporter plasmid (mCherry with TKL1 promoter)

this study

PCK1-flag MAT a PCK1-3xFLAG::natNT2 this study

FBP1-flag MAT a FBP1-3xFLAG::natNT2 this study

ICL1-flag MAT a ICL1-3xFLAG::natNT2 this study

MAL11-flag MAT a MAL11-3xFLAG::natNT2 this study

NTH1-flag MAT a NTH1-3xFLAG::natNT2 this study

Dnth1 MAT a nth1::kanMX6 this study

Dmal11 MAT a mal11::kanMX6 this study

Dnth1 (pPCK1-mCherry) Dnth1 strain with gluconeogenesis
reporter plasmid (mCherry
with PCK1 promoter)

this study

Dmal11 (pPCK1-mCherry) Dmal11 strain with gluconeogenesis
reporter plasmid (mCherry
with PCK1 promoter)

this study

Dnth1 (pTKL1-mCherry) Dnth1 strain with pentose
phosphate pathway reporter
plasmid (mCherry with TKL1 promoter)

this study

Dmal11 (pTKL1-mCherry) Dmal11 strain with pentose
phosphate pathway reporter
plasmid (mCherry with TKL1 promoter)

this study

Plasmid Information Source/reference

pPCK1-mCherry mCherry under the PCK1
promoter and CYC1 termin- ator.
p417 centromeric plasmid backbone,
G418R.

this study

pHXK1-mCherry mCherry under the HXK1
promoter and CYC1 termin- ator.
p417 centromeric plasmid backbone,
G418R.

this study

pTKL1-mCherry mCherry under the TKL1
promoter and CYC1 termin- ator.
p417 centromeric plasmid backbone,
G418R.

this study
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Figure 3. A mathematical model suggests constraints for the emergence and organization of cells in complimentary metabolic states. (A) Processes,

based on experimental data, incorporated into developing a simple mathematical model to simulate colony development. The dark and light cells are

appropriately colored, and the parameters incorporated are resource production (s), diffusion parameters for the resource (D), consumption of the

resource (m), and fast or slow rates of division (a or g ), based on resource or amino acid consumption. (B) The spatial distribution of cells is reduced to a

grid like lattice within the model, to allow coarse graining of the location of cells across a colony. The rules for cell division and expansion incorporate

the ability to consume existing nutrients in the medium, produce a resource and/or consume a produced resource, and a threshold amount of resource

build up before utilization. (C) A flow-chart of the algorithm used in the mathematical model. The decision making process in the algorithm,

incorporating all the elements described in panels (A) and (B) is illustrated. Also see Figure 3—figure supplement 1A–C and Materials and methods.

(D) A simulation of the development of a wild-type colony, based on the default model developed. The inset shows an image of a real wild-type

colony (same brightfield image used in Figure 1B), which has developed for an equivalent time (~6 days). Also see Figure 3—figure supplement 1A–C

and Video 1. (E) A simulation of colony development using the model, where key parameters have been altered. (i) The sharing of a produced resource

is restricted. (ii) The ability to switch from a dark to a light state is restricted. (iii) Light cells produce a resource taken up by dark cells is included. Note

that in all three scenarios the colony size remains small, and fairly static. Also see Figure 3—figure supplement 2A–D and Videos 2, 3 and 4.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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(Nelson and Cox, 2013). The carbon backbone (ribose-5-phosphate) of newly synthesized nucleoti-

des is derived from the PPP, while the nitrogen backbone comes from amino acids (Nelson and

Cox, 2013; Figure 2B, and see Table 1 for MS parameters). We devised another metabolic flux-

based experiment to assess de novo nucleotide biosynthesis in light and dark cells, as an end-point

collective readout of high PPP activity coupled with amino acid utilization. Light and dark cells, iso-

lated from colonies were pulsed with a 15N-label (ammonium sulfate +aspartate), and incorporation

of this label into nucleotides was measured by liquid chromatography/mass spectrometry (LC/MS/

MS). Light cells had higher flux into nucleotide biosynthesis, compared to the dark cells (Figure 2E,

and see Table 1 for MS parameters). Taken together, we surprisingly find that light cells exhibit mul-

tiple metabolic hallmarks of cells growing in glucose-replete conditions, including increased PPP

activity, and increased nucleotide biosynthesis. Thus, in the spatially organized colony, the light cells

and dark cells have contrary metabolic states. This is despite the expectation that the gluconeogenic

state, exhibited by the dark cells, is the plausible metabolic state in the given growth conditions.

Notably, the light cells or dark cells, when isolated and reseeded as a new colony, both develop

into indistinguishable, complex colonies (Figure 2F). This reiterates that these phenotypic differen-

ces between the light and dark cells are fully reversible, and do not require genetic changes. Collec-

tively, these data reveal that cells within the colony organize into spatially separated, metabolically

specialized regions. Within these regions, cells exhibit complimentary metabolic states. One of these

states, where cells have high PPP activity, is counter-intuitive and cannot obviously be sustained

given the external nutrient environment.

A mathematical model suggests constraints for the emergence and
organization of cells in complimentary metabolic states
What determines the emergence and spatial organization of a group of cells, in these contrary meta-

bolic states? Particularly, what can explain the emergence and proliferation of the light cells, which

exhibit this counter-intuitive metabolic state, while the colony maintains a large subset of cells in the

dark state? To address this, we built a coarse-grained mathematical model. This model incorporates

Figure 3 continued

Figure supplement 1. Effects on the colony as we change individual parameters used in the model.

Figure supplement 2. Reproducibility of the model, under different scenarios.

Video 1. Development of the colony. Simulation video

showing the changes in a wild-type model colony. After

a small lag, dark cells at the edge start dividing into

empty space and due to the threshold switching effect,

the center of the colony now has light cells. Cells at the

periphery also switch to light cells which divide faster

by utilizing resource shared by the dark cells.

https://elifesciences.org/articles/46735#video1

Video 2. Dark cells do not share the metabolic

resource with light cells. Simulation video showing

changes in a colony where the dark cells don’t share

any resource for the light cells to consume. The

number of light cells doesn’t increase and the final

colonies predominantly comprise of dark cells.

https://elifesciences.org/articles/46735#video2
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simple processes derived from our current experimental data, to simulate the formation of a colony

of ‘light’ and ‘dark’ cells. The model was intentionally coarse-grained, since its purpose was only to

find a minimal, biologically consistent combination of processes that is sufficient to produce the

overall spatial structure and composition of cell states observed in the colonies. The intention behind

the model was not to decipher all possible molecular details that explain this phenomenon. The

model should only sufficiently account for both the emergence of light cells, as well as their spatial

organization with dark cells. Such a model could therefore suggest constraints that determine the

emergence of light cells, and the organization of the colony with the observed organization, which

can then be experimentally tested.

While building this model, we included a range of processes that must be considered, based on

our experimental data thus far (Figure 3A). This includes (i) the dark cells switching to a light state,

(ii) the production of some resource by dark cells, which may be shared/utilized by the cells, (iii) dif-

fusion parameters for this resource, (iv) consumption of this resource, and (v) rates of cell division are

included (Figure 3A). Next, we constructed a two-dimensional square grid of ‘locations’ for groups

of cells within the colony (Figure 3B). Here, each location is either empty or occupied by a group

of ~100 cells (also see Materials and methods for full details). Note: we intentionally coarse-grain the

grid (for computational simplicity, in order to simulate colony sizes comparable to real colonies) by

approximating that the locations either consist of all light or all dark cells. This is a major simplifica-

tion that was necessary. At each time step (12 min of real time), all the processes shown in

Figure 3A are executed across the spatial grid using the outlined algorithm (Figure 3C). In such an

implemented algorithm, (i) all cells consume all available nutrients (present in saturating amounts),

while free glucose concentrations are negligible, (ii) dark cells grow and divide in the given condi-

tions, (iii) dark cells produce a resource/resources as a consequence of their existing metabolic (glu-

coneogenic) state, (iv) this resource diffuses around the grid and is freely available, (v) dark cells

switch to the light state if sufficient resource is present at their location, and lastly, (vi) the resource

when consumed can sustain the light state cells, which can expand if there is an empty location in

the neighborhood. If the resource is not present in that location the light cells will switch back to

dark cells. All processes occur at specified rates, allowing for stochasticity. Finally, this existence of a

shared resource is surmised because, logically the emergence of light cells from dark can happen

only if the local nutrient environment enables a switch to the new metabolic state.

In each simulation, empty grids are seeded with 1257 occupied locations, with 95–99% of the

cells in the dark state. After ~750 time steps (corresponding to ~6 days) a simulated wild-type colony

looks typically as shown in Figure 3D (also see Video 1). A range of resource amounts, growth rates

Table 3. Parameters of the model for the wild-type case.

Parameter Notation Value

Growth rate
(dark cell block)

gd 0.01/T

Growth rate
(light cell block)

gl 0.04/T

Switching threshold S 3.0 units

Resource produced by
each dark cell block

R 0.07 units/T

Resource or amino
acids consumed per
cell block (light or dark)

C 0.05 units/T

Minimum resource or
amino acid reserve
needed for division
(light or dark)

– 1.0 unit

Chance to switch to
light cell if threshold
reached

P 0.5/T

Diffusion constant
of the resource

D 0.24 L2/T
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and diffusion of the resource were included in

control simulations (see Figure 3—figure supple-

ment 1A–C). Strikingly, the simulated spatial

organization (Figure 3D, and Video 1) recapitu-

lates most obvious features of a real colony

(Figure 3D). These are: at the edge of the initial

circular inoculation of the colony is a ring of dark

cells, the outermost part of the colony is made

up of outcrops of light cells, and from this ring of

dark cells emanate clusters of dark cells penetrat-

ing into the outcrops of light cells. This is despite

the simplicity of the rules in the model, including

its flattening into 2D. In the simulation, for the

first 40–45 time steps, the colony remains small

and predominantly dark, while the resource

builds up. Then, dark cells start to switch to light.

When this happens within the bulk of the colony,

these light cells have restricted division due to

spatial constraints. Around 100 to 150 time steps

later, light cells emerge at the perimeter of the

colony, and then rapidly divide and expand

(Figure 3D, Video 1). In order to test if the pro-

cesses of Figure 3A are all required for this

behavior, we examined three comprehensive

control scenarios: (i) dark cells do not produce a

resource (and therefore in this case for growth

light cells depend only on amino acids or other

pre-supplied resources in the medium), (ii) dark cells cannot switch to the light state, or (iii) light cells

produce a resource that is needed by dark cells to grow (a straw-man scenario, since initially in the

actual colony all cells were in a dark state, as shown earlier). None of these cases produces the wild-

type spatial organization, over a wide range of parameter values (Figure 3E, as well as a range of

parameters explored in Figure 3—figure supple-

ment 2A–D, and simulations in Videos 2–4).

Summarizing, this simple model successfully

recaptures the general features of the spatial pat-

terning and organization of real colonies. This

includes the overall general architecture, and spa-

tial organization of light and dark cells. Two sim-

ple take-home points emerge from this model,

for such spatial distribution of cells in these two

metabolic states, across the developing colony.

First, the model requires that dark (gluconeo-

genic) cells will produce a resource that is needed

by dark cells to switch to the light state. Second,

a resource produced by the dark cells is required

to sustain the light state. Collectively, in our

model, these metabolic constraints are sufficient

to determine the overall spatial organization of

metabolically distinct, specialized cells.

Trehalose satisfies criteria to be
the metabolic resource
determining the emergence of
light cells
Does any gluconeogenic metabolite(s) determine

the organization of these cells, consistent with

Video 3. Dark cells do not switch to light cells.

Simulation video showing changes in a colony where

the dark cells don’t switch to light cells but continue to

produce resource on to the resource grid. In certain

cases, there can be light cells at the very edge of the

starting colony. This is because the composition of the

colonies might be the same between simulations, but

individual cell block locations are done at random.

Such cells at the edge can utilize the shared resource

and divide into empty space on the grid.

https://elifesciences.org/articles/46735#video3

Video 4. Light cells share metabolic resource with dark

cells (Wrong sharing). Simulation video showing

changes in a colony where the dark cells don’t share

any resource for the light cells but the light cells

provide amino acids for the dark cells to consume

(wrong sharing). The dark cells have an abundance of

amino acids to grow and divide. The final colonies

predominantly comprise of dark cells.

https://elifesciences.org/articles/46735#video4
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these requirements suggested by experimental and modeled data? Such a metabolite must logically

satisfy the following three criteria. First, this resource should be available in the extracellular environ-

ment (i.e. released by cells), second, cells must selectively be able to take up this resource, and third,

the resource should be metabolized within cells to produce glucose/a glucose-like product capable

of fueling a glycolytic and PPP-active state. Further, if this were indeed a ‘controlling resource’ that

determined the emergence of light cells, preventing the uptake and utilization of this resource

should prevent the emergence and proliferation of only the light cells, but leave the dark cells unaf-

fected. In order to identify such a candidate metabolite, we considered all possible outputs of
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Figure 4. Trehalose satisfies criteria to be the metabolic resource determining the emergence of light cells. (A) A schematic illustrating the metabolic

intermediates and different end-point metabolites of gluconeogenesis. (B) Extracellular amounts of trehalose measured from developing wild-type

colonies. Entire colonies were isolated, and only exogenous trehalose estimated, at the respective days. Fold change in the amount of extracellular

trehalose produced by a 4 day old colony with respect to a 1 day old colony was calculated (n = 3). (C) Comparative protein amounts of Mal11, a major

transporter of trehalose in S. cerevisiae, in light and dark cells, as measured using a Western blot is shown. The blot is representative of 3 independent

experiments (n = 3). (D) Estimates of the relative ability of light and dark cells to uptake trehalose is shown. 13C Trehalose was exogenously added to

light and dark cells, and intracellular amounts of the same are shown (as intensity of the MS/MS peak corresponding to 13C-trehalose) (n = 3). (E)

Comparative amounts of Nth1, the major intracellular trehalase enzyme in S. cerevisiae, in light and dark cells, as measured using a Western blot is

shown. The blot is representative of 3 independent experiments (n = 3). (F) in vitro neutral trehalase activity present in lysed light or dark cells is shown

(n = 3). Statistical significance was calculated using unpaired t test (** indicates p<0.01) and error bars represent standard deviation.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Quantitation of relative Mal11 and Nth1 protein levels in light and dark cells.
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Figure 5. Trehalose uptake and utilization determines the existence of light cells. (A) Estimation of trehalose uptake and breakdown/utilization in light

and dark cells. LC-MS/MS based metabolite analysis, using exogenously added 13C Trehalose, to compare breakdown and utilization of 13C Trehalose

for glycolysis and the PPP, in light and dark cells. The red circles represent 13C labeled carbon atoms. Data for 13C labeled glycolytic and PPP

intermediates (derived from trehalose) are shown. The data presented is from a single flux experiment, which was repeated independently (with

different colonies) twice (n = 2). Also see Figure 5—figure supplement 1A. (B) Comparative development of wild-type colonies (same image used

in Figure 1A) with colonies lacking the major trehalose transporter (Dmal11), or the intracellular neutral trehalase (Dnth1). Colonies are shown after 7

days of development. Scale bar: 2 mm. (C) Visualization (left panel) and quantification (right bar graphs) of light cells in wild-type (same image used in

Figure 2C), Dmal11, or Dnth1 cells, based on fluorescence emission dependent upon the PPP reporter activity. The quantification is based on flow

cytometry data (n = 3). Scale bar: 2 mm. (D) Estimate of the percentage of gluconeogenic cells in wild-type, Dmal11 and Dnth1 (strains that cannot up-

take or breakdown trehalose). This was based on quantifying the expression of the gluconeogenesis reporter plasmid (pPCK1-mCherry), expressed in

all these cells. Cells from the entire colony were isolated and percentage of fluorescent cells (i.e. cells expressing the gluconeogenic reporter) in each

colony was calculated by analyzing the samples by flow cytometry (n = 3). Statistical significance was calculated using unpaired t test (* indicates

p<0.05, ** indicates p<0.01) and error bars represent standard deviation.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Comparative breakdown of labeled trehalose by distinct cells in a colony.
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gluconeogenesis: the storage carbohydrates/sugars glycogen and trehalose, the polysaccharides of

the cell wall (chitin, mannans, glycans), and glycoproteins (Figure 4A) (Jules et al., 2008;

Kayikci and Nielsen, 2015). The large molecular size of glycogen, chitins, and complex glycosylated

proteins, the lack of known cellular machinery for their uptake, and the difficulty in efficiently break-

ing them down make them all unlikely candidates to be the resource controlling the emergence of

light cells. Contrastingly, trehalose has unique properties making it a plausible candidate. It is a

small, non-reducing disaccharide composed of two glucose molecules. Trehalose has been observed

in the extracellular environment in yeast (Parrou et al., 2005), and yeast can uptake trehalose

through disaccharide transporters (Jules et al., 2008; Stambuk, 1998). Further, trehalose can be

rapidly and specifically hydrolyzed to two glucose molecules, which can fuel glycolysis and re-entry

into the cell division cycle (Laporte et al., 2011; Shi et al., 2010; Shi and Tu, 2013). These diverse

data therefore presented trehalose as an excellent putative candidate metabolite that controlled the

emergence of cells in the light state. To test this possibility, we first measured extracellular trehalose

in colonies. Free trehalose was readily detectable in the extracellular environment of these colonies

(Figure 4B). To test if trehalose could be differentially transported into either light or dark cells, we

first estimated amounts of a primary trehalose transporter, Mal11 (Stambuk, 1998) in these cells.

Mal11 protein amounts were substantially higher in the light cells compared to the dark cells

(Figure 4C, and quantified in Figure 4—figure supplement 1A). To unambiguously, directly esti-

mate trehalose uptake, we isolated light and dark cells from a mature colony, and exogenously

added 13C-trehalose. We then measured intracellular levels of labeled trehalose present in these

cells, by extracting and estimating metabolite amounts (by LC/MS/MS) (see Table 1 for MS parame-

ters). Notably, the light cells rapidly accumulated 13C-trehalose (Figure 4D), while the dark cells did

not, suggesting robust, preferential uptake of extracellular trehalose.

Finally, we estimated the ability of light and dark cells to break-down and utilize trehalose. For

this, we first measured the expression of the predominant neutral trehalase in yeast (Nth1)

(Jules et al., 2008), in the light and dark cells. Light cells had substantially higher Nth1 amounts

than the dark cells (Figure 4E, and quantified data shown in Figure 4—figure supplement 1B). We

also measured enzymatic activity for Nth1 (in vitro, using cell lysates), and found that the light cells

had ~2 fold higher in vitro enzymatic activity, compared to the dark cells (Figure 4F). Collectively,

these data suggested that the light cells were uniquely able to preferentially take up more trehalose,

break it down to glucose, in order to potentially utilize it to sustain a metabolic state with high PPP

activity.

Trehalose uptake and utilization determines the existence of light cells
Since these data suggested that trehalose uptake and utilization would be preferentially high in the

light cells, we directly tested this using a quantitative metabolic flux based approach. For this we

used stable-isotope labeled trehalose, and measured trehalose uptake, breakdown and utilization.

To the isolated light and dark cells, 13C-labeled trehalose was externally provided, and intracellular

metabolites extracted from the respective cells. The intracellular amounts of 13C -labeled glycolytic

and PPP intermediates were subsequently measured using LC/MS/MS (Figure 5A and Figure 5—fig-

ure supplement 1A, also see Table 1 for MS parameters). 13C –labeled glucose-6-phosphate (which

enters both glycolysis and the PPP), the glycolytic intermediates glyceraldehyde-3-phosphate and 3-

phosphoglycerate, and the PPP intermediates 6-phosphogluconate, ribulose-5-phosphate and sedo-

heptulose-7-phosphate all rapidly accumulated exclusively in the light cells (Figure 5A, Figure 5—

figure supplement 1A). Since the labeled carbon can come only from trehalose, these data indicate

both the breakdown of trehalose to glucose, as well as the subsequent utilization of glucose for

these pathways. Indeed, the labeled forms of these metabolites were only above the detection limit

in dark cells (Figure 5A and Figure 5—figure supplement 1A). Thus, these data demonstrate that

external trehalose is preferentially taken up only by the light cells, and utilized to fuel the compli-

mentary metabolic state of the light cells, with high glycolytic and PPP activity.

Finally, we tested if the sharing and differential utilization of trehalose determined both the emer-

gence and the proliferation of light cells. An explicit prediction is made both in our model, and our

hypothesis based on these experimental data. This is: preventing uptake and/or utilization of treha-

lose should prevent cells from switching to the light state. To test this prediction, we generated

strains lacking NTH1 (which cannot break-down trehalose to glucose), and MAL11 (which will have

reduced trehalose uptake), allowed them to develop into mature colonies, and compared the
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amounts of light cells in each. Compared to wild-type colonies, cells lacking the major trehalose
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Figure 6. A resource threshold effect controls cooperative switching of cells to the light state. (A) Simulation of colony development, based on the

default model (which incorporates a resource threshold buildup, followed by consumption, switching to a light state, and expansion), compared to a

model where the threshold amounts of the resource is removed. Note the final expansion size of the colony. Also see Figure 6—figure supplement

1A–D and Video 5. (B) (i) Changes in the availability of the resource as the colony develops, based on the model. (Ii) Extracellular amounts of trehalose

measured from developing wild-type colonies. Data from three independent colonies. Note: in the model, in ~3–4 days the resource is highest, and

reduces sharply after that. In the experimentally obtained data, extracellular trehalose amounts are highest at ~day 4, and then rapidly decreases over

day 5. This correlates to when the light cells emerge and expand. (C) A time-course of bright-field images of the developing wild-type colony,

illustrating the distribution of dark cells, and the emergence and distribution of light cells. (D) A time-course revealing fluorescence based estimation of

the (i) reporter for gluconeogenic activity (dark cells), or (ii) the PPP activity reporter (light cells). Note the delayed, rapid appearance and increase in the

PPP activity reporter. (E) Quantification of the increase in the gluconeogenic reporter activity in the colony, and the PPP reporter activity (based on

fluorescence intensity) within the colony. The increase in gluconeogenic reporter activity, when plotted, is linear, and saturates. The increase in PPP

activity over the first 5 days is highly cooperative (as estimated using a Hill coefficient as a proxy for cooperativity), before saturating (n = 3). Error bars

represent standard deviation.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Colonies generated using different switching rules.
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uptake transporter (Dmal11) formed colonies with

very few light cells (Figure 5B). Note: while

Mal11 shows a high affinity for trehalose, S. cere-

visiae has multiple sugar transporters with

reduced affinity for any disaccharide. Therefore,

cells lacking MAL11 may take up trehalose with

lower efficiency. In these cells, the ability to

break-down trehalose remains intact. More

importantly, in colonies of cells lacking trehalase

(Dnth1), and which therefore cannot efficiently

breakdown internal trehalose, had nearly no

detectable light cells, based on brightfield micro-

scope observations (Figure 5B). This result was

more quantitatively estimated in colonies of cells

with these respective genetic backgrounds, using

the expression of the fluorescent PPP reporter.

Again, almost no PPP reporter activity was

observed in the Dnth1 cell colonies, while very

few cells with PPP reporter activity were seen in

Dmal11 colonies (Figure 5C). As controls, we

ensured that there were no defects in the expres-

sion of the PPP reporters in cells from these

genetic backgrounds. Correspondingly, we also

quantified the percentage of dark, highly gluco-

neogenic cells (as determined using the gluco-

neogenesis reporter), in colonies from each of

these genetic backgrounds. The percentage of gluconeogenic cells was proportionately higher in

the Dmal11 (~73%), and Dnth1 (~80%) colonies compared to the wild-type colony (~65%)

(Figure 5D). Thus, controlling the uptake and utilization of the resource (trehalose) directly regulates

the emergence of cells in the light state.

Collectively, these data demonstrate that trehalose is the shared gluconeogenic resource that

determines the emergence, and persistence, of light cells within the structured colony.

A resource threshold effect controls cooperative switching of cells to
the light state
Our experimental data showing the organization of dark and light cells was obtained from ~5–6 day

old, mature colonies. However, in our simulations of the temporal development of the colony, we

observed that the dense network of dark (gluconeogenic) cells form first, followed by a very late

appearance of light cells (Figure 6A and Video 1). This late appearance of light cells in the simula-

tions comes from an inherent threshold effect included within the model. Here, the external build-up

of the shared resource made by the dark cells is required. At a sufficient built-up concentration, this

resource will trigger the switching of some cells to light cells. Light cells in turn will consume the

resource, reducing the available amounts, thereby preventing other cells from switching to this new

state. This threshold-effect therefore predicts a delayed, rapid emergence of light cells, and also

enables such a pattern of distinct cell groups to form. If this threshold requirement is removed in the

simulation (for example when replaced by a rate of switching from dark to light that depends linearly

on the amount of resource), the resultant colony remains small, and the organized pattern of cells in

two states does not occur. This is shown in Figure 6A, and Video 5. This small colony size is largely

due to low resource amounts to support the proliferation of the light cells, since there are insufficient

dark cells remaining to produce the resource. This is also clearly seen in control simulations with a

range of resource amounts, and linear switching, as shown in Figure 6—figure supplement 1A–1D.

Contrastingly, in the model that successfully simulates the colony development, the externally avail-

able amount of the resource builds-up, reaches the threshold (where cells switch to the light state),

and then rapidly decreases, if the light cells also consume the resource (Figure 6B, upper panel).

This therefore prompted us to more closely examine the development of actual colonies over

time, for these properties. We first estimated the relative amounts of extracellular, free trehalose in

Video 5. Development of colony without a resource

threshold. Simulation video showing changes in a

colony where the dark cells switch to light by random

chance (probability p=0.5). They don’t need the

resource levels to reach a certain threshold. Once they

become light cells, they cannot switch back to dark.

Due to lack of the produced resource, the colony

doesn’t grow discernibly.

https://elifesciences.org/articles/46735#video5
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the colony over time. Notably, trehalose amounts steadily increased over 4 days, and subsequently

rapidly decreased (Figure 6B lower panel). This rapid decrease in trehalose after day four is despite

a steady, continuing increase in the total number of cells in the colony (Figure 6—figure supple-

ment 1E). We next monitored the development of colonies over time, to determine when the light

cells emerge. Using just the bright-field image reconstruction of the colonies, during this time

course, the intensity of dark cells steadily increased, and organized into the mesh-like network over

4 days (Figure 6C). However, the light cells appeared only after ~4 days, and rapidly increased in

number (Figure 6C). We more quantitatively estimated this, using strains expressing the
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Figure 7. Physiological advantages of cells with organized spatial heterogeneity. (A) Foraging response of wild-type cells (same image used in

Figure 1A) and Dnth1 cells measured as a function of their ability to spread on a plate. Colony spreading was quantified by measuring the diameter of

the colonies every day for 21 days (n = 3). (B) Cells in low glucose perform gluconeogenesis, as required in low glucose medium. As gluconeogenic

reserves build up, trehalose builds up in the extracellular environment. At a threshold concentration of trehalose, some cells switch to a high glycolytic,

PPP state. This state depends upon the utilization of trehalose to fuel it. This utilization of trehalose by the light cells results in decreased external

trehalose to below a threshold. This in turn restrains the other, remaining cells in a gluconeogenic state, where they continue to produce trehalose. This

gives rise to the final, self-organized community, with specialization of function and division of labor. Statistical significance was calculated using

unpaired t test (** indicates p<0.01) and error bars represent standard deviation.
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gluconeogenic- or the PPP-reporter (Figure 6D). Notably, the increase in total fluorescence intensity

due to the gluconeogenic-reporter in the colony (over time) was relatively linear over the first four

days (r2 = 0.99), increasing with the steady increase in the number of cells (Figure 6—figure supple-

ment 1E). Contrastingly, the increase in the PPP reporter activity over the first five days was clearly

non-linear and switch like, with very low signal intensity for the first three days, and then a rapid

emergence of signal over days four and five (Figure 6E). This indicated a cooperative, switch like

emergence of, and increase in these light cells. A useful biophysical measure of cooperativity (more

commonly used for protein-ligand binding characteristics) is the Hill coefficient. We adopted the Hill

equation, using the amount of PPP reporter fluorescence (instead of ligand-receptor binding), to

estimate cooperativity in the system. Over the first five days the increase in PPP-reporter activity

showed a Hill coefficient greater than 1, indicating a positively cooperative switch of cells to the light

state (Figure 6E). This nicely correlates with the build-up, and rapid decrease in external trehalose

around day 4 (Figure 6B). These data also show that the peripheral location of the light cells cannot

simply be due to possible greater access to glucose in the medium, since for the first ~4 days, there

are no cells in the periphery with high PPP reporter activity. Their emergence is indeed rapid, and

switch-like.

In summary, data from model simulations and experiments show that initially the gluconeogenic

cells increase in number, leading to release and build-up of the resource (trehalose) in the local envi-

ronment. At this time there are no light cells in the colony. Above a threshold concentration of treha-

lose, some cells rapidly switch to light state with high PPP activity. The further expansion of these

light cells correlates with rapid consumption of the extracellular trehalose that sustains this state.

These data suggest a threshold effect, where the controlling resource, trehalose, needs to build up

above a certain amount, in order for cells to switch to the contrary, high PPP activity state.

Cells in distinct metabolic states provide a collective growth advantage
to the colony
Finally, we wondered if such an emergence of light cells with high PPP activity might benefit the

community of cells as a whole. To address this, we compared the long term colony expansion of

wild-type cells, with colonies comprised of cells lacking the neutral trehalase (Dnth1). Cells in the

Dnth1 colonies cannot utilize trehalose to produce glucose, and as shown earlier, will remain in a glu-

coneogenic state. Therefore, in these Dnth1 cell colonies light cells will be absent. However, these

cells are still capable of normal gluconeogenesis (and trehalose production). Strikingly, we observed

that as the respective colonies expanded over time (~21 days), the wild-type colonies spread over a

significantly greater area on the plate, while the Dnth1 colonies were unable to expand as efficiently

(Figure 7A and Figure 7B). This shows that the emergence and proliferation of light cells are impor-

tant for the expansion of the colony. Since the dark cells are required for the emergence and exis-

tence of the light cells, collectively, these data suggest how the community uses cells in distinct

metabolic states to maximize growth and spatial expansion, possibly to forage for new nutrients.

Discussion
Collectively, we present a simple model proposing how cells in metabolically distinct states sponta-

neously emerge and spatially self-organize within a yeast colony, as summarized in Figure 7C. In low

glucose conditions, cells begin in a uniform gluconeogenic state, which is the expected metabolic

state in this nutrient condition. The gluconeogenic cells produce a resource (trehalose), that is now

externally available. This resource builds up to above a threshold amount. At this threshold, some

cells take up and consume trehalose, breaking it down to glucose. These cells spontaneously switch

to the complimentary metabolic state, with high PPP and glycolytic activity (i.e. the light state)

(Figure 7C). These light cells can remain in this metabolic state only so as long as the resource (tre-

halose) is externally available. However, as trehalose is consumed by these cells, the available

amount of external trehalose itself drops below the threshold. The surrounding dark cells therefore

remain trapped in a gluconeogenic state, continuing to produce trehalose. Thereby, a predictable

fraction of cells, constrained spatially, will remain in each metabolic state, resulting in specialized cell

groups and division of metabolic labor. Thus, biochemically heterogeneous cell states can spontane-

ously emerge and spatially self-organize. An implicit concept emerging from this study is that of

threshold amounts of a controlling or sentinel metabolite that regulates a switch to a new metabolic
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state. By definition, such a metabolite must be produced by cells present in a certain (original) meta-

bolic state. But when this metabolite is utilized, it must have the ability to switch cells to an entirely

distinct metabolic state. Further, the emergence and expansion of cells in the new state will be rapid

and switch-like, resembling a bistable system (Pomerening, 2008). This idea of metabolites control-

ling cell states is an emerging area of interest (Cai and Tu, 2011; Krishna and Laxman, 2018), but

has not been studied in the context of groups of cells organizing into distinct groups or metabolic

states (and therefore different phenotypic properties).

We speculate what the advantages of such spatially organized, phenotypically distinct states

within a group of clonal cells might be, in this example. Here, we observe that the organized com-

munity with cells in distinct states has clear advantages, in being able to spatially expand better

(Figure 7C). For sessile microbes such as yeast, this ability to forage for better nutrients is important

for their survival. This might also convey other advantages, and uncovering those are obvious areas

of future studies. Since the inherent properties of the cells in the distinct states are different, this

raises the deeper possibility that these advantages come from physical and chemical properties of

the cells, which arise from their distinct metabolic states. Regardless, our study substantially advan-

ces descriptions of yeast ‘multicellularity’ from simple dimorphism, aggregated cells, or three-dimen-

sional colony forms (Cáp et al., 2012; Koschwanez et al., 2011; Palková and Váchová, 2016;

Ratcliff et al., 2012; Váchová and Palková, 2018; Veelders et al., 2010; Wloch-Salamon et al.,

2017), to self-organized, phenotypically heterogeneous cell states exhibiting division of labor and

metabolic interdependence. Strikingly, the nature of spatial patterning allied with division of labor

that we observe in yeast is reminiscent of true multicellular systems (Newman, 2016; Niklas, 2014).

Also, the cell states in these yeast colonies can be considered commensal, since trehalose is a neces-

sary output of gluconeogenesis, and therefore a default, biochemically non-limiting output in dark

cells. Since trehalose controls the emergence and maintenance of light cells in the complimentary

metabolic state, it thus can be considered a resource benefiting the light state. Thus simple, metab-

olism-derived constraints are sufficient to determine how contrary biochemical states can spontane-

ously emerge and be supported, in conjunction with spatial structure. Such organization of cells into

specialized, labor-divided communities expands on the role of reaction-diffusion systems (particularly

activator-depleted substrate schemes) in controlling cellular patterning (Gierer and Meinhardt,

1972; Kondo and Miura, 2010; Newman, 2016), with a metabolic resource threshold being central

to the emergence and stabilization of a new phenotype (Cai and Tu, 2011; Krishna and Laxman,

2018). A deeper dissection of what such constraints can permit will therefore advance our general

understanding of how specialized cell states can emerge and be stabilized.

Metabolic cross-feeding is best understood currently in multi-species microbial communities,

where this has been inferred largely using inter-species genomic comparisons (Ackermann, 2015;

D’Souza et al., 2018; Goldford et al., 2018; Tyson et al., 2004). Further, metabolic sharing has

typically been demonstrated using synthetically engineered systems where mutual dependencies are

created (Campbell et al., 2016; D’Souza et al., 2018; Mee et al., 2014; Pande et al., 2015;

Wintermute and Silver, 2010). The spatial organizations of any such populations remain challenging

to model. Biochemically identifying metabolites that are conclusively exchanged between cooperat-

ing cells remains difficult, and the significance of such putative metabolite exchange challenging to

interpret (Ackermann, 2015; D’Souza et al., 2018). Finally, such studies have emphasized non-iso-

genic systems, where genetic changes stabilize different phenotypes, and auxotrophies define the

nutrient sharing or cooperation (Ackermann, 2015). Contrastingly, here we directly identify a pro-

duced metabolic resource, and demonstrate how its availability and differential utilization can con-

trol the emergence of cells in opposing metabolic states, in a clonal population. We also explain

how the spontaneous spatial organization into phenotypically distinct cell groups occurs. Thus, our

study also goes beyond stochastic gene expression (Ackermann, 2015; Balázsi et al., 2011;

Blake et al., 2003) to explain how phenotypic heterogeneity and specialization can emerge in clonal

populations. By considering these metabolism-derived rules, and thereby manipulating available

metabolic resources, we suggest how it can be viable to program the formation, structure or pheno-

typic composition of isogenic cell populations. Collectively, such simple physico-chemical constraints

can advance our understanding of how isogenic cells can self-organize into specialized, labor-divided

groups, as a first step towards multicellularity.
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Materials and methods

Yeast strains and growth media
The prototrophic sigma 1278b strain (referred to as wild-type or WT) was used in all experiments.

Strains with gene deletions or chromosomally tagged proteins (at the C-terminus) were generated

as described (Longtine et al., 1998). Strains used in this study are listed in Table 2. The growth

medium used in this study is rich medium (1% yeast extract, 2% peptone and 2% glucose or 0.1%

glucose).

Colony spotting assay
All strains were grown overnight at 30 ˚C in either rich medium or minimal medium. 5 microliters of

the overnight cultures were spotted on rich medium (low glucose) (1% yeast extract, 2% peptone,

0.1% glucose and 2% agar). Plates were incubated at 30 ˚C for 7 days unless mentioned otherwise.

Colony imaging
For observing colony morphology, colonies were imaged using SZX-16 stereo microscope (Olympus)

wherein the light source was above the colony. Bright-field imaging of 7 day old colonies were done

using SZX-16 stereo microscope (Olympus) wherein the light source was below the colony. Epifluor-

escence microscopy imaging of 7 day old gluconeogenesis reporter colonies (pPCK1-mCherry), pen-

tose phosphate pathway (PPP) reporter colonies (pTKL1-mCherry) and HXK1 reporter colonies

(pHXK1-mCherry) were imaged using the red filter (excitation of 587 nm, emission of 610 nm) of

SZX-16 stereo microscope (Olympus). Similar protocol was followed for imaging 1 day to 6 day old

colonies.

Analysis of fluorescent cell populations in reporter strain colonies
Light cells and dark cells isolated from 7 day old wild-type colonies harboring either the gluconeo-

genesis reporter, PPP reporter or the HXK1 reporter were re-suspended in 1 ml of water. The per-

centage of fluorescent cells were determined by running the samples through a flow cytometer, and

counting the total number of mCherry positive cells in a total of 1 million cells. Light cells and dark

cells isolated from wild-type colonies without the fluorescent reporter were used as control.

Biochemical estimation of trehalose/glycogen levels
Trehalose and glycogen from yeast samples were quantified as described previously, with minor

modifications (Shi et al., 2010). 10 OD600 of light cells and dark cells from 7 day old wild-type colo-

nies (rich medium, 0.1% glucose) were collected. After re-suspension in water, 0.5 ml of cell suspen-

sion was transferred to four tubes (two tubes for glycogen assay and the other two tubes for

trehalose assay). When sample collections were complete, cell samples (in 0.25 M sodium carbonate)

were boiled at 95–98˚C for 4 hr, and then 0.15 ml of 1 M acetic acid and 0.6 ml of 0.2 M sodium ace-

tate were added into each sample. Each sample was incubated overnight with 1 U/ml amyloglucosi-

dase (Sigma-Aldrich) rotating at 57˚C for the glycogen assay, or 0.025 U/ml trehalase (Sigma-Aldrich)

at 37˚C for the trehalose assay. Samples were then assayed for glucose using a glucose assay kit

(Sigma-Aldrich). Glucose assays were done using a 96-well plate format. Samples were added into

each well with appropriate dilution within the dynamic range of the assay (20–80 mg/ml glucose).

The total volume of sample (with or without dilution) in each well was 40 microliters. The plate was

pre-incubated at 37˚C for 5 min, and then 80 ml of the assay reagent from the kit was added into

each well to start the colorimetric reaction. After 30 min of incubation at 37˚C, 80 microliters of 12 N

sulfuric acid was added to stop the reaction. Absorbance at 540 nm was determined to assess the

quantity of glucose liberated from either glycogen or trehalose. For measurement of extracellular

trehalose measurement, single wild-type colony (1 day to 7 day old colony) was re-suspended in 100

microliters of water and centrifuged at 20000 g for 5 min. Supernatant was collected and buffered

to a pH of 5.4 (optimal for trehalase activity) using sodium acetate buffer (pH 5.0). 0.025 U/ml treha-

lase (Sigma-Aldrich) was added and samples were incubated at 37˚C overnight. Glucose concentra-

tion was estimated as described earlier.

Varahan et al. eLife 2019;8:e46735. DOI: https://doi.org/10.7554/eLife.46735 21 of 28

Research article Cell Biology Physics of Living Systems

https://doi.org/10.7554/eLife.46735


Neutral trehalase activity assay
Neutral trehalase activity assay was performed as described earlier with the following modifications

(De Virgilio et al., 1991). Briefly, 1 OD600 of light cells and dark cells isolated from 7 day old wild-

type colonies (rich medium, 0.1% glucose) were washed twice with ice-cold water. For permeabiliza-

tion, cells were re-suspended in tubes containing equal volume of 1% Triton-X in assay buffer (200

mM tricine buffer (Na+) (pH 7.0)) and immediately frozen in liquid nitrogen. After thawing (1–4 min

at 30˚C), the cells were centrifuged (2 min at 12000 g), washed twice with 1 ml of ice-cold assay

buffer and immediately used for the trehalase assay. Trehalase assay was performed in 50 mM tricine

buffer (Na+) (pH 7.0), 0.1 M trehalose, 2 mM manganese chloride (MnCl2) and the Triton X-100 per-

meabilized cells in a total volume of 400 microliters. After incubation for 30 min at 30˚C, the reaction

was stopped in a boiling water bath for 3 min. Glucose concentration in the supernatant was deter-

mined using the glucose assay kit (Sigma-Aldrich).

Western blot analysis
Approximately ten OD600 cells were collected from respective cultures, pelleted and flash frozen in

liquid nitrogen until further use. The cells were re-suspended in 400 microliters of 10% trichloroacetic

acid (TCA) and lysed by bead-beating three times: 30 s of beating and then 1 min of cooling on ice.

The precipitates were collected by centrifugation, re-suspended in 400 microliters of SDS-glycerol

buffer (7.3% SDS, 29.1% glycerol and 83.3 mM tris base) and heated at 100˚C for 10 min. The super-

natant after centrifugation was treated as the crude extract. Protein concentrations from extracts

were estimated using bicinchoninic acid assay (Thermo Scientific). Equal amounts of samples were

resolved on 4% to 12% bis-tris gels (Invitrogen). Western blots were developed using the antibodies

against the respective tags. We used the following primary antibody: 538 monoclonal FLAG M2

(Sigma-Aldrich). Horseradish peroxidase–conjugated secondary antibody (anti-mouse) was obtained

from Sigma-Aldrich. For Western blotting, standard enhanced chemiluminescence reagents (GE

Healthcare) were used.

Metabolite extractions and measurements by LC-MS/MS
Light cells and dark cells isolated from wild-type colonies grown in different media were rapidly har-

vested and metabolites were extracted as described earlier (Walvekar et al., 2018). Metabolites

were measured using LC-MS/MS method as described earlier (Walvekar et al., 2018). Standards

were used for developing multiple reaction monitoring (MRM) methods on Sciex QTRAP 6500.

Metabolites were separated using a Synergi 4m Fusion-RP 80A column (100 � 4.6 mm, Phenomenex)

on Agilent’s 1290 infinity series UHPLC system coupled to the mass spectrometer. For positive

polarity mode, buffers used for separation were- buffer A: 99.9% H2O/0.1% formic acid and buffer

B: 99.9% methanol/0.1% formic acid (Column temperature, 40˚C; Flow rate, 0.4 ml/min; T = 0 min,

0% B; T = 3 min, 5% B; T = 10 min, 60% B; T = 11 min, 95% B; T = 14 min, 95% B; T = 15 min, 5% B;

T = 16 min, 0% B; T = 21 min, stop). For negative polarity mode, buffers used for separation were-

buffer A: 5 mM ammonium acetate in H2O and buffer B: 100% acetonitrile (Column temperature, 25˚

C; Flow rate: 0.4 ml/min; T = 0 min, 0% B; T = 3 min, 5% B; T = 10 min, 60% B; T = 11 min, 95% B;

T = 14 min, 95% B; T = 15 min, 5% B; T = 16 min, 0% B; T = 21 min, stop). The area under each

peak was calculated using AB SCIEX MultiQuant software 3.0.1.

15N- and 13C- based metabolite labeling experiments
For detecting 15N label incorporation in nucleotides, 15N Ammonium sulfate (Sigma-Aldrich) and 15N

Aspartate (Cambridge Isotope Laboratories) with all nitrogens labeled were used. For 13C-labeling

experiment, 13C Trehalose with all carbons labeled (Cambridge Isotope Laboratories) was used. All

the parent/product masses measured are enlisted in Table 1. For all the nucleotide measurements,

release of the nitrogen base was monitored in positive polarity mode. For all sugar phosphates, the

phosphate release was monitored in negative polarity mode. The HPLC and MS/MS protocol was

similar to those explained above.

Building and implementing the model
The model simulation code is available via GitHub ref: https://github.com/vaibhhav/

yeastmetabcolony.
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Components
The model consists of (i) a population of light and dark cells, and (ii) a shared metabolic resource

that is produced by, and is accessible to the cells. Therefore, the dynamic processes involved can be

broadly divided into those pertaining to the cells of the colony and those pertaining to the shared

resource. The cells and resource occupy a 2-D square grid, which represents the surface of an agar

plate. If one takes each grid length to correspond to 50 mm in real space, then, given the average

size of a yeast cell at 5 mm, a single grid location can be imagined to contain upto 100 cells, which

we term ‘cell blocks’. We coarse-grain the model such that each location is either empty, occupied

by light cell block, or a dark cell block. That is, we ignore the possibility that cell blocks might be

mixed. This is simply for computational ease. A more detailed model consisting of smaller grid

lengths such that each location could hold at most a single cell would exhibit the same behavior as

the coarse-grained one, but would require much larger grid sizes and longer computational times in

order to simulate realistic sized colonies. With the coarse-graining, our simulations use a 250 � 250

grid. Each grid location also contains saturating amounts of amino acids, as well as a certain level of

the shared metabolic resource. If a location has a cell block, that block also has internal levels of the

amino acids and the resource, which may be different from the external level in that location.

Initial state of the grid
We start with an approximately circular colony 20 grid lengths in radius (covering 1257 grid loca-

tions) in the center of the 250 � 250 grid. 95–99% of these 1257 cell blocks are in the dark state,

while 1–5% are in the light state, distributed randomly in the colony. The concentration or level of

the shared resource is set to zero at every location. However, at all times, we assume the presence,

throughout the grid, of saturating amounts of amino acids that are required for the (slow) growth of

the dark cells.

Dynamics of the model
The grid is updated at discrete time steps. Each time step corresponds to 12 min in real time, and

all simulations are run for 750 time steps, that is 150 hours of real time (~6 days). In each time step,

we first go over every cell block to implement the following processes:

If a block at location (x,y) is dark, then:

1. If the resource level at (x,y) is above a certain threshold S = 3.0 units of resource, then the cells
in the block switch to being light cells with a probability p=0.5

2. If the block is still dark, then add R = 0.07 units to the resource level at (x,y).
3. Consume (internalize) C = 0.05 units of amino acids (present in saturating amounts at all

locations)
4. If the internal amino acid level is greater than or equal to 1.0, the dark block can divide with a

probability gd = 0.01.
5. If the block can divide, then check if there’s an empty location in the immediate neighborhood.

The immediate neighborhood is the set of locations {(x-1,y), (x + 1,y), (x,y-1), (x,y + 1)}.
6. If there’s at least one empty space, preferably divide into an empty location which has more

occupied neighbors. After division, the two daughter blocks are each assigned half the internal
amino acid reserves of the original mother block.

If a block at location (x,y) is light, then:

1. If the resource level at (x,y) is greater than or equal to C = 0.05 units, consume (internalize) all
of it.

2. If the internal resource level is greater than or equal to 1.0, the dark block can divide with a
probability gl = 0.04.

3. If the block can divide, then check if there’s an empty location in the immediate neighborhood.
The immediate neighborhood is the set of locations {(x-1,y),(x + 1,y),(x,y-1), (x,y + 1)}.

4. If there’s at least one empty space, preferably divide into an empty location that has more
occupied neighbors. After division, the two daughter blocks are each assigned half the internal
resource reserves of the original mother block.

(The above set of rules and parameters is for simulating the wild-type colony. For the variations

highlighted in the main text (Figures 3E and 6A, bottom row), see the ‘Variants of the wild-type

model’ section below.)
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These processes implement growth of cells, as well as production and consumption of amino

acids and the shared metabolic resource. Subsequent to this, in each time step, we allow diffusion of

the resource levels across the grid (the “external” level at the location, not the internal levels in cell

blocks), using a numerical scheme called Forward Time Central Space (FTCS). Say that the value of

the resource at time t and location (x,y) is given by Ut
x;y. The FTCS scheme updates the value simulta-

neously at all locations using the following formula:

UtþDT
x;y ¼Ut

x;y þD
DT

DL2
Ut

x�1;y þ Ut
xþ1;y þ Ut

x;y�1
þ Ut

x;yþ1
� 4Ut

x;y

� �

where DT is the time step and DL is the space step, or grid length, and D is the diffusion constant

for the resource.

Model parameters

1. The parameters of the model are shown in Table 3. Time and length units are chosen such
that each time step is one unit of time, and each grid length is one unit length. With these
choice of units, the growth parameters for light and dark cells, respectively, are gl = 0.04,
gd = 0.01. These were chosen so as to reflect the relative rates of diffusion and division. Light
cells were observed to grow faster than the dark cells, so their respective growth parameters
are set accordingly.

2. The switching threshold parameter (S = 3.0) was chosen to account for a delay in the switching
of dark cells to another metabolic pathway via nutrient sensing as well as to give a reproduc-
ible facsimile of the experimental colonies.

3. The shared resource production value was chosen to be 7% (R = 0.07) of the minimum
required to divide. In each time step, every block of dark cells adds this amount to the
resource grid. This was chosen as a default value, which gave a reproducible facsimile of the
experimental colonies. Other values were tried and their effect is seen in Figure 3—figure
supplement 1C.

4. All cells consumed a small level of metabolites (the shared resource or amino acids) in each
time step. This value was chosen to be 5% of the minimum required for division (C = 0.05).
This gave division times that approximately matched the division times observed
experimentally.

5. The switching probability (p=0.5) was chosen to add an element of stochasticity. So even if the
threshold resource conditions are met, dark cells have a 50% chance to switch to light cells in
that time step.

6. The choice of the diffusion constant (D = 0.24) is limited by the numerical stability of the FTCS
scheme, which allows only a maximum value of D = 0.25. In real time and length units, this cor-
responds to a diffusion constant Deff of 8.7 � 10�13 m2/s. Deff is an order of magnitude smaller
than the diffusion constant for sugars like glucose and sucrose in water (Roache, 1972). Since
the agar used for the experiments is mostly water, the diffusion constants in water can be con-
sidered as a good reference point.

Variants of the wild-type model in different figures
Figure 3E, Figure 6A (bottom row) and Figure 6—figure supplement 1C–D showcase some of the

final colonies generated by the simulations when the rules described above are varied. The following

changes were made to the rules/parameters to generate these. 3E(i): No sharing: Set R = 0.

3E(ii): No switching from dark to light state: Set p=0.

3E(iii): ‘Reverse’ sharing: Set R = 0. When a cell block is light it adds R’=0.07 to the amino acid

grid at the same location.

6A(bottom row): No resource thresholding: Set S = 0.

Figure 6—figure supplement 1C–D: Linear switching: Set S = 0. The probability of switching

from dark to light state, p, is now a linear function of the locally available resource with a maximum

value of 1.0. That is, p = max (m � Ut
x;y, 1.0), where m is a parameter that sets the slope of this linear

relationship.
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