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The phenomenon of mitochondria donation is found in various tissues of humans and
animals and is attracting increasing attention. To date, numerous studies have described
the transfer of mitochondria from stem cells to injured cells, leading to increased ATP
production, restoration of mitochondria function, and rescue of recipient cells from
apoptosis. Mitochondria transplantation is considered as a novel therapeutic approach
for the treatment of mitochondrial diseases and mitochondrial function deficiency.
Mitochondrial dysfunction affects cells with high energy needs such as neural, skeletal
muscle, heart, and liver cells and plays a crucial role in type 2 diabetes, as well as
Parkinson’s, Alzheimer’s diseases, ischemia, stroke, cancer, and age-related disorders.
In this review, we summarize recent findings in the field of mitochondria donation
and mechanism of mitochondria transfer between cells. We review the existing clinical
trials and discuss advantages and disadvantages of mitochondrial transplantation
strategies based on the injection of stem cells, isolated functional mitochondria, or EVs
containing mitochondria.

Keywords: mitochondria donation, mitochondria transplantation, tunneling nanotubes, extracellular vesicles, cell
fusion, isolated mitochondria

INTRODUCTION

Mitochondria are key players in the cell’s energy production, calcium homeostasis, signaling,
and apoptosis (Rossi et al., 2019). Deficiency in mitochondrial function is observed in
inherited mitochondrial diseases as well as cancer, diabetes, neurodegenerative diseases (including
Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease), aging, and age-related
metabolic disorders—so-called mitochondria-associated diseases (Bhatti et al., 2017). Replacement
of non-functional mitochondria by transplantation of healthy mitochondria into injured cells
is believed to potentially be a universal solution for the treatment of mitochondrial deficiency
of different etiologies. Delivery of even a few healthy mitochondria can lead to the sustained
restoration of mitochondria function in a recipient cell.
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Detection of mitochondria donation from mesenchymal
stromal cells also known as mesenchymal stem cells (MSCs) to
recipient cells aroused great interest in the field of regenerative
medicine. Mitochondrial donation leads to the rescue of
injured cells, improved oxidative phosphorylation, increased
ATP production, and restoration of mitochondrial function
(Rustom, 2016). As a result of these findings, it is now
generally accepted that the reparative function of MSCs is
partly mediated by mitochondrial transfer, which seems to be
an evolutionarily conserved phenomenon. Horizontal transfer
of mitochondria between mammalian cells provides a novel
therapeutic approach for the treatment of mitochondrial and
mitochondria-associated diseases and stimulates development of
mitochondria transplantation strategies.

The development of a robust mitochondria delivery protocol
is a critical issue that needs to be addressed prior to any
widespread clinical application of mitochondrial transplantation.
Due to the immunogenic complications of using isolated
mitochondria (Ishikawa et al., 2010; Zhang et al., 2010;
Wang et al., 2018), MSC-based mitochondria transfer is
considered as a promising therapeutic strategy. Since it was first
described by Islam et al. (2012) discovered that BMSCs transfer
mitochondria to injured lung alveolar epithelial cells. MSC-
based mitochondria transfer has been used for the treatment
of diverse mitochondria-associated disorders such as ischemic
stroke (Liu et al., 2019), spinal cord injury (Li et al., 2019),
kidney injury (Zou et al., 2018), cardiomyoblast ischemia model
(Cselenyak et al., 2010), and respiratory system injury (Islam
et al., 2012). A more recent shift in the field of regenerative
medicine, from cell based to cell-free therapy (Gomzikova and
Rizvanov, 2017), has led to the study of new approaches,
such as mitochondria coating with biocompatible polymers and
encapsulation into microvesicles.

In this review, we provide an overview of recent findings in the
field of mitochondria donation and mechanisms of mitochondria
transfer. We discuss a therapeutic strategy based on injection
of isolated functional mitochondria and describe advances and
challenges of mitochondrial transplantation strategies, based on
injection of stem cells, isolated functional mitochondria, or EVs
containing mitochondria.

MSCS DONATE MITOCHONDRIA TO
TARGET CELLS

The phenomenon of mitochondria transfer was first observed
between endothelial progenitor cells and cardiac myocytes
(Koyanagi et al., 2005). Subsequently, mitochondrial donation
from MSCs was described by Spees et al. (2006). The authors
demonstrated that after cocultivation of hMSCs with A549 ρ◦cells
(containing defective mtDNA), some A549 ρ◦cells acquired
functional mitochondria derived from donor hMSCs. Cells
containing donor mitochondria showed active proliferation,
decreased levels of reactive oxygen species, increased ATP
production, membrane potential, and oxygen consumption
(Spees et al., 2006). Furthermore, Plotnikov et al. (2008)
also reported mitochondrial transfer when investigating the

cocultivation of MSCs with rat cardiomyocytes or rat renal
tubular cells (Plotnikov et al., 2010); the number of tunneling
nanotubes (TNTs) significantly rose in correlation with the
detection of mitochondrial transfer. Further studies have since
confirmed the process of intercellular mitochondrial transfer
in vitro (Acquistapace et al., 2011; Pankotai et al., 2012). With
Islam et al. (2012) providing the first evidence of mitochondrial
transfer in vivo (Islam et al., 2012), by demonstrating in an
LPS-induced acute lung injury model, bone marrow-derived
MSCs transfer mitochondria to the injured alveolar epithelial
cells inducing generation of ATP and increasing mouse survival
(Islam et al., 2012). In addition to mitochondrial donation
from MSCs, mitochondrial donation has also been observed
from endothelial cells to cancer cells (Pasquier et al., 2013),
from astrocytes to neurons (Hayakawa et al., 2016), and
from cancer-associated fibroblasts to prostate cancer cells
(Ippolito et al., 2019).

Since these first studies reported the existence of intercellular
mitochondria transfer, numerous studies have gone on to
demonstrate that MSCs donate mitochondria leading to the
rescue of the injured cell, improved aerobic respiration, and
inhibited apoptosis. This has been demonstrated to occur in
endothelial cells within in vitro ischemia–reperfusion models
(Liu et al., 2014), as well as observations of attenuation of
alveolar destruction and altered severity of fibrosis in models of
cigarette smoke-induced damage (Li et al., 2014), neuroprotective
effects and decline of infarct volume in the brain (Babenko
et al., 2015), amelioration of acute renal ischemia reperfusion
injury (Gu et al., 2016), recovery of mitochondrial function
in rat cardiomyocytes in vitro after ischemia/reperfusion injury
(Han et al., 2016), protection of corneal epithelial cells from
Rotenone-induced oxidative damage (Jiang et al., 2016), and
decreased mutation ratio and oxidative damage in cells derived
from a patient with mitochondrial disease (MERRF syndrome)
(Chuang et al., 2017).

MSCs are readily attracted to tumor stroma. Studies of
the tumor microenvironment have also demonstrated that
MSCs can donate mitochondria to cancer cells, inducing
their chemoresistance (Pasquier et al., 2013; Moschoi et al.,
2016) and restoring impaired mitochondria function (Lin
et al., 2015). Transfer of normal mitochondria from human
umbilical cord-derived MSCs into breast cancer MDA-MB-
231 cells increased the proliferation and invasiveness of MDA-
MB-231 cells as well as enhance cisplatin-induced apoptosis
(Kheirandish-Rostami et al., 2020). However, in contrast to
MSCs, mitochondria isolated from normal human astrocytes
inhibited malignant proliferation of human glioma U87 cells,
as well as increasing aerobic respiration, attenuating glycolysis,
and enhancing radiosensitivity both in vitro and in vivo (Sun
et al., 2019). This phenomenon underlines the complexity
and significance of the tumor microenvironment in cancer
progression. Future research of the mechanisms of mitochondrial
transfer between tumor and tumor-associated cells will hopefully
provide new insights into potential therapeutic targets.

MSC mitochondrial transfer has also been observed to
regulate immune cell activity. MSCs can deliver mitochondria to
activated T cells, improving their energy state and suppressing
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aberrant autophagy in systemic lupus erythematosus (SLE)
patients (Chen et al., 2016). The authors suggested that
regulation of the energy state of T cells by mitochondrial
transfer could be a new therapeutic strategy in SLE treatment.
Mitochondrial transfer from MSC to macrophages results in
enhanced alveolar macrophages with increases in phagocytosis,
oxidative phosphorylation, and antimicrobial effects in vivo in the
context of acute respiratory distress syndrome (ARDS) (Jackson
et al., 2016; Jackson and Krasnodembskaya, 2017). It is believed
that mitochondrial donation is a novel mechanism of MSC-
mediated antimicrobial effects, mediated by enhancement of
macrophage phagocytic activity. Morrison et al. (2017) revealed
a novel mechanism of modulation of macrophage polarization
through mitochondrial donation. The authors showed that MSCs
transfer functional mitochondria enclosed in EVs, inducing
M2 macrophage polarization and enhancement of phagocytic
capacity, protecting against endotoxin-induced lung injury and
ameliorating lung injury in vivo (Morrison et al., 2017).
Regulation of T cell function by mitochondrial transfer was
observed under cocultivation of T helper 17 (Th17) cells
with bone marrow-derived MSCs (Luz-Crawford et al., 2019).
The authors showed that pro-inflammatory Th17 cells acquire
an anti-inflammatory phenotype after the mitochondria were
transferred, whereas a reduction of transferred mitochondria
may contribute to the chronic inflammation seen in rheumatoid
arthritis (RA) synovitis (Luz-Crawford et al., 2019). The concept
of organelle−based therapy for the treatment of immune diseases
was demonstrated using a graft versus host disease (GvHD)
mouse model (Court et al., 2020). Transplantation of human T
cells treated with mitochondria led to a significant improvement
in survival and reduction in tissue damage (Court et al., 2020).

In recent years, the number of articles describing
mitochondria transfer has increased tremendously. We have
summarized the body of research in which mitochondrial
transfer between stem cells and recipient cells was detected, as
well as mitochondrial transplantation in various disease models
in Supplementary Table 1.

Injury and stress signals were shown to trigger the transfer
of mitochondria from MSCs to recipient cells. Mitochondrial
donation by MSCs was observed in mtDNA-deficient cells
and mitochondrial toxin-treated cells, whereas mitochondrial
transfer was not detected in cells harboring pathogenic
mutations (Cho et al., 2012). The process of mitochondrial
donation by MSCs was triggered by damaged somatic cell-
derived mitochondria (Mahrouf-Yorgov et al., 2017). Their
uptake and degradation by MSCs led to the induction of
the cytoprotective enzyme heme oxygenase-1 (HO-1) and
stimulation of mitochondrial biogenesis (Mahrouf-Yorgov et al.,
2017). Reactive oxygen species released by cells under oxidative
stress and inflammation may also trigger mitochondrial donation
(Paliwal et al., 2018). However, little is known about the intrinsic
signaling mechanisms of mitochondrial transfer. It was shown
that release of extracellular mitochondrial particles mediated by a
calcium-dependent mechanism involving CD38 and cyclic ADP
ribose signaling may play a key role (Hayakawa et al., 2016).

Based on published studies, it has been proposed that cell
stress is required for organelle transfer. However, accumulating

evidence suggests that mitochondrial transfer from MSCs also
occurs under normal physiological conditions. Unidirectional
transfer of intact mitochondria was observed from MSCs to
PBMCs (Court et al., 2020), 56% in CD4+ cells, 17% in CD8+T
cells, and 24% in B cells (Luz-Crawford et al., 2019), as well as to
corneal endothelial cells (CECs), 661W cells (a photoreceptor cell
line) and ARPE-19 cells (a retinal pigment epithelium cell line)
(Jiang et al., 2020), primary astrocytes and neurons (Gao et al.,
2019), and human umbilical cord vein endothelial cells (Feng
et al., 2019) in coculture conditions.

Mitochondrial transfer from MSCs to recipient cells
induced elevation of mitochondrial membrane potential,
increased respiration, and improved energy metabolism
as a result. Mitochondrial donation to the immune cells
additionally led to metabolic and function alterations with
acquisition of an anti-inflammatory phenotype. It is known
that the mitochondrial metabolism influences stem cell fate
and regulates pluripotency (Zhang et al., 2018). However,
studies investigating the role of MSC-derived mitochondria
on the morphology of recipient cells and their properties are
few. Konari et al. (2019) observed that transfer of isolated
mitochondria caused structural restoration of renal proximal
tubular epithelial cells (PTECs) and the structure of the
tubular basement membranes and brush borders in vivo. We
believe that the influence of mitochondrial donation by MSCs
on recipient cell morphology, physiological properties, and
mitochondria-dependent metabolic reprogramming warrants
further study in the future.

The ability of MSCs to transfer mitochondria may be
enhanced by upregulation of Miro1 (adaptor protein
participating in mitochondria moving along microtubules)
(Ahmad et al., 2014), which can be primed in a number of
ways including coculturing MSCs with the target cells (Babenko
et al., 2015), under high level of TNFα-IP2 expression (Zhang
et al., 2016), by antioxidant treatment (N-acetyl-L-cysteine
and L-ascorbic acid 2-phosphate) of MSCs (Li et al., 2017),
by TNF-α treatment (induce TNTs formation) (Melcher et al.,
2017), or damaged somatic cell-derived mitochondria (Mahrouf-
Yorgov et al., 2017). Modulation of mitochondrial donation
capacity might be one route to increasing the therapeutic
potential of MSCs.

In theory, even one functional mitochondrion transferred
into a recipient cell may propagate, due to the evolutionarily
conserved mechanism for the selective amplification of wild-type
mtDNA (Hill et al., 2014). However, this assumption still needs to
be experimentally verified. Recently, the fate of delivered foreign
mitochondria in target cells was investigated by Jiang et al. (2020)
using mitochondria Cyto-Tracer. The authors demonstrated
that transferred mitochondria were either digested by the host
lysosomes or expelled from the cell within 3–5-µm round bubbles
after 8 days (Jiang et al., 2020). However, the main difficulty in the
mitochondrial tracking studies is attenuation of fluorescent signal
in recipient cells due to mitochondrial division. To detect the
mitochondrial heteroplasmy in recipient cells and evaluate the
lifespan of the foreign mitochondria in the recipient cells, more
sensitive methods of detection such as sequencing and isotope
labeling may provide a clearer picture.
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MECHANISM OF MITOCHONDRIAL
TRANSFER

Intercellular mitochondrial trafficking occurs via tunneling
nanotubes (TNTs), extracellular vesicles (EVs), and cellular
fusion. Recently, cell and cytoplasmic membrane-free
respiratory competent mitochondria were observed in blood
and conditioned cell culture medium (Al Amir Dache et al.,
2020). Although the role of cell-free mitochondria in intercellular
communication remains to be fully understood, the practical
approaches aimed to transfer intact mitochondria into target
cells have been previously developed. We summarize the known
ways of mitochondrial transfer into recipient cells in Figure 1.

Mitochondrial Transfer via TNTs
TNTs are intercellular, actin, or microtubule-based cytoplasmic
channels enveloped by a cytoplasmic membrane, connecting

cells and forming intercellular transport networks (Vignais et al.,
2017; Jash et al., 2018). TNTs can be formed by thin filaments
of F-actin and a thicker subset (0.7 µm) of both F-actin and
microtubules (Onfelt et al., 2004; Wang et al., 2018). The first
type are called actin-based TNTs (AC-TNTs); the last type are
microtubules containing TNTs (MT-TNTs) (Rustom, 2016). AC-
TNTs are characterized by a limited lifespan and transfer of
small molecules, organelles, and ions, whereas MT-TNTs have
an increased diameter, have a prolonged lifespan, and transfer
larger organelles such as mitochondria (Rustom, 2016). MT-
TNTs were first described by Wang et al. in the context of a long-
distance transport of mitochondria from control cells to rescue
of apoptotic pheochromocytoma (PC12) cells, stressed by UV
radiation (Wang and Gerdes, 2015; Rustom, 2016). Since then,
numerous investigations have shown mitochondrial donation via
TNTs, these are summarized in Table 1.

Ahmad et al. (2014) investigated the molecular mechanisms
of mitochondrial donation, demonstrating that Miro1 is

FIGURE 1 | The cell-based (A) and cell-free (B) strategies of mitochondria delivery into recipient cells. A (I)—mitochondria transfer through TNTs, A
(II)—mitochondria exchange after cell fusion, B (I)—injection of isolated mitochondria, B (II)—application of peptide conjugated mitochondria, B (III)—delivery of
mitochondria encapsulated into EVs.
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TABLE 1 | Studies demonstrating TNT-mediated mitochondria transfer.

Donor cell Recipient cell Conditions References

Human endothelial progenitor cells Rat cardiomyoctes Normal conditions, in vitro Koyanagi et al., 2005

Human mesenchymal stem cells (hMSCs) Rat cardiomyocytes Normal conditions, in vitro Plotnikov et al., 2008

Mesenchymal multipotent stromal cells Renal tubular cells Normal conditions, in vitro Plotnikov et al., 2010

Mouse endothelial progenitor cells Stressed human endothelial
cells

(1) Exposure to glycated collagen I in vitro
(2) Streptozotocin (STZ)-induced diabetes in mice

Yasuda et al., 2011

Mouse bone marrow-derived stromal cells
(mBMSCs)

Alveolar epithelium Sepsis model of acute lung injury in vivo Islam et al., 2012

MSCs and endothelial cells Cancer cells (MCF7, MDA,
OVCAR3, SKOV3)

Normal conditions, in vitro Pasquier et al., 2013

Human-induced pluripotent stem cell-derived
MSCs

Bronchial epithelial cells
(BEAS-2B)

(1) Injury induced by cigarette smoke medium in vitro
(2) Model of cigarette smoke–induced lung damage in vivo

Li et al., 2014

MSCs Bronchial epithelial cells (1) Mitochondrial dysfunction induced by pro-inflammatory
supernatant in vitro
(2) Mouse model of mitochondrial dysfunction and lung
injury in vivo

Ahmad et al., 2014

MSCs Human umbilical vein
endothelial cells

Ischemia–reperfusion model in vitro Liu et al., 2014

Mesenchymal multipotent stromal cells Rat neural cells (1) Normal conditions, in vitro
(2) Middle cerebral artery occlusion model of focal ischemia
in vivo

Babenko et al., 2015

MSCs and iPSC-MSCs Mouse cardiomyocytes (1) Doxorubicin-induced Injury in vitro
(2) Mouse model of anthracycline-induced cardiomyopathy
in vivo

Zhang et al., 2016

hMSCs Human lung epithelial cells
(BEAS2B)

Normal conditions, in vitro Sinclair et al., 2016

MSC Lung macrophages (1) Normal conditions, in vitro
(2) Acute respiratory distress syndrome in vivo

Jackson et al., 2016

MSCs Corneal epithelial cells Rotenone-induced oxidative stress in vitro Jiang et al., 2016

BM-MSCs H9c2 cardiomyocytes Ischemia/reperfusion injury in vitro Han et al., 2016

Bone marrow stromal cells Acute myeloid leukemia blasts Normal conditions, in vitro Marlein et al., 2017

hMSC hMSCs H2O2 induced oxidative stress in vitro Li et al., 2017

Wharton’s jelly MSCs Mitochondria-deficient cells
(mutation in mitochondrial DNA)

Cells from patient with MERRF syndrome, in vitro Chuang et al., 2017

MSCs T-cell acute lymphoblastic
leukemia cells

Normal conditions, in vitro Hough et al., 2018

iPSC-MSCs Human BEAS-2B bronchial
epithelium

(1) CoCl2-induced mitochondrial dysfunction in vitro
(2) Model of asthma inflammation in mice in vivo

Yao et al., 2018

Human iPSC-MSCs Rat neuroendocrine PC12 cells CoCl2-induced cell damage in vitro Yang et al., 2020

BM-MSCs, bone marrow-derived MSCs; AD-MSCs, adipose-derived MSCs; iPSC-MSCs, induced pluripotent stem cell-derived MSCs.

essential for mitochondrial transport. The lack of Miro1
retarded mitochondrial movement through TNTs and
abolished the MSC therapeutic effect. Yao et al. (2018)
showed that connexin 43 regulates TNT formation, since
its knockdown diminished TNT formation in human-
induced pluripotent stem cells (iPSCs) and derived MSCs.
Mitochondrial transfer was reduced in all cocultures after
microtubule/TNT or endocytosis inhibition (Sinclair et al., 2016;
Jackson and Krasnodembskaya, 2017).

Mitochondrial Transfer via EVs
EVs are a heterogeneous group of bilipid membrane vesicles,
encapsulating proteins and genetic material, as well as organelles,
including mitochondria (Islam et al., 2012), ribosomes
(Court et al., 2008), and proteasomes (Yu et al., 2014). EVs
transfer biomolecules and organelles to target cells to mediate

long-distance intercellular cross talk. Large EVs 100–1,000 nm in
size (microparticles) are able to encapsulate mitochondria which
are on average nearly 500 nm in size (Vignais et al., 2017). Falchi
et al. (2013) also described large shedding vesicles (1–8 µm in
diameter) that contained mitochondria in cultures of human
fetal astrocytes.

Islam et al. (2012) first described the EV-mediated transfer
of mitochondria from BMSCs to injured lung alveolar epithelial
cells in a model of LPS-induced acute lung injury. The same LPS-
induced acute lung injury model was also used by Morrison et al.
(2017) to demonstrate the mechanism of action of MSC-derived
EVs in the amelioration of lung injury. The authors showed that
the transfer of mitochondria from MSCs to macrophages was
mediated by EVs (Morrison et al., 2017). Hayakawa et al. (2016)
also observed the presence of extracellular particles containing
mitochondria in conditioned medium from rat cortical astrocytes
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in vitro. The authors also demonstrated that astrocytes in mice
can release functional mitochondria that enter neurons in a
mouse model of focal cerebral ischemia (Hayakawa et al., 2016).
Phinney et al. (2015) showed that encapsulating of mitochondria
into EVs might be a rescue mechanism from oxidative stress and
clearance of depolarized mitochondria.

There have been multiple reports of EVs carrying and
delivering mitochondria to a wide range of cell types. EVs
of myeloid-derived regulatory cells (MDRCs) delivered
mitochondria to recipient T cells in vitro (Hough et al.,
2018). EV-mediated mitochondrial transfer was detected from
renal scattered tubular cells to tubular epithelial cells in vitro and
to stenotic kidney in vivo causing a protective effect, restoring
mitochondrial function in vitro, and improving perfusion and
oxygenation in vivo (Zou et al., 2018). Zhang et al. (2020) showed
that an average 83.11% of HSC-derived EVs, B cell-derived EVs,
and T cell-derived EVs carry respiring mitochondria. Neural
stem cells (NSC) deliver functional mitochondria to target
cells via Mito-EVs increasing Rho0 cell survival in vitro and
ameliorating clinical deficits in a mouse model of autoimmune
encephalomyelitis (Peruzzotti-Jametti et al., 2020). However, the
mechanisms of how mitochondria are encapsulated into EVs
remains insufficiently investigated.

Cell Fusion
Acquistapace et al. (2011) showed that under coculture of mouse-
differentiated cardiomyocytes with human multipotent adipose-
derived stem cells, cell fusion occurs. The authors showed that
as a result of mitochondrial transfer into cardiomyocytes, the
resulting hybrid cells were reprogrammed to a progenitor-like
state (Acquistapace et al., 2011). To date, several studies have
shown that stem cells can fuse with neurons (Cusulin et al.,
2012) and hepatocytes (Terada et al., 2002), forming hybrid
cells which recapitulate traits specific for stem and differentiated
cells (Murray and Krasnodembskaya, 2019). It was shown that
length of intercellular connection is inversely proportional to the
number of transferred mitochondria: elongation of the distance
between cells led to fewer mitochondria being transferred (Wada
et al., 2017). Cell fusion results in massive mitochondrial delivery
into recipient cells. Cell fusion is a rare event under normal
conditions, but hypoxia-induced apoptosis (Noubissi et al., 2015),
chronic inflammation (Weimann et al., 2003), or irradiation
(Alvarez-Dolado et al., 2003) markedly increased it. Increased
cell fusion events between MSCs and differentiated cells as
a consequence increase the mitochondria transfer and tissue
restoration with heterokaryons detected in regenerated tissue.

THERAPY BASED ON ISOLATED
MITOCHONDRIA

Replacement of damaged mitochondria with isolated functional
mitochondria which could be internalized by targeted cells
has been proposed to treat mitochondrial diseases. Autologous
respiration competent mitochondria (naked mitochondria)
isolated from non-ischemic tissue and injected directly
into the ischemic myocardium can protect the heart from

ischemia–reperfusion injury (Masuzawa et al., 2013). In
neurodevelopmental diseases, systemic administration of
isolated mitochondria improved the endurance of mice and
prevented the progression of Parkinson disease by increasing
the activity of the electron transport chain, decreasing reactive
oxygen species levels, and preventing cell apoptosis and necrosis
(Shi et al., 2017). Animal models of schizophrenia show that
intra-prefrontal cortex injection of isolated mitochondria
prevents the decrease of mitochondrial potential and attentional
deficit at adulthood (Robicsek et al., 2018). The introduction
of isolated mitochondria in rats with doxorubicin-mediated
nephrotoxicity found that mitochondrial transplantation in the
renal cortex decreased cellular oxidative stress and promoted
regeneration of tubular cells (Kubat et al., 2020). Even xenogenic
mitochondria restored the motor activity and mitigated the brain
infarct area and neuronal cell death (Huang et al., 2016).

The first clinical application of mitochondrial
autotransplantation was carried out in 2017 in Boston
Children’s Hospital (United States) to treat myocardial
ischemia–reperfusion injury in pediatric patients (Emani
et al., 2017). Mitochondria were isolated from the patients’ non-
ischemic skeletal muscle and injected directly into the injured
myocardium. The authors observed improvement of ventricular
function and no adverse complications (i.e., arrhythmia,
intramyocardial hematoma, or scarring) (Emani et al., 2017).
A second clinical trial was initiated in 2018 in Sun Yat-sen
University (China) to improve oocyte quality. The procedure
included the microinjection of autologous mitochondria from
bone marrow MSCs into human sex cells (oocyte and sperm)
(ClinicalTrials.gov Identifier: NCT03639506).

In general, naked mitochondria show low internalization
ratios into target cells due to the negative surface charge.
Therefore, peptide-mediated mitochondrial delivery (Chang
et al., 2013), magnetic nanoparticles (Macheiner et al., 2016),
and centrifugation-based (Kim et al., 2018) approaches were
applied to enhance the efficiency of naked mitochondrial delivery.
Peptide labeling of mitochondria was applied by Chang et al.
(2016) before injection into rat brains. The authors showed
significant enhancement of the survival of dopaminergic neurons
and support of mitochondrial function after mitochondria were
injected into a mouse model of Parkinson’s disease (Chang et al.,
2016). More recently, biocompatible polymers (dextran with
lipophilic cation triphenylphosphonium) have been suggested as
a more effective strategy of coating of isolated mitochondria to
improve uptake (Wu et al., 2018).

MITOCHONDRIAL DELIVERY
STRATEGIES

Since mitochondrial donation by stem cells has been
demonstrated to play a significant role in rescuing injured
cells and tissues, stem cell transplantation was suggested
as one of the perspective approaches for mitochondrial
delivery. Joerg et al. showed that allogeneic hematopoietic
stem cell transplantation restored mitochondrial function and
improved clinical symptoms in patients with mitochondrial
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neurogastrointestinal encephalomyopathy (Halter et al., 2015).
According to ClinicalTrials.gov, there were the following
ongoing clinical trials of cell therapy for the treatment of
mitochondrial dysfunction and mitochondria-associated
diseases: Pearson syndrome (NCT03384420), ophthalmic
pathology (including age-related macular degeneration,
glaucoma) (NCT03011541), inherited metabolic disorders
(including mitochondrial neurogastrointestinal encephalopathy)
(NCT02171104)1. However, a major challenge of any stem
cell-based therapy is oncogenic transformation, undesired
differentiation, and blood vessel occlusion, which have to date
limited their clinical use (Gomzikova et al., 2019).

Stability of naked mitochondria in serum was a key question
for its successful therapeutic application. Shi et al. (2017)
showed that incubation of naked mitochondria in serum did
not significantly impair the membrane potential of mitochondria
during at least 2 h of observation. Results obtained by
Ishikawa et al. (2010) raised the question of mitochondrial
immunogenicity. The authors demonstrated that tumor cell
transplants with polymorphisms of mtDNA (mitochondria were
replaced) were rejected from the host mice by the innate immune
system with suppression of tumor formation. In addition, it
was shown that circulating mitochondrial formyl peptides and
mtDNA are recognized as damage-associated molecular patterns
(DAMPs) and cause inflammatory responses identical to those
activated in sepsis (Zhang et al., 2010; Wang et al., 2018).

Findings in recent years have demonstrated that EVs
derived from MSCs could be the most suitable instruments
for the delivery of mitochondria into damaged tissues.
The membrane of EVs keeps the integrity and functional
activity of the mitochondria intact, increasing their lifespan
in the bloodstream. However, for the clinical development
of EV-mediated mitochondrial delivery, it is necessary to
overcome the challenge of obtaining sufficient quantities of EVs
containing mitochondria.

MSCs are an attractive source for EV isolation due to
their non- or low immunogenicity and ability to proliferate
well in vitro. MSCs may be grown in sufficient quantities
for the subsequent isolation or enrichment of EVs containing
mitochondria (Wang et al., 2018). However, this is an often
time-consuming and expensive approach. There are a number of
approaches that can increase the enrichment of EVs containing
mitochondria; these include using magnetic separation (Hubbard
et al., 2019), differential centrifugation (Djafarzadeh and Jakob,
2017), or centrifugation in density gradient (Kristian, 2010) to
separate those larger EVs capable of carrying intact mitochondria.
There are also a number of techniques that induce the
artificial production of EVs from MSCs, which are capable
of carrying mitochondria and are reliably produced in much
greater quantities. These approaches have been reviewed in detail
previously (Gomzikova et al., 2019). Combining the approaches
of increased EV isolation with enrichment would enable the
creation of a therapeutic mitochondrial treatment with the
potential for robust clinical application.

1https://clinicaltrials.gov/

Mitochondrial transplantation strategies based on the
systemic injection of isolated functional mitochondria, stem
cells, or EVs still do not possess a specificity of delivery
and will affect a variety of cells, such as blood cells and
vessel-rich organs such as the lung and liver. Previously, it
was shown that the intravenous administration of isolated
mitochondria caused the mitochondria to become trapped in
the lungs (Zhu et al., 2016), while the therapeutic efficacy of
mitochondrial transplantation for the treatment of tissue injury
or mitochondria-associated disorders will benefit from the
targeted delivery of mitochondria into a specific tissue or organs.
Due to the inherited characteristics of mitochondrial diseases
and the presence of defective mitochondria in every cell of an
organism, specificity of mitochondrial delivery is not always
strictly necessary. In these cases, achieving sufficient systemic
distribution remains a clear obstacle. We suppose that a major
focus of future research will be the development of delivery
strategies or vectors to target specific cells or overcome the
challenges of systemic distribution.

CONCLUSION

Mitochondrial transfer is a prospective strategy for the treatment
of tissue injury, mitochondrial diseases, and mitochondria-
associated disorders. Single healthy delivered mitochondria can
cause the amplification of functional mitochondria in recipient
cells and rescue the phenotype of mitochondrial deficient cells.
Development of efficient mitochondrial delivery protocols is a
key task for the translation of recent findings into appropriate
clinical applications.
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