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Abstract

Targeting of permissive entry sites is crucial for bacterial infection. The targeting mechanisms are incompletely understood.
We have analyzed target-site selection by S. Typhimurium. This enteropathogenic bacterium employs adhesins (e.g. fim) and
the type III secretion system 1 (TTSS-1) for host cell binding, the triggering of ruffles and invasion. Typically, S. Typhimurium
invasion is focused on a subset of cells and multiple bacteria invade via the same ruffle. It has remained unclear how this is
achieved. We have studied target-site selection in tissue culture by time lapse microscopy, movement pattern analysis and
modeling. Flagellar motility (but not chemotaxis) was required for reaching the host cell surface in vitro. Subsequently,
physical forces trapped the pathogen for ,1.5–3 s in ‘‘near surface swimming’’. This increased the local pathogen density
and facilitated ‘‘scanning’’ of the host surface topology. We observed transient TTSS-1 and fim-independent ‘‘stopping’’ and
irreversible TTSS-1-mediated docking, in particular at sites of prominent topology, i.e. the base of rounded-up cells and
membrane ruffles. Our data indicate that target site selection and the cooperative infection of membrane ruffles are
attributable to near surface swimming. This mechanism might be of general importance for understanding infection by
flagellated bacteria.
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Introduction

Salmonella enterica subspecies 1 serovar Typhimurium (referred to

as S. Typhimurium in this study) is a common food-borne

pathogen. Central to the pathogenesis of S. Typhimurium is its

ability to invade intestinal cells, namely M-cells, epithelial cells and

possibly dendritic cells [1,2,3]. Normally, only a small fraction of

the mucosal cells are being invaded [4,5,6,7]. The mechanisms

focusing S. Typhimurium invasion to particular sites are not

completely understood.

Host-cell invasion by S. Typhimurium is the result of a multistep

process. This includes: i) 3-dimensional movement in the gut

lumen (motility, chemotaxis, diffusion); ii) transient interactions

with the mucosal surface and particulate matter within the gut

lumen; iii) reversible binding via adhesins like type 1 fimbriae

(fimH, [8,9]); iv) irreversible ‘‘docking’’ mediated via type III

secretion system 1 (TTSS-1; [8,9]). This step commits wild type S.

Typhimurium to invasion. v)secretion of bacterial virulence

factors, so called effectors, via TTSS-1 into the host cytosol; key

effectors include SopE, SopE2, SopB and SipA.; vi) manipulation

of the host cell by S. Typhimurium effectors leading to the

emergence of prominent membrane ruffles in epithelial- and M-

cells [10]; vii) host cell invasion, which often features the

simultaneous entry of several bacteria through the same ruffle.

While many steps have been studied in detail before, those steps

targeting the pathogen to a particular site (i.e. steps ii and iii) have

remained enigmatic. Thus, it is still unclear whether S.

Typhimurium actively ‘‘selects’’ target sites and which mechanism

would enable such a preference.

We speculated that motility might affect target site selection.

Like many other pathogens, S. Typhimurium employs flagella to

orient and move in 3D space [11,12].This has multiple well

documented effects on the pathogen-host interaction. The

coupling to chemo-sensing systems allows swimming towards

nutrient sources (‘‘chemotaxis’’; [13,14]). Motility is important for

the invasion of tissue-culture cells and in the induction of gut

inflammation by Salmonella spp. (in vitro: [15,16,17,18,19]; animal

model: [20,21,22,23,24]). Furthermore, the flagella might mediate

adhesion [25] or elicit host-cellular signaling responses. It

remained unclear whether flagella may also serve additional tasks,

i.e. in target site selection.

Flagellar rotation propels the bacterium with a velocity of at

least 25–55 mm/s(‘‘motility’’ [12,26]).If encountering a host cell, S.

Typhimurium is generally assumed to either be ‘‘deflected’’ back

PLoS Pathogens | www.plospathogens.org 1 July 2012 | Volume 8 | Issue 7 | e1002810

 Typhimurium
Explains Target-Site Selection and Cooperative Invasion

ETyphimurium 



into the medium or to initiate a productive infection. However, so

far, this step of the infection process has not been studied in detail.

In contrast, the interaction of motile E. coli strains and solid

surfaces has been extensively studied. On solid surfaces, E. coli

slides in large circles, remaining in contact with the surface for

extended time periods, a phenomenon called near surface

swimming (NSS). Two mechanisms explaining this ability of E.

coli to swim along solid surfaces have been proposed (Fig. 1A,

inserts I and II). According to the hydrodynamic entrapment

theory [27,28], the bacteria experience extensive drag stress at the

part of their body close to the surface, causing a ‘‘forward’’

rotation. This rotates the rod-shaped bacterium into an ‘‘upright’’

position. The upright position in turn increases the drag resistance

against the fluid, resulting in an opposing rotational force.

Ultimately, these two forces are in equilibrium, keeping the

bacterial rod at a constant angle towards the surface, thus

entrapping the organism in a tilted swimming position. The

alternative DLVO model (Derjaguin, Landau, Verwey, and

Overbeek; for a review, see [29]) explains NSS via electrostatic

and van der Waals forces. Nevertheless, both models predict that

motile bacteria encountering a solid surface would be ‘‘trapped’’ at

the surface and perform a NSS motion. It remains unclear

whether NSS may also occur on cellular surfaces and whether this

might affect target site selection.

Here, we studied target site selection by S. Typhimurium. The

initial stages of S. Typhimurium-interaction with cellular or

artificial surfaces were analyzed in real time. In this ‘‘pre-docking’’

phase of the infection, bacterial motility was of key importance. It

led to characteristic near surface swimming patterns on host-cell

surfaces and targeting to sites with a prominent surface topology.

Our data suggest a model, in which physical forces emanating

from the flagella-driven motility facilitate near-surface swimming

and explain the pathogen’s target preference during infection. We

are discussing possible implications for the disease and for

infections by other flagellated pathogens.

Results

Time-lapse microscopy reveals swimming of wild type S.
Typhimurium near cellular surfaces

To study the initial interactions of S. Typhimurium with cellular

surfaces, we employed time-lapse microscopy (supplementary

Videos S1 and S2). HeLa cells, a commonly used tissue-culture

model for studying S. Typhimurium invasion, were infected with

S.TmD4 (SL1344 sopEE2B sipA; Table 1). S.TmD4behaves like

S.Tmwt in all aspects of the early host-cell interaction (steps i to v),

but cannot trigger membrane ruffling or invasion as it lacks the key

effector proteins SopE, SopE2, SopB and SipA [8,9,30].Therefore,

S.TmD4 allowed us to focus on the initial surface interactions and

docking (Fig. 1A).

First, the initial surface interactions of S.TmD4were analyzed

using time-lapse differential-interference contrast (DIC) microsco-

py (Fig. 1B).Strikingly, S.TmD4was swimming along the cellular

surface for extended time periods (supplementary Videos S1 and

S2). Our subsequent frame-by-frame analysis of the time-lapse

videos identified several ‘‘stages’’ of this interaction:

i) ‘‘landing’’: bacteria leaving the bulk medium to come into

close proximity to the host;

ii) ‘‘near surface swimming’’ (NSS), defined as a continuous

movement along the surface of the host cell;

iii) ‘‘stopping’’:NSS is discontinued and bacteria remain at one

particular spot on/near the host cell surface for some

time(0.3 s#stopping time#remaining length of movie);

iv) ‘‘take off’’: bacteria leaving the cell surface (Fig. 1A,B;

supplementary Videos S1, S2).

In most cases, bacteria went through all stages of interaction

before taking off again. Please note that some bacteria stopped

until the end of the time-lapse movie. In this experiment, we could

not distinguish whether these bacteria were ‘‘docking’’ (i.e.

bacteria that bound irreversibly, e.g. via the TTSS-1 apparatus

[8,9,30]), or ‘‘stopping’’ (bacteria transiently stopping but

continuing NSS or taking off after the end of the movie).Stopping

did not happen randomly but occurred frequently at ‘‘obstacles’’

encountered during NSS. In particular, S. Typhimurium stopped

and docked at cells with a round morphology(i.e. a mitotic cell; see

supplementary Video S1). This provided a first indication that a

transient stop may ‘‘preselect’’ specific sites for subsequent docking

of S. Typhimurium. This would be in line with the preferential

docking of S. Typhimurium onto mitotic cells observed in earlier

studies ([31,32], see below).

For a quantification of these initial bacteria surface interactions

we used S.TmD4harboring a plasmid conferring constitutive gfp

expression (pGFP;Table 1) and time lapse fluorescence microsco-

py. This allowed precise quantification of all stages of the bacteria

surface interaction including landing and take-off, since the

fluorescent bacteria moving out of the focus layer appear as

‘‘rings’’ in the movie (see T0s in Fig. 1C). Hence, the ‘‘landing’’

stage was defined as the time between the first detection of a

‘‘ring’’ (followed by a continuous downward movement) and the

change of the direction and speed typically observed when NSS

started(T0–0.4 s in Fig. 1C). In analogy, the ‘‘take off’’-stage

describes the time between the end of stopping or NSS and the

disappearance of the ‘‘ring’’ (T41.9–42.3 s in Fig. 1C). Addition-

ally, we tracked the time spent stopped or engaged in NSS. Take-

off and landing occurred within ,3.1 and ,4.2 s, respectively

(median 0.4 s for both; Fig. 1D), while the time engaged in NSS

was significantly longer (median 1.5 s; range 0.3–41.5 s; Fig. 1D).

Overall, the bacteria covered significant distances swimming along

the host cellular surface(6.7–325 mm; see also below).Furthermore,

we observed a variety of ‘‘behaviors’’ with respect to stopping.33%

of all imaged S.TmD4(pGFP) bacteria did never stop, while 67%

made one or more stops (‘‘NSS and stop’’; Fig. 1E). Some bacteria

stopped up to 5 times on the cell surface and some S.TmD4re-

Author Summary

The animal body is protected by physical, chemical and
immunological barriers. Identification of ‘‘promising’’ tar-
get sites is therefore of importance for any pathogen. This
crucial step of the infection is still poorly understood. Here,
we have studied target site selection by the flagellated
Gram-negative gut pathogen Salmonella Typhimurium.
Using a well-established tissue culture model system, we
found that flagella-driven motility forces the bacterium
into a ‘‘near surface swimming’’ mode which facilitates
‘‘scanning’’ of the host cell surface. The near surface
swimming was found to target the pathogen towards sites
with particular topological features, i.e., rounded cells and
membrane ruffles. This explains how S. Typhimurium
‘‘identifies’’ particular target sites and infects membrane
ruffles in a cooperative manner. Interestingly, the near
surface swimming is attributable to generic physical
principles acting on moving particles. Therefore, our
findings might be of general importance for the infection
by motile pathogens.

Target Site Selection by Near Surface Swimming
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Figure 1. Near surface swimming of S. Typhimurium on cellular surfaces. (A) Scheme describing the four stages of S. Typhimurium
movement observed at cellular surfaces. Inserts (I) and (II) indicate two possible mechanisms for trapping S. Tymphimurium in proximity to the
surface: hydrodynamic entrapment (I) and DLVO interactions (II), respectively. A ‘‘stop’’ on the surface can be due to an obstruction hindering the
path of the bacterium (3a) or reversible binding/irreversible docking (3b), see text for details. (B) Snapshot of a movie acquired using DIC imaging.
HeLa cells were infected with S.TmD4 and the interactions of bacteria with cells were followed in real time. The tracks of 2 representative
S.TmD4bacteria are indicated, their estimated positions in the Z- layer while moving along the cellular surface are indicated by the shade of color. The
bacterium indicated in green encounters a mitotic cell and stops until the end of the movie while the bacterium indicated in blue crosses and leaves the
field of view. Compare supplementary Videos S1 and S2. Scale bar: 18 mm. (C) HeLa cells were infected with S.TmD4(pGFP) and 5-minute fluorescence
microscopy movies were acquired. Representative frames illustrating key stages of S. Typhimurium NSS and our quantification strategy are depicted (see
text as well as Materials and Methods for details). In each frame, the star indicates the position of the corresponding bacterium in the previous frame.
Note the fluorescent ring in time points 0 s and 42.1 s, indicating the start (‘‘landing’’) and end (‘‘take off’’) of the contact with the host cell. (D)
Quantitative analysis of the different stages of NSS (see A and C) for S.TmD4(pGFP). 5 independent experiments were analyzed (n = 122 bacteria). The box
plot represents the median, interquartile range, the 5%–95% range as well as outliers. (E) Quantification of the fraction of S.TmD4(pGFP) making no stops
(‘‘NSS only’’), or the fraction making the indicated number of stops on the cell surface during NSS (‘‘NSS and stopping’’; further analysis of the experiment
in D). Error bars:standard deviation. (F) Quantitative analysis of the time a bacterium spends stopped at the surface. The data is plotted either in seconds
(left panel) or as a fraction of the total contact time of the respective bacterium (right panel; further analysis of a subset of the experiment in D). (G) HeLa
cells were infected with S.TmD4(pGFP) and 5-minute fluorescence movies were acquired focusing either .100 mm above the cells (‘‘swimming in
solution’’) or on the cell layer. For 40 time points from 2 independent experiments the number of S.TmD4(pGFP) in a field of view was quantified. Either
the whole population (‘‘NSS and stopping’’) or only moving bacteria (‘‘NSS’’, immotile bacteria excluded) were counted. **: p,0.01; ***: p,0.0001.
doi:10.1371/journal.ppat.1002810.g001
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mained stopped (or docked)until the end of the imaging

experiment, with the longest observed stop lasting 280 s (Fig. 1F).

Overall, the bacterial density at the cellular surface was

significantly increased compared to the overlaying media

(Fig. 1G).Accumulation of bacteria at the cellular surfaces was

not attributable to gravity, as indicated by a comparison between

motile (affected by gravity and NSS) and non-motile bacteria

(affected only by gravity; suppl. Fig. S1). Much rather, flagella-

driven NSS and ensuing stops accounted for the increased local S.

Typhimurium density at the host cell surface. This suggested that

the prolonged contact time might contribute to the target site

selection by S. Typhimurium.

Fim-adhesins and TTSS-1 do not affect the initial surface
interactions, i.e. landing, NSS, stopping or take-off

In order to determine the role of bacterial adhesins in the initial

phases of the surface interaction, we analyzed two S. Typhimur-

ium mutants, S.Tm-T1 (SL1344 invG) and S.Tm-T1-Fi (SL1344 invG

fimD; Tab. 1). These mutants lack one or two surface structures,

namely type 1 fimbriae and the TTSS-1 apparatus, which are

known to mediate reversible binding and irreversible docking of S.

Typhimurium to HeLa and other host cells [8,9,30]. However, a

role of these adhesins for near surface swimming or stopping had

not been addressed.

HeLa cells were infected with S.Tm-T1(pGFP) and S.Tm-T1-

Fi(pGFP) and transient interactions were monitored by time lapse

fluorescence microscopy as in Fig. 1. All analyzed parameters,

including the number of stops, were indistinguishable from those

of S.TmD4(Fig. 2A–D; compare to Fig. 1). These results indicated

that none of the initial surface interactions were affected by TTSS-

1or by fimD(Fig. 2A,C). Strikingly, this also pertained to the

transient stops and clearly distinguishes the initial surface

interactions from later stages of the infection, i.e. reversible

binding and docking. Stopping thus seems to be attributable to a

different mechanism.

Nevertheless, as indicated by earlier data [8,9,30],some of the

stops must result in reversible binding and docking. To estimate

the relative frequency of stopping and of the docking events, the

total number of stops observed on the cell layer ( = the number of

potential docking events), during a 5 minute period was calculat-

ed: the total number of S.TmD4bacteria landing on the cell surface

during a 5 min period was multiplied by the number of stops using

the values determined in as Fig. 1E.After the end of the5-minute

real time imaging experiment, the cells were washed, fixed and

stained for DNA (DAPI), actin (TRITC-phalloidin) and S.

Typhimurium (anti-LPS antibody).This protocol removed all

‘‘stopped’’ bacteria, while ‘‘reversibly bound’’ and ‘‘docked’’

bacteria remained on the cells and were enumerated by

fluorescence microscopy [8,9,30]. Comparing the results from

both types of analysis revealed that no more than 1–2% of the total

stops (as detected by time lapse microscopy) resulted in a docking

event. Hence, transient stops are approx. 50- to 100-fold more

frequent than docking events, at least in the 5-minuteinfection

experiments that we have performed, here.

In conclusion, these data established that NSS requires neither

TTSS-1nor type I fimbriae. The initial pathogen host cell

interaction is thus clearly distinct from subsequent stages, i.e.

reversible binding and docking.

Table 1. Strains and plasmids used.

Strain/Plasmid Genotype Alternative name Reference

S.Tmwt SL1344, SB300 [53]

S.TmD4 DsipAsopBEE2 M566 [54]

S.Tm-T1 DinvG SB161 [55]

S.Tm-T1 -Fi DinvG, fimD::pGP704 M1915 [9]

S.TmSopE DsopB, sipA::aphT, sopE2::tet M701 [5]

S.TmD4cheY DsipAsopBEE2, cheY::Tn10 M1918 this study

S.TmfliGHI fliGHI::Tn10 M913 [22]

S.TmD4 fliGHI DsipAsopBEE2, fliGH::Tn10 M1921 this study

S.TmD4motAB DsipAsopBEE2, motAB::CmR M1927 this study

S.TmD4flgK DsipASopBEE2, flgK::CmR M1924 this study

M2424 [35]

S.Tm-T1 fliGHI DinvG, fliGH::Tn10 M1920 this study

S.Tm-T1motAB DinvG, motAB::CmR M1926 this study

S.Tm-T1flgK DinvG, flgK::CmR M1923 this study

S.Tm-T1 -Fi fliGHI DinvG, fimD::pGP704,fliGHI::Tn10 M1919 this study

S.Tm-T1 -Fi motAB DinvG, fimD::pGP704, motAB::CmR M1925 this study

S.Tm-T1 -Fi flgK DinvG, fimD::pGP704, flgK::CmR M1922 this study

E.coli Nissle motile non-pathogenic [56]

pGFP used in all time lapse experiments constitutive gfp-expression pM965 [22]

pM975 gfp-expression in intracellular S. Typhimurium [4]

pGFP used in all other experiments constitutive gfp-expression pCJLA-GFP [57]

pM2112 constitutive rfp-expression this study

doi:10.1371/journal.ppat.1002810.t001
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S. Typhimurium near surface swimming does not require
chemotaxis

Bacterial flagellar movement is guided by chemotaxis. It had

remained unclear, if NSS was dependent on chemotaxis or

whether non-directed motility would suffice. To address this issue,

HeLa cells were infected with S.TmD4 cheY(pGFP) (SL1344

DsipAsopBEE2 cheY; Table 1). This isogenic mutant is a ‘‘straight-

swimmer’’, expresses wild type numbers of functional flagella, but

cannot swim along chemical gradients. The initial surface

interactions were monitored by time lapse microscopy as described

Figure 2. S. Typhimurium NSS does neither require adhesins nor chemotaxis. Quantitiative analysis of the initial host-cell interaction
byS.Tm-T1(pGFP), S.Tm-T1-Fi(pGFP) and S.TmDcheY(pGFP), lacking either the TTSS-1 apparatus,TTSS-1 and type 1 fimbriae or the four effectors SopE,
SopE2, SopB and SipA as well as the protein CheY, essential for chemotaxis. (A), (C), (E)Different stages of NSS were quantified as described for
Fig. 1D.The following numbers of bacteria were analyzed: S.Tm-T1(pGFP), n = 114; S.Tm-T1-Fi(pGFP),n = 91;S.TmDcheY(pGFP), n = 39.Time-lapse
microscopy data was derived from 2 to5independent experiments. (B), (D), (F) Numbers of stops by an individual bacterium were quantified as
described in Fig. 1E.
doi:10.1371/journal.ppat.1002810.g002

Target Site Selection by Near Surface Swimming
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in Figs. 1 and 2A–D. All analyzed parameters were indistinguish-

able from those ofS.TmD4, S.Tm-T1 or S.Tm-T1-Fi(compare

Fig. 2E,F to Fig. 1D,E and Fig. 2A–D). Therefore, in our tissue

culture assays non-directed motility was sufficient for facilitating

the initial surface interactions.

Are physical forces sufficient for explaining the initial
surface interactions of S. Typhimurium?

Our data suggested that basic physical principles may explain

the initial interactions of S. Typhimurium with host cellular

surfaces. In this case, the movement patters on cellular and

acellular surfaces should be quite similar. Therefore, we inoculated

glass-bottom tissue culture dishes seeded with HeLa cells (or not)

with S.TmD4(pGFP). The bacterial surface interactions were

analyzed by time-lapse fluorescence microscopy as described in

Figs. 1 and 2. S.TmD4(pGFP) performed NSS with equivalent

speed on glass and on cellular surfaces (approx. 30 mm/s; Fig. 3A).

However, the median duration of an episode of NSS(6.3 s on glass

vs. 2.95 s on cells; Fig. 3B) and the median distance travelled

during this time (221 mm on glass vs. 95 mm on cells; Fig. 3C) were

slightly larger on glass than on the cellular surface. These

observations were in line with our hypothesis that the initial

surface interactions may be governed by equivalent physical

principles.

Strikingly, the bacteria followed ‘‘right-handed’’ curved tracks

on glass and, to a lesser extent, on cellular surfaces (Fig. 3D,E). It is

thought that this curvature of the NSS tracks is attributable to the

shear force between the flagella-mediated rotation of the bacterial

body and the respective surface [28,33].

So far, our data were in line with the hypothesis that general

physical principles are responsible for NSS on cellular and on glass

surfaces. In this case, other types of host cells or motile bacteria

should yield similar results. Therefore, we have extended our

analysis to MDCK cells, a commonly used polarized epithelial cell

line, and E. coliNissle which was transformed with the GFP

expression plasmid (E.coliNissle (pGFP); Suppl. Fig. S2). Both,

Figure 3. NSS of S. Typhimurium on cellular and artificial surfaces. Quantifications of time and distance of S.TmD4(pGFP) swimming along
the bottom of a glass dish, with or without seeded cells. (A–C) Comparison of the speed, the time spent in NSS, or the distance travelled on a cellular
and a glass surface, respectively. The figure summarizes 17–22 bacteria per condition from 2 independent experiments. ***: p,0.0001. (D), (E) overlay
of all frames (maximum intensity plot; Volocity software) from a 5-minute movie (10 frames/sec; Leica DMI-6000B, 206 air objective 0.7 NA, 2 fold
optovar) in the GFP channel of S.TmD4(pGFP) movement on a glass-or a cellular surface, respectively. Note the shorter and more linear tracks on the
cellular surface. Scale bar: 57 mm.
doi:10.1371/journal.ppat.1002810.g003

Target Site Selection by Near Surface Swimming
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E.coliNissle (pGFP) and S.TmD4 (pGFP) engaged in NSS and

displayed similar movement patterns on MDCK, on HeLa cells

and on glass surfaces (Fig. 3D,E and suppl. Fig. S2A–D).

Nevertheless, the shape of the NSS-tracks may differ slightly. This

might be attributable to different morphological features displayed

by the different types of surface and represents an interesting topic

for future research.

In conclusion, these data lend further support to the notion that

initial surface interactions are governed by general physical

principles and suggest that near surface swimming might be a

general strategy for target selection employed by different

flagellated bacteria.

During NSS,S. Typhimurium stops preferentially at
topological obstacles

Analysis of our movies so far suggested that during NSS,

rounded cells (e.g. dividing cells) represent preferential sites for

stopping. We hypothesized that bacterial stopping can be

explained by the prominent topological features of these rounded

cells. If so, bacteria should also stop at artificial topological

obstacles and bacteria should accumulate at such sites. This was

tested in two different ways, i.e. in a simplified experimental setup

and by a computer simulation (see below).

In order to experimentally test our hypothesis, we have analyzed

the initial surface interactions of bacteria with small glass beads

which were placed as artificial obstacles onto a glass surface. Glass-

bottom tissue-culture dishes harboring glass beads (Ø = 500 mm)

were therefore inoculated with S.Tmwt(mCherry) and bacterial

movement patterns were analyzed by time-lapse fluorescence

microscopy, as described in Figs. 1, 2 and 3. Again, the bacteria

were moving for long distances along the glass surface, but were

stopping in the immediate vicinity of the glass beads (Fig. 4A, B;

suppl. Video S3). 45–70% of these bacteria continued to swim or

took off again before the end of the movie, indicating that these

were truly stopping (not binding/docking). Thus, topological

obstacles can facilitate site-specific stopping of bacteria engaged in

NSS.

In addition, these data allowed a rough estimation of the

‘‘altitude’’ at which S. Typhimurium swims above the glass

surface. Based on the geometry of the glass bead, the center of the

bacterial cell was 0.43+/20.07 mm away from the surface. Similar

results were obtained for beads with smaller diameters (150 and

30 mm, respectively). The rod-shaped S. Typhimurium cell has a

radius of approx. 0.5 mm. Therefore, most of the ‘‘distance’’ is

attributable to the bacterial cell and the NSS ‘‘altitude’’ is most

likely ,150 nm above the glass surface. These observations were

in line with earlier work [27,28,29,34] describing bacterial NSS.

Modeling of NSS-driven target site selection by S.
Typhimurium

The data presented above indicated that NSS affects target cell

selection in two ways: by increasing the local pathogen density on

surfaces and by enhancing the probability of surface contacts

(stopping) at topological obstacles projecting from this surface. A

computer simulation was used to verify whether these two

phenomena are sufficient for explaining target site selection.

We modeled the interaction of S. Typhimurium with a three

dimensional landscape consisting of a flat surface and one

spherical obstacle, partially submerged into the surface (Materials

and Methods). The particles (motile, but non-chemotactic

‘‘bacteria’’) were introduced and moved linearly within the 3D

virtual space above the surface. Upon contact with the sphere, the

particles were either ‘‘stopping’’ (10% likelihood) or reflected (90%

likelihood). Three different scenarios were analyzed with respect to

the particles encountering the flat surface. (1) the ‘‘random’’

scenario: particles were reflected back into 3D space and randomly

assigned a new direction of movement. (2) the ‘‘billiard’’ scenario:

particles were reflected with an angle of reflection identical to the

Figure 4. Swimming behavior of S. Typhimurium on gelatine coated glass beads. Gelatine coated glass beads (500 mm diameter) were
placed into a glass-bottom dish and the swimming behavior of mCherry expressing bacteria was recorded by time lapse fluorescence microscopy as
described in Fig. 3. (A) Illustration of a bacterium stopping at the glass bottom of a coated glass bead (illustration not to scale). (B) Maximum intensity
plot (ImageJ) superimposing all frames of a 15 sec movie acquired at 20 frames per second (300 frames total; suppl. Video S3) illustrating the
movement of S. Typhimurium (S.Tmwt(mCherry)) within the vicinity of the bead. Scale bar: 10 mm.
doi:10.1371/journal.ppat.1002810.g004
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angle of impact. (3) the ‘‘NSS’’ scenario: particles encountering the

surface did not leave but followed the surface via NSS. If the

sphere was encountered during NSS, the particles stopped at this

site with a likelihood of 10%.

In the NSS scenario (scenario 3) but not the random or the

billiard scenario, particle accumulation occurred right at the

topological obstacle (Fig. 5). Therefore, NSS and stopping at

physical obstacles are sufficient for explaining the target site

selection observed in simplified model systems (Fig. 4A, B) and

tissue culture infection experiments (Fig. 1, [31,32]).

Docking – as observed in standard infection assays –
displays the same target site preference as NSS-mediated
stopping

So far, our analyses of the target site preference of S.

Typhimurium had focused on the initial surface interactions, i.e.

landing, take-off, NSS and stopping. Next, it was important to

establish how these initial interactions may affect the subsequent

steps of the infection process, i.e. docking. If stopping increases the

probability of binding and irreversible docking at the respective

site, stopping (as observed by time lapse microscopy; Fig. 1, 2) and

docking should display an equivalent target site preference.

To assess the target site preference of binding/docking on host

cell layers quantitatively, we have employed a well-established

‘‘standard’’ infection protocol [9,32]. HeLa cells were infected for

6 min with S.TmD4 at the indicated m.o.i., washed gently, fixed

and stained (see Materials and Methods). As binding/docking

occurred approximately 50-fold less frequently than stopping (see

above), we employed higher multiplicities of infection than in the

time lapse microscopy experiments. Visual inspection indicated

that S. Typhimurium has a pronounced targeting preference for

rounded cells (Fig. 6A, top panel; ‘‘mitotic’’ nuclei with condensed

DNA highlighted in yellow). In particular, the bacteria were found

to dock to the base of rounded cells (suppl. Fig. S3A). In order to

quantify this phenotype, we employed automated fluorescence

microscopy, and an automated image-analysis routine (Materials

and Methods).

Rounded cells were targeted (docked) with significantly higher

efficiency than non-dividing cells (Fig. 6C, left panel).This

targeting preference for rounded cells was also observed by

manual quantification (S.TmD4; suppl. Fig. S3B) and in infection

experiments with S.Tmwt (data not shown). These findings were

quite similar to our observations during the initial surface

interactions (Figs. 1 and 2).Rounded mitotic cells seem to represent

topological obstacles within the cellular landscape. In fact, the

rounded mitotic cells were significantly ‘‘higher’’ than the

interphase cells (1262 mm vs. 5.461.1 mm; n = 20 each;

p,0.0001, Mann-Whitney-U test). Taken together, NSS-driven

stopping and binding/docking displayed equivalent preferences

for topological obstacles like rounded cells.

Next, we have addressed the role of flagellar-driven motility. It

is well established that flagella are required for cellular invasion of

S. Typhimurium [15,16,17,18,19]. The data presented above

suggested that flagella-driven NSS might determine the target site

preference. In order to study the role of bacterial motility in the

targeting preference of binding/docking, we analyzed the host-cell

interaction patterns of the non-motile mutant S.TmD4 fliGHI

(SL1344 fliGHI) which does not express flagella. This mutant and

other non-motile S. Typhimurium mutants did not dock efficiently

at all (Fig. S4). Importantly, the few HeLa cells that were infected

harbored just one bacterium, even at high m.o.i. (Fig. 6A, bottom

panel; Fig. 6C, right panel). In line with our hypothesis, S.TmD4

fliGHI did not display a targeting preference for rounded cells

(Fig. 6A,C).

In order to increase the chances of a host cell encounter by

S.TmD4 fliGHI, equivalent infection experiments were performed

applying mild centrifugal force (500 g for 10 min) to increase the

collision rate between non-motile S.TmD4 fliGHI and the host cells

(Materials and Methods). This strategy is commonly used for

‘‘rescuing’’ invasion defects of non-motile S. Typhimurium

mutants, (e.g. [16,35]). As expected, centrifugation increased the

number of binding/dockingS.TmD4 fliGHI in our assay (Fig. 6B,

data not shown). Nevertheless, S.TmD4 fliGHI did not display any

target preference for the rounded (mitotic) cells, even at the highest

m.o.i., tested (Fig. 6D; right panel). This was in line with our

hypothesis that flagella-driven NSS determines not only the

targeting preference of ‘‘stopping’’, but also that of binding/

docking.

Finally, we analyzed the role of chemotaxis, i.e. directed

motility along chemotactic gradients. S.TmD4 cheY is an isogenic

and motile mutant incapable of chemotaxis (compare Fig. 2E,

Figure 5. Simulation of S. Typhimurium targeting to physical obstacles. (A) To simulate S. Typhimurium targeting to physical obstacles, a
round ‘‘cell’’ (light blue sphere) and linearly moving ‘‘bacteria’’ (orange particles) were modeled in an in silico experiment. If during the simulation a
bacterium hits the sphere, it is either deflected or has a 10% chance of remaining at that site (‘‘stopping’’, red particles). Behavior of particles on the
base of the cage ( = ‘‘surface’’) and upon hitting the sphere if no docking occurred differed according to the respective scenario: Reflection with a
random angle in the ‘‘random’’ scenario, with an angle of reflection identical to the angle of the impact in the ‘‘billiard’’ scenario and no reflection but
movements following the surface of the object in the ‘‘NSS’’ scenario. The start of the simulation is depicted in the far left. Inserts show an enlarged
view of the area around the sphere.
doi:10.1371/journal.ppat.1002810.g005
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F). This mutant yielded equivalent results as S.TmD4including a

highbinding/docking efficiency and a pronounced targeting

preference for rounded cells (data not shown). Taken together,

these results suggested that preferential infection of rounded

cells is attributable to simple non-directed motility and that

chemotaxis was not required, at least in this simple tissue culture

model.

Altering the host cellular morphology affects the initial
surface interactions and docking

During NSS, stopping and docking occurred preferentially at

rounded cells. If targeting was indeed dictated by topological

obstacles, manipulation of the host cell morphology should affect

both, the initial surface interactions and docking by S. Typhimur-

ium. To test this hypothesis, we manipulated the host cellular

Figure 6. Motility determines the targeting preference of S. Typhimurium for mitotic cells. HeLa cells were infected with S.Tmwt or
S.TmDfliGH at the indicated m.o.i. for 6 min either without centrifugation (A, C) or including a centrifugation step for 10 min at 500 g (B, D), followed
by staining of nuclei, extracellular bacteria (anti-LPS antibody) and automated microscopy. Using an automated analysis algorithm, nuclei and
individual bacteria were detected and mitotic nuclei identified. (A, B). Representative images are shown for infections at an m.o.i. of 125. Nuclei are
shown in blue, extracellular bacteria in green. The red arrows indicate mitotic nuclei. For selected parts of the image (white boxes)the automated
detection of nuclei and bacteria is shown (see inserts). Please note, that our image analysis algorithm is not able to distinguish all bacteria in highly
crowded regions (S.TmD4 and centrifugation, not shown); therefore, docking onto mitotic cells might be underestimated and our quantitative analysis
below would be a conservative estimation. Scale bar: 40 mm. (C, D) Infection efficiency at the respective m.o.i. with respect to the number of docked
bacteria per infected cell (non-mitotic cells, light grey; mitotic cells, dark grey). Each bar represents the median. The error bars represent the standard
deviation of 6 replicas from 3 independent experiments. Approximately 5000 cells per replica were analyzed. *p,0.05, **p,0.01 (Mann-Whitney-U
test). For the immotile strain(S.TmD4 fliGHI; no centrifugation), we did not detect enough bacteria on mitotic cells for a reliable statistical analysis.
doi:10.1371/journal.ppat.1002810.g006
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morphology with cytochalasin D (Cyt. D). This drug depolymer-

izes actin filaments causing the cells to round up.

First we analyzed the effect of cytochalasin D treatment on

binding/docking. HeLa cells, pretreated with the indicated

concentration of cytochalasin D for one hour, were infected for

12 minutes with S.TmD4(pGFP), S.Tm-T1(pGFP) or S.Tm-T1-Fi

(pGFP) at the indicated m.o.i..Afterwards, cells were fixed and

stained and we analyzed the actin-based cytoskeleton and bacterial

docking (Materials and Methods). Since the automated evaluation

now focused on the percentage of infected cells (not the number of

individual bacteria per infected cell), overlapping but somewhat

higher m.o.i.s were used than in Fig. 6. As shown in Fig. 7A, HeLa

cells were partially rounded at 2 mM and fully rounded at 10 mM

cytochalasin D. All three S. Tm strains bound/docked to the

rounded cells with an increased efficiency (Fig. 7B). Equivalent

results were obtained with another actin-disrupting drug (latrun-

culin B; suppl. Fig. S5). This verified that the host cell topology has

a profound effect on the target site preference of binding/docking

by S. Typhimurium.

Next, we analyzed the effects of the cytochalasin D treatment on

the initial surface interactions. HeLa cells pretreated with 10 mm

cytochalasin D were infected with S.TmD4(pGFP), S.Tm-T1(pGFP)

or S.Tm-T1-Fi(pGFP) and landing, NSS, stopping and take-off were

analyzed by time-lapse microscopy as described in Fig. 1 and

Fig. 2. Strikingly, on the cytochalasin D-treated cells, nearly all

bacteria engaging in NSS made at least one stop. Only very few

bacteria displayed uninterrupted NSS (‘‘NSS only’’; Fig. 8A, D,

G). This was quite different from our data on untreated HeLa cells

where 33% of all bacteria displayed uninterrupted NSS (see

Fig. 1E). Furthermore, on cytochalasin D-treated cells, the time

spent at each stop was significantly longer and some of these

bacteria ‘‘stopped’’ for the entire course of the 5-min experiment

(Fig. 8B,E,H). In a similar analysis, the fraction of time

thatS.TmD4(pGFP), S.Tm-T1(pGFP) or S.Tm-T1-Fi(pGFP) spent

stopping at the host-cell surface was significantly higher than in

untreated HeLa cells. In fact, on the cytochalasin D-treated cells, a

majority of the bacteria spent most of their time ‘‘stopping’’ (‘‘only

stoppers’’; Fig. 8C,F,I). Again, no differences were observed

between S.TmD4(pGFP), S.Tm-T1(pGFP) and S.Tm-T1-Fi(pGFP),

confirming that ‘‘classical’’ adhesins do not significantly affect

these transient initial bacteria-host cell interactions. In conclusion,

the shape of host cells has a profound effect on initial surface

interactions and binding/docking. This provides further evidence

that NSS leads to a target site preference for physical obstacles.

Membrane ruffles represent physical obstacles mediating
stopping, binding and docking

Membrane ruffles triggered by the TTSS-1 virulence system

represent a well-known topological obstacle encountered on

infected cell layers [36,37,38,39]. We hypothesized that mem-

brane ruffles might enhance local stopping, binding and docking at

pre-existing ruffles, thus leading to cooperative invasion.

To study the targeting of ruffles, we have focused on binding

and docking. These two steps of the infection process can be

analyzed using ‘‘standard’’ fluorescence microscopy assays [9,32].

First, we employed a co-infection strategy using a ‘‘helper strain’’

Figure 7. Cellular morphology affects docking of S. Typhimurium. (A) Cells were incubated with the indicated concentration of cytochalasin
D for one hour prior to infection withS.TmD4(pGFP) at an m.o.i. of 125 for 10 min. Afterwards, cells were fixed as described in Fig. 6 and stained with
DAPI and TRITC-phalloidin (stains actin). Stacks of confocal images were acquired in the actin channel (grey) and the bacteria channel (green). An
extended focus projection and a reconstruction of a zx-layer are shown. Scale bar, upper images: 20 mm, zx-layer: 5 mm. (B)Cells were pre-treated with
the indicated concentration of cytochalasin D for 1 hour and infected with the respective S. Typhimurium strain for 12 min. After washing, fixing and
staining S. Typhimurium docking was quantified by an automated microscopy based docking assay [9]. The curves shown summarize 3 independent
experiments. Error bars: standard deviation.
doi:10.1371/journal.ppat.1002810.g007
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and a ‘‘reporter strain’’. S.TmSopE (without plasmid) was chosen as

the helper strain, since its effector SopE is able to trigger

pronounced membrane ruffling [5,32]. S.TmSopE carries deletions

of the effectors sipA, sopB and sopE2, thus eliminating confounding

pleiotropic actions of these effectors on the host cell. SopE-induced

ruffles appeared within 5 minutes, are known to have a prominent

shape, and represent a large physical obstacle on an otherwise

much flatter cellular surface (Fig. 9A; [40]). S.TmD4 (pGFP), which

does not trigger ruffles itself, was used as a ‘‘reporter’’ to assess

docking to the ruffles. In a time lapse microscopy experiment

employing DIC and fluorescence imaging both strains engaged in

NSS and stopped frequently at ruffles (Fig. 9B; supplementary

VideoS4; data not shown).

To analyze a preference of S. Typhimurium for cellular ruffles

in a quantitative manner, HeLa cells were infected with a 1:1

mixture of S.TmSopE andS.TmD4(pGFP) at a high or a lower m.o.i

for 6 min. In control experiments (no ruffles), HeLa cells were

infected with a mixture of S.TmD4 and S.TmD4(pGFP). Subse-

quently, cells were fixed followed by staining of extracellular

bacteria (using an anti-Salmonella antibody; Materials and Meth-

ods). After permeabilization of the cell membrane, the actin

cytoskeleton was stained. The data evaluation strategy is depicted

in Fig. 9C.In the experiments using S.TmSopE as the helper strain

(ruffling occurs), we determined the number ofS.TmD4 (pGFP)

(Fig. 9D, red bars) and S.TmSopE(Fig. 9E, red bars) residing on the

respective ruffle. In the negative controls (no ruffling; co-infection

with S.TmD4 and S.TmD4 (pGFP)) we quantified all bacteria

located on the respective cell(Fig. 9D, D grey bars). Comparing

targeting to a ruffle as opposed to targeting to a whole cell (control

w/o ruffle) is a conservative strategy for detecting ruffle-specific

target site preferences, since the whole cell has a much larger area

than an individual ruffle. Furthermore, it should be noted that the

anti-Salmonella antibody was applied before permeabilization

(Materials and Methods). This allowed us to discern internalized

and external reporter bacteria.

In all experiments, S.TmSopE and S.TmD4(pGFP) docked more

efficiently to ruffles than to non-ruffling cells (Fig. 9D, E compare

red and grey bars). This was true for the reporter strain (Fig. 9D;

S.TmD4 (pGFP)) as well as for the helper strain (Fig. 9E; i.e.

S.TmSopE). A similar effect was also observed in 12-min infection

Figure 8. Host cell morphology affects the NSS pattern of S. Typhimurium. HeLa cells were either treated with 10 mM cytochalasin D or
mock-treated and infected with S.TmD4(pGFP), S.Tm-T1(pGFP) or S.Tm-T1-Fi(pGFP), as indicated at an m.o.i. of 1.5. The infection process was imaged for
5 min by time-lapse fluorescence microscopy. Data for bacteria without cytochalasin D were taken from Fig. 1D–F and Fig. 2A–D and are displayed
for comparison. (A), (D), (G) Fraction of bacteria making no stops or the indicated number of stops on the cell layer (compare Fig. 1E). The effect of
cytochalasin D on the number of bacteria with no stops vs. one or more stops was statistically significant for all 3 strains (Fisher’s exact test). (B), (E),
(H) Cumulative time a single bacterium spent stopped over the entire duration of the contact with the cell layer. (C), (F), (I) Fraction of the contact
time that a given bacterium spent stopped; the remaining percentage of time was spent in NSS. *: p,0.05; **: p,0.01; ***: p,0.0001.
doi:10.1371/journal.ppat.1002810.g008
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Figure 9. Ruffles are a site of cooperative invasion. (A) 3D-reconstruction of ruffles on HeLa cells infected for 6 min with S.TmSopE(pGFP) at an
m.o.i. of 250. The actin channel (phalloidin stain) is shown in grey, S. Typhimurium in green (GFP) and extracellular bacteria in red (anti-Salmonella LPS
stain before permeabilization). 3 views of a typical, large ruffle (ruffle 1) and details of another ruffle (ruffle 2) are depicted. Scale bar: 10 mm. (B) HeLa
cells were infected with a 1:1 mixture of S.TmSopE and S.TmD4(pGFP)at an m.o.i. of 5 and a movie was acquired via DIC imaging (see also
supplementary VideoS4). A snapshot of the movie is depicted. The tracks of 2representative bacteria and their estimated position in the z-axis are
indicated by the colored ellipsoids. Both bacteria stop at the ruffle and stay for the remaining observation time (blue track: 4.95 s, green track: 1.24 s).
Scale bar: 9 mm. (C) Quantification strategy for analyzing S. Typhimurium docking onto ruffles. HeLa cells were infected for 6 min with a 1:1 mixture
S.TmD4(pGFP) (green; reporter strain), shown in green and the S.TmSopE as a helper strain which did not express gfp at an m.o.i. of 62.5 for each strain.
After infection, cells were fixed and stained for actin (TRITC-phalloidin, red) and extracellular S. Typhimurium (indirect immunofluorescence using an
anti-Salmonella antibody; blue; stained before permeabilization). Three types of S. Typhimurium can be distinguished: Extracellular reporter S.TmD4

(labeled green and blue), extracellular helper S.TmSopE (only blue), and intracellular reporter S.TmD4 (only green). Intracellular helper S.TmSopE is non-
fluorescent and cannot be detected. Scale bar: 10 mm.(D, E) HeLa cells were infected for 6 min with a 1:1 mixture of a helper strain (either S.TmD4 or
S.TmSopE) and the reporter strain S.TmD4(pGFP) at the indicated m.o.i.. Cells were stained for actin and extracellular bacteria were stained with anti-LPS
antibodies. In the control scenario (helper strain S.TmD4, only non-ruffling cells) bound bacteria were quantified for the area of a whole cell (grey
bars); in the ruffling scenario (helper strain S.TmSopE) bacteria were quantified over the area of a ruffle as explained in panel (B,C).Even with a complex
3D structure, the surface of a ruffle should be much smaller than the surface of a whole cell. Therefore, if anything, our approach should
underestimate the specific recruitment of bacteria onto ruffles. Extracellular bacteria of the reporter strain and the helper strain were quantified
separately ((D): reporter strain, expresses gfp; (E): helper strain; no gfp). The bars summarize 170–220 cells/ruffles from two independent experiments.
***: p,0.0001.
doi:10.1371/journal.ppat.1002810.g009
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experiments (data not shown). Therefore, ruffling stimulated

docking of bacteria to cellular ruffles. Moreover, ruffling facilitated

internalization of S.TmD4(pGFP).Internalized S.TmD4 (pGFP) was

detected in all co-infections with S.TmSopE (1.4 and 1.6 bacteria

per ruffle on average for the experiment in Fig. 9D for m.o.i.s of 62

and 250, respectively). No internalizedS.TmD4 (pGFP) was

detected in the negative controls (no ruffles; S.TmD4 as helper

strain). Equivalent data were obtained in an analogous experiment

using automated image acquisition and analysis methods (suppl.

Fig. S6). In another control we tested immotile bacteria

(S.TmD4 fliGHI (pGFP)). As expected, these bacteria did not attach

to ruffles or normal cells (Fig. S7). Again, cellular attachment was

rescued upon centrifugation; however, this did not lead to any

targeting preference for ruffles vs. non-ruffling cells (Fig. S7).

Finally, we explored the targeting to ruffles by E.coli Nissle, a non-

invasive motile bacterium. In co-infection experiments with

S.Tmwt, E.coli Nissle displayed a targeting preference for host

cellular ruffles (Fig. S8).

Taken together, the effector protein SopE is required for

triggering ruffles. Once the ruffles are formed, they seem to

represent prominent physical obstacles which facilitate stopping,

binding, docking and internalization of motile pathogens. How-

ever, please note that we cannot exclude that other factors, besides

ruffle topology (e.g. altered membrane structure or composition in

the ruffle) might also contribute to S. Typhimurium targeting to

these sites.

Cooperative invasion at ruffles
Finally, we reasoned that S. Typhimurium recruitment onto

ruffles might lead to cooperative invasion. If multiple bacteria dock

to the same ruffle, more effector proteins are delivered, thus

increasing the ruffle size and enhancing the chance for stopping,

binding and docking of additional bacteria. To test this hypothesis,

HeLa cells were infected for 9 min with S.TmSopE(pGFP) at

increasing multiplicities of infection, fixed and stained. We first

quantified the fraction of ruffling cells (Fig. 10A, B, left panel).Next

we determined(at each m.o.i.)the number of intracellular and

extracellular bacteria residing in an individual ruffle (Fig. 10A, B,

middle panel). Finally, we determined the number of ‘‘invaded S.

TmSopE’’ per cell (Fig. 10 A, B, right panel). This was achieved by

multiplying the percentage of ruffling cells with the number of

intracellular bacteria per ruffle. All these parameters increased as a

function of the m.o.i.

Next we wanted to determine the invasion efficiency mediated

by a single bacterium without ‘‘support’’ from other bacteria. We

therefore focused at low m.o.is., where typically one bacterium was

observed per ruffle. The few ruffles with two associated bacteria

were excluded from the subsequent analysis. The single bacterium

was either located outside or within the host cell (Fig. 10B, m.o.i. 4

and 8). To estimate invasion efficiency by this single bacterium

alone without possible support by other bacteria, this invasion

efficiency was extrapolated to higher m.o.i., assuming a linear

increase of invasion efficiency with increasing m.o.i. (Fig. 10B,

right panel, black line). Strikingly, this extrapolated invasion

efficiency was much lower than the observed invasion efficiency at

higher m.o.i. (Fig. 10B, right panel, red line).This indicated that S.

Typhimurium invasion occurred in a cooperative fashion, most

likely by provoking stopping, binding and docking of additional

bacteria engaged in NSS at sites of membrane ruffling.

Discussion

The mechanism of target site selection by S. Typhimurium had

remained enigmatic. We have analyzed the initial surface

interactions between the pathogen and the host by time-lapse

microscopy, by comparative analysis of pathogen movements on

Figure 10. Cooperative invasion at membrane ruffles. (A) Scheme explaining our quantification strategy for cooperative invasion. (B) HeLa
cells were incubated with S.TmSopE(pGFP) at the indicated m.o.i. for 9 min, followed by washing, fixation and staining of actin and extracellular
bacteria (anti-LPS antibody; staining before permeabilization). Left panel: quantification of the fraction of cells carrying ruffles. Middle panel:
quantification of the number of ‘‘inside’’ and ‘‘outside’’ S.TmSopE(pGFP) per individual ruffle. Right Panel: number of invaded S.TmSopE(pGFP) per cell,
calculated by multiplying the number of intracellular bacteria per ruffle with the fraction of ruffling cells. The black line indicates the estimated
number of invaded S.TmSopE(pGFP) assuming independent invasion events, extrapolated from experimental data of ruffles with only one associated
bacterium at the lowest m.o.i.. Each data point summarizes 46150 cells for the analysis of cellular ruffling and 4625 cells for inside and outside
bacteria from 2 independent experiments. Error bars: standard deviation.
doi:10.1371/journal.ppat.1002810.g010
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cells and glass surfaces as well as by standard infection

experiments. Upon encounter with a host-cell layer, we identified

a distinct early phase of the infection characterized by landing,

near surface swimming and stopping, which preceded later events

such as fim- or TTSS-1-mediated binding and docking. In this

initial phase, flagellar motility has at least two functions in

establishing the contact with the host cell, i.e. propelling the

pathogen towards the host cell layer and facilitating NSS. NSS is

likely attributable to physical forces emanating from the pathogen

movement along the surface. Here we found that NSS increased

the local pathogen concentration on the host-cell surface, and lead

to stopping at topological obstacles. NSS thereby mediates

preferential docking at the base of rounded cells and on pre-

existing membrane ruffles. Thus, the target-cell selection for

dividing cells and cooperative infection at membrane ruffles can be

explained simply by physical forces between the host cellular

surface and the motile pathogen, which govern the initial phase of

the pathogen-host cell interaction.

Different models have been proposed to explain NSS

[27,28,41,42,43,44]. Recent approaches have combined hydrody-

namic entrapment and DLVO interactions with Brownian

motion, which leads to random changes of the bacterial NSS-

altitude [37]. Random variations in surface distance also lead to

predictable changes of the angle of bacteria towards the surface

and the radius of the curved track. Therefore, Brownian motion

can enable probing of the surface following different curvatures at

different heights when the bacteria are swimming along. This

variability may help to further expand the surface probing capacity

of a motile pathogen [37]. However, it should be noted that the

Brownian motion-forces are much weaker than the thrust

provided by the flagella. This may explain why stopping and

docking on open glass surface areas is much less frequent than at

the base of elevated obstacles located on the surface. Only at these

obstacles, the force provided by the flagella is fully employed to

counteract repulsive forces thus driving the bacterium as close to

the surface as possible. This may increase the chances for the

formation of stable contacts as required for binding and docking.

Are ‘‘stopping’’ and ‘‘docking’’ related? In both cases, S.

Typhimurium stays at one particular spot on the host cell surface

for at least some time. However, the retention mechanisms seem to

differ. Docking and binding, i.e. long-term association with host

cells are mediated by adhesins [45,46]. In the case of HeLa cells,

docking is mediated mainly viaTTSS-1 and type-1 fimbriae which

is why the mutant strainS.Tm-T1-Fi has a reduced docking

efficiency [9]. In contrast, stopping was not significantly affected

in the case ofS.Tm-T1-Fi, implying that neither TTSS-1 nor type-1

fimbriae mediate stopping (Fig. 2). Furthermore, washing (as

performed in docking experiments; see Materials and Methods),

removed $98% of all ‘‘stopped’’ bacteria from the host cell

surface. Presumably, the remaining ,2% were docked, suggesting

that stopping is mediated by a weaker force and that it is

approximately 50-fold more frequent than docking, at least during

the first minutes of infection. In spite of these differences, both

stopping and docking required motility (but not chemotaxis) and

occurred with high probability at rounded cells and membrane

ruffles. Based on these considerations, we propose that stopping at

topological obstacles may simply extend the residence time at a

given location (close to the surface), thereby increasing the

probability of adhesin-mediated binding and docking. It is

tempting to speculate that Brownian motion might randomly

drive stopping bacteria into even closer proximity of the host cell

surface, thus increasing the chances for a successful engagement of

TTSS-1 or type-1 fimbriae [34]. In this way, prolonged stopping

and Brownian motion would foster the preferential infection of

rounded cells and cell ruffles. Thus, landing, NSS and stopping

may allow prolonged probing ata very limited area of the 2D

surface. If docking is unsuccessful, S. Typhimurium continues NSS

or takes off into and may engage in initial surface interactions at

another site.

NSS recruits S. Typhimurium into membrane ruffles, thus

promoting cooperative invasion. Invasion of more than one

bacterium at a single ruffle has been described before [47,48,49]

but no mechanistic explanation and no evidence of cooperativity

has been provided. Our data show that ruffles represent

topological obstacles favoring stopping and productive invasion.

Therefore, ruffles might be regarded as a site of ‘‘communication’’

between individual bacteria. Firstly, this implicates the exploitation

of invasive strains by non-invasive strains, which can subsequently

invade. This type of ‘‘rescue’’ has been described previously

[37,50]. Secondly, it implicates cooperation between invasive

strains, in two respects. When S. Typhimurium makes a favorable

docking interaction and induces membrane ruffling in the host

cell, this increases the chance that additional bacteria can ‘‘find’’

this invasion-permissive site. Furthermore, in some hosts or cell

types, higher dosages of effector proteins might be required for

triggering successful invasion. In this case, recruitment into ruffles

might allow larger amplitudes of stimulation. Certainly, this would

be of importance for the mechanistic interpretation of results from

tissue-culture cell-infection experiments.

In animal experiments, flagella and motility are also required

for efficient gut infection [21,22,24,51].Here, the flagella serve

additional functions not observed in tissue culture. In the inflamed

gut, flagella facilitate chemotactic movement thus mediating access

to the nutrient-rich molecules secreted by the gut wall [24]).

Thereby, chemotactic motility propels the pathogen towards the

gut surface. For this reason, both, chemotaxis and motility are

required in the gut [24]. This additional function of flagella, which

does not affect the tissue-culture infection, has precluded

straightforward animal-infection experiments addressing the

‘‘within host’’ importance of the NSS-based, chemotaxis-indepen-

dent targeting mechanism described here.

Does NSSor stopping also occur at the gut surface? In this

study we demonstrated NSS in vitro at the surface of HeLa cells

and polarized epithelial cells. However, in previous studies, S.

Typhimurium was found to accumulate at the surface of the gut

epithelium during the first phase of the infection [24]. Further-

more, S. Typhimurium swimming along the epithelial surface has

also been visualized by in vivo live microscopy in the cecum of

infected mice [6]. At 4 h post infection, the pathogen was found

to swim along the surface of infected crypts at a speed of 5–

50 mm/sec. Subsequently bacteria stopped at the epithelium and

entered into enterocytes. While these experiments did not

elaborate on the individual phases of the initial surface

interactions, they clearly demonstrate that NSS occurs within

the host’s intestine. Later on, upon triggering mucosal inflam-

mation, S. Typhimurium seems to invade into neutrophils which

are transmigrating in large numbers into the gut lumen [52].

Intriguingly, neutrophil infection was found to require motility. It

is tempting to speculate that neutrophils are infected by S.

Typhimurium during transmigration. While crossing the epithe-

lial barrier, the luminal part of the neutrophil may form a

physical obstacle stopping S. Typhimurium swimming along the

epithelial surface. These observations suggest that NSS-mediated

targeting of host cells may occur in vivo. A detailed analysis of

these processes during the course of a real infection will be an

interesting topic for future research.

The NSS-mediated targeting mechanism identified in our work

is based on general physical forces which act on any particle
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moving on a 2D surface. Therefore, it should pertain to many

other motile bacteria, including pathogens (e.g. enteropathogenic

E. coli, Yersinia spp.), commensals, as well as environmental

bacteria. Accordingly, we found that the motile strain E. coli

Nissle can engage in NSS and target Salmonella-induced membrane

ruffles. Our results imply that the NSS-mediated targeting should

result in preferential binding to physical obstacles present on the

respective surface, including abiotic obstacles as well as prominent

topological features of surface-exposed cells of a given host. Thus,

the initiation of biofilm formation and the infection of animals at

particular sites might be governed by the same basic principles.

Deciphering these principles will be of great interest for basic

microbiology and might allow the development of countermea-

sures prohibiting the initial steps of bacterial colonization.

Materials and Methods

Bacterial strains
Published bacterial strains are listed in Table 1. The construc-

tion of additional strains is described, below.

Time lapse microscopy
Cells were seeded into glass-bottomed culture dishes (Mat Tek)

in DMEM (Invitrogen), 10% FCS (Omnilab) containing strepto-

mycin (50 mg/ml), 24 hours prior to the experiment at 300 000

cells (HeLa Kyoto, if not mentioned otherwise) per 35 mm well;

experiments were performed in HBSS (Invitrogen), 10% FCS,

20 mM Hepes (Invitrogen), pH 7.2–7.5 (Invitrogen). After ex-

change of media to HBSS, cells were incubated at 37uC, 5% CO2

and infected with the indicated S. Typhimurium strain (derivative

of SL1344, [53]) carrying plasmid pCJLA-GFP at an estimated

m.o.i. of 1.5.

If not stated otherwise, movies were acquired on a Leica DMI-

6000B microscope, either using the differential interference

contrast mode or the fluorescence mode. DIC-movies were

acquired using a 636 oil objective (HCX PLAN Apochromat

from Zeiss, NA 1.4); for fluorescence imaging, a 206-objective

(HC PLAN Apochromat from Zeiss, NA 0.75) with a 2-fold

optovar was used. If not indicated otherwise, movies were

acquired at 10 frames per second for 5 minutes. Movies were

analyzed using the program Volocity (Improvision, UK) and the

manual tracking mode.

For Fig. 4, we used a Zeiss Axio Observer equipped with a

spinning disc confocal head and a 1006objective (oil NA1.4,). For

suppl. Fig. S1, we used a Zeiss Axiovert 200 m inverted

microscope equipped with an Ultraview confocal head (Perkin

Elmer) and a krypton-argon laser (643-RYP-A01 Melles Griot,

The Netherlands) and a 206objective, 0.75NA (Optovar 1.6). In

these experiments estimating the influence of gravity, glass-bottom

culture dishes containing HBSS but no cells were inoculated with

bacteria as described for the other time lapse experiments;

For testing of bacterial near surface swimming on MDCK cells,

cells were seeded in glass-bottom culture dishes in DMEM,

supplemented with 10% FCS, grown to confluence and let

polarize for five days. Infection with S.TmD4 was done exactly as

described for HeLa cells. Movies were acquired on a Leica DMI-

6000B microscope using a 206-objective with a 1.6 optovar. The

movie was acquired for 5 min at 10 frames per second and an

overlay of the movie is shown.

S. Typhimurium strains were grown before infection as

described [32]. E. coli Nissle was grown identically except that

normal Luria-Bertani media was used.

Quantitative analysis of movie sequences
For quantification of the contact of S. Typhimurium with the

cells, the interaction was divided into 4 phases: 1) landing: the time

of appearance of a S. Typhimurium until interruption of the

continuous downward movement, indicated by changes in focus,

direction and speed. 2) stopping: episodes without changes in any

direction for at least 3 frames. 3) take off: the continuous upward

movement until disappearance. 4) NSS: a continuous movement

in the xy-direction other than 1) or 3). S. Typhimurium that left

the field of view during quantification, as well as a few cases with

ambiguities were excluded.

For quantification of the number of S.TmD4(pGFP) within the

focus depth, either at the cell surface or .100 um above the

surface (‘‘in solution’’), 40 time points from 2 independent

experiments were analyzed. The same time points were used for

each movie analyzed and they were spaced throughout the

duration of the movie. For each bacterium within focus depth at

the specific time point, the entire contact time spent on the surface

was analyzed. Each bacterium was thus either counted as engaged

in ‘‘NSS’’ or ‘‘NSS and stopping’’. For the quantification of

bacteria swimming in solution, any non-motile bacteria were

excluded.

For quantification of the distance, time and speed of

S.TmD4(pGFP) on the glass and cell surface, 20 bacteria from 2

independent experiments were manually tracked from their first

contact with the cell to their last contact with the cell (i.e. NSS

quantification excluding the landing and take-off stages) or until

they left the field of view. S.TmD4 were selected at random from

those arriving in the center of the field of view. The time indicated

is NSS-time only and does not include any intermittent time spent

stopping at the surface.

High-resolution microscopy
For high-resolution images, HeLa cells were seeded on glass

cover slips for 24 hours and infected with S. Typhimurium

carrying plasmid pM965 for constitutive gfp expression at the

indicated m.o.i.. After fixation, S. Typhimurium were stained by

indirect immunofluorescence using an anti-LPS antibody (Difco)

and goat anti-rabbit-Cy5 (Jackson) as a secondary antibody; the

actin cytoskeleton was stained by tetra methyl rhodamine

isothiocyanate (TRITC)-phalloidin after 59 permeabilization with

0.1% Triton Tx100. Images were taken on a Zeiss Axiovert 200 m

inverted microscope equipped with an Ultraview confocal head

(PerkinElmer) and a krypton argon laser (643-RYP-A01, Melles

Griot) using a 1006 oil immersion objective (PLAN-Apochromat

Zeiss with an NA of 1.4). Stacks of 0.2 mm were acquired;

deconvolution was performed in the actin channel with the

program Volocity and a calculated point spread function. 3D-

reconstruction and reconstruction of zx-layers was done using

Volocity.

Automated analysis of S. Typhimurium docking
Docking experiments were done as described [9]. In brief: cells

were seeded in 96-well micro-clear plates, (half size, Greiner), at

6000 cells per well 24 hours prior to the experiment and infected

with the indicated S. Typhimurium strain followed by fixation,

staining of nuclei and bacteria using DAPI and an anti-Salmonella

antibody (Difco), respectively. Images were acquired on a MD-

Image Xpress microscope (Molecular Devices) using a 46-

objective in the DAPI- and Salmonella-channel. Images were

analyzed using the open source program CellProfiler [58] and

customized Matlab-scripts, available upon request.
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Automated analysis of individual docked bacteria onto
mitotic and interphase cells

For automated analysis of individual docked bacteria (Fig. 1) the

analysis consisted of three major steps. First, cells and nuclei were

detected using the program CellProfiler [58] and cellular

properties, such as morphology, texture and intensity were

extracted. Second, single bacteria were identified using the ‘‘a

trous’’ wavelet transform [59] and every bacterium was assigned to

the corresponding host cell. In a third step, mitotic cells were

distinguished from interphase cells using supervised machine

learning technique. For this purpose, the ‘‘Advanced Cell

Classifier program’’ was applied and the classification was

performed using the extracted cellular features with an artificial

neural network classifier [60]. Finally the average amount of

bacteria on mitotic and interphase cells was calculated.

Manual quantification of S. Typhimurium docking and
cooperative invasion

Docking onto mitotic cells: HeLa cells were seeded in 96-well

Microclear plates (full size, Greiner) at 6000 cells per well 24 hours

prior to infection. After infection and fixation, extracellular S.

Typhimurium was stained using an anti-Salmonella LPS antibody

and a Cy5-labelledsecondary antibody (Fig. 9). Due to the bright

staining of extracellular bacteria, the unique bacterial shape and

the high resolution used for quantification bacterial staining was

clearly distinguishable from actin staining. For illustrative purposes

(Fig. 9C), in one experiment bacteria were stained using a Cy3-

labelled secondary antibody. Subsequently, nuclei and actin were

stained using DAPI and TRITC-phalloidin, respectively. Finally,

bound S. Typhimurium bacteria were manually quantified using a

406-objective (EC Plan-Neofluar objective with a NA of

1.3).Docking onto ruffles: The gfp-labeled S. Typhimurium strain

and the helper strain were mixed at equal dilutions prior to

infection. Staining and fixation was done as described for mitotic

cells. Testing of cooperativity: S.TmSopE-carrying plasmid pM965

was incubated at the indicated concentration with HeLa cells;

fixation and staining was done as described. To calculate invasion

efficiency of S. Typhimurium without cooperativity, invasion was

calculated at the lowest m.o.i., excluding ruffles with more than

one associated S. Typhimurium. At higher m.o.i., this number was

assumed to increase proportionally with the number of added S.

Typhimurium.

Modeling of S. Typhimurium targeting
In our calculations we modeled a three-dimensional environ-

ment within a cubic space. A round sphere was placed into this

space; the radius of the sphere was chosen to be 1/10 of the length

of the surrounding cube. The sphere was partially submerged into

the bottom surface of the cube and 75% of the height of the sphere

remained within the cube. In addition, 100 single particles were

modeled into the cubic space. For simplicity the size of the

particles was assumed to be zero in all dimensions. The whole

volume of the cube was assumed to be accessible to the particles

except the interior of the sphere. All particles were assigned the

same constant speed but a randomly chosen vector of movement.

The positions of the particles where integrated after travelling a

fraction of 1.2*1025 of the length of the square. Upon hitting the

bottom surface, particles followed the rules according to the

chosen scenario:1) Reflection at a randomly chosen angle in the

‘‘random’’ scenario, where the new vector of movement was

randomly chosen (‘‘impossible’’ movements, for instance into the

surface were excluded). 2) Reflection with an angle identical to the

angle of infliction in the ‘‘billiard’’ scenario, the vector of ‘‘take

off’’ thus mirroring the vector of ‘‘landing’’ or 3) particles started

swimming along the surface in the ‘‘NSS’’ scenario. In this

scenario the z-vector of movement was set to zero (particles thus

following the surface); the x and y-direction of movement

remaining unchanged. When encountering the remaining 5

limiting surfaces of the cube, particles were simply reflected.

Upon hitting the limits of the sphere, particles had a 10% chance

of being attached (simulating stopping/docking); otherwise parti-

cles were simply reflected. Particles hitting the sphere during NSS

also stopped/docked to the sphere with a likelihood of 10%. Upon

each change of direction the movement vectors were adjusted to

achieve a constant overall velocity. After an identical number of

calculated increments of particle movements the simulation was

interrupted and screenshots were acquired.Scatter3D is imple-

mented in C++ and has previously been used to simulate light

scattering [61]. Calculations were performed on a desktop

computer. Further details are available upon request.

Construction of strains and plasmids
Strains S.TmD4 fliGHI, S.Tm-T1 fliGHI, S.Tm-T1 -Fi fliGHI were

constructed by P22 transduction [62] of the tetracycline allele of

SB245 (sipABCDsptP::aphT, fliG/H::Tn10, K. Kaniga and J.E.

Galan, unpublished data) into strains S.TmD4, S.Tm-T1 and

S.Tm-T1 -Fi, respectively. flgK was deleted in SL1344 (SB300) as

described in [35]. Strains S.TmD4 flgK, S.Tm-T1 flgK, S.Tm-T1 -Fi flgK

were constructed by P22 transduction of the chloramphenicol

resistance containing the flgK deletion into the respective host

strain. MotA/B were deleted in SL1344 (SB300) using the method

of Datsenko and Wanner [63] by insertion of a chloramphenicol

resistance cassette that was amplified using the forward primer:

ATGCTTATCTTATTAGGTTACCTGGTGGTTATCGGT-

ACAGTGTAGGCTGGAGCTGCTTC and the reverse primer:

TCACCTCGGTTCCGCTTTTGGCGATGTGGGTACGC-

TTGCATGGGAATTAGCCATGGTCC. S.TmD4 motAB,

S.Tm-T1 -motAB and S.Tm-T1 -Fi motAB were obtained by P22

transduction of the chloramphenicol resistance into the respective

host strain. Lack of motility of the respective strains was tested on

motility agar.

pM2120 (expressing mCherry constitutively) was constructed by

PCR amplification of the mCherry gene using forward primer:

CGCGGATCCCCCGGGCTGCAGGAATTCAGGAAACAG-

TATTCATGGTGAGCAAGGGCGAGGAG (BamHI) and re-

verse primer: GGGAAGCTTGATATATCGGAATTCTTAC-

TTGTACAGCTCGTCCATG (HindIII). Subsequently the

PCR product as well as plasmid pM975 [22] was digested using

BamHI/HindIII and ligated.

List of gene ID numbers of S. Typhimurium genes (SL1344)
fliG (11765205), fliH (11765206), fliI (11767468), flgK

(11767368), motA (11765169), motB (11765168), cheY

(11765165), sopE (11765807), sipA (11765948), sopE2

(11768039), sopB (1252609), invG (11765959), fimD (11764167).

Supporting Information

Figure S1 Surface-accumulation of S. Typhimurium
requires motility. It seemed reasonable to assume that two

different phenomena might contribute to bacterial accumulation

at the bottom of a culture dish, i.e. near surface swimming and

gravity. In order to assess the relative importance of gravity, one

can compare surface accumulation by motile bacteria (affected by

NSS and by gravity) and by non-motile bacteria (affected by

gravity, but no by NSS). (A) Experimental design. Glass-bottom

dishes were either inoculated with a suspension of motile S.TmD4
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(pGFP)(left panel; green) or with immotile S.TmD4 flgK(pGFP)

(right panel; blue).The number of bacteria present ‘‘in solution’’

(i.e. in the field of view focusing 50 mm, 100 mm and 150 mm

above the surface) or ‘‘on the surface’’ was analyzed by confocal

time lapse fluorescence microscopy. (B) Glass bottom dishes(w/o

cells) were prepared and inoculated with the indicated strains

(150 ml of a 4 h sub-culture, 1:100 diluted in HBSS)exactly as

described for Fig. 1. Left panel: To demonstrate a low bacterial

density in the 3D volume, images were acquired at the end of the

imaging experiment (10 min)in the GFP-channel at Z-slices

50 mm, 100 mm and 150 mm above the surface. The number of

bacteria per field of view was plotted. Please note that the chosen

density of the bacteria was so low that Z-slices harbored either one

(very rare) or no (very often) bacteria. This is true for the S.TmD4

strain and the S.TmD4flgK mutant. Right panel: Confocal time

lapse fluorescence microscopy was performed at the Z-slice at the

glass surface using a 206objective with an 1.6 optovar(1 frame per

minute; 10 min total; exposure time, 50 ms). The number of

bacteria per field of view was quantified in two independent

experiments.S.TmD4 (pGFP) (left panel; green; affected by NSS

and by gravity) accumulated at the glass surface (i.e. by NSS)

within less than 1 min, while the immotile mutant S.TmD4 flgK

(pGFP; blue; affected only by gravity) did not. Accumulation of

S.TmD4 flgK began much later. This demonstrated that gravity had

at most a marginal effect in the typical 5 min accumulation

experiments performed in our study. Much rather, surface

accumulation is driven by NSS.

(EPS)

Figure S2 Near surface swimming of S. Typhimurium
and E. coliNissle on epithelial cells and on glass
surfaces. A, B. NSS on Madin-Darby canine kidney (MDCK)

cells, a commonly used polarized epithelial cell line. MDCK cells

were grown to confluence and polarized for 5 days and HeLa cells

were grown in glass bottom culture dishes as described in figures 1–

3. Wells containing polarized MDCK cells (A, B), HeLa cells (C)

or empty wells (D) were infected with S.TmD4 (pGFP) (A) or E.coli

Nissle (pGFP) (B–D) as described in figures 1–3. Left panels: DIC

image of the respective confluent cell layers. Right panels: Overlay

of a 5 min movie in the GFP-channel showing right handed

curved bacteria tracks at the cellular surface indicative of bacterial

near surface swimming. Scale bar: 25 mm.

(TIF)

Figure S3 Docking patterns of non-invasive S. Typhi-
murium mutants with respect to mitotic and non-
mitotic cells. (A)S.TmD4 (pGFP) docks at the base of rounded

cells. HeLa cells were infected with S.TmD4 (pGFP) for 60 min at

an m.o.i. of 62.5, washed, fixed and stained. A 3D-reconstruction

of a stack of confocal images is shown. The actin-cytoskeleton is

shown in grey, bacteria in green. In addition, extracellular S.

Typhimurium were stained by an anti-LPS antibody and shown in

red. Scale bar: 4 mm. Docking was identical at the 6-min time

point (not shown). (B)HeLa cells were infected with the non-

invasive strainsS.TmD4(lacks the effectors for triggering membrane

ruffles) or S.Tm-T1(lacks a functional TTSS-1; does not trigger

membrane ruffles) for 6 min at the indicated m.o.i. followed by

fixation and staining of bacteria, nuclei and actin. S. Typhimurium

docking onto interphase and mitotic cells was manually quantified

using a 406-objective. The data show a clear target preference for

mitotic cells for both mutants. Each bar summarizes 6–7

quantifications from 2 independent experiments summarizing

800–1000 interphase cells or 155–195 mitotic cells, respectively.

Technical note: It should be noted that the numbers of bacteria

per infected mitotic cell detected in this experiment (S.TmD4, red

bars) was higher than in Fig. 6E (S.TmD4, dark grey bars). This has

technical reasons. In suppl. Fig. S3B we used manual quantifica-

tion of all individual bacteria from all focus planes of a given

infected cell. In contrast, during automated image analysis (in

Fig. 6), a single focus layer was quantified. Thus, bacteria located

‘‘on top of each other’’ would be superimposed. Therefore, the

detected number of bacteria docked onto mitotic cells is somewhat

higher in suppl. Fig. S3 than in Fig. 6. However, this does not

affect our conclusions.

(EPS)

Figure S4 S. Typhimurium docking is dependent on
motility. HeLa cells were infected with motile and non-motile S.

Typhimurium mutants for 6 min. Mutants were constructed in the

background strains S.TmD4, S.Tm-T1and S.Tm-T1-Fi, as indicated.

S.Tm-T1 is motile, but lacks a functional TTSS-1 apparatus

required for efficient docking and the triggering of host cell

invasion [9]. S.Tm-T1-Fi lacks the TTSS-1 apparatus and the fim

adhesin which contributes to reversible host-cell binding. These

background strains carried additional mutations in fliGHI (no

flagella), flgK (truncated flagella) or motAB(do not rotate the

flagella), rendering the bacteria non-motile. Docking was analyzed

as described [9]. The behavior of all three non-motile mutants on

motility agar and in the docking experiment was indistinguishable

(data not shown), pointing to a role of motility, not flagella per se in

S. Typhimurium docking. Please note the different scale of the

three diagrams which are in line with previous work demonstrat-

ing a role of TTSS-1 and the fim adhesin in host-cell binding [9].

Data show median and standard deviation from 3 independent

experiments.

(EPS)

Figure S5 Stimulation of S. Typhimurium binding/
docking by latrunculin B. Cells were pre-treated with

latrunculin B for one hour prior to infection with the indicated

S. Typhimurium strain for 6 min. Experimental setup and analysis

was identical to the experiment shown in Fig. 7B.

(EPS)

Figure S6 Automated analysis demonstrates stimula-
tion of S. Typhimurium docking by cellular ruffling. (A–

D) Cells with associated reporter and helper bacteria. HeLa cells

were infected for the indicated time at an m.o.i. of 250 with a

mixture of reporter and helper bacteria. Reporter strains were gfp-

labeled and either S.TmD4(pGFP) (left panels) or S.Tm-T1(pGFP)

(right panels) were used. The helper strain was rfp-labeled (using

plasmid pM2120));as a helper, we used either bacteria incapable of

triggering ruffles(S.TmD4 or S.Tm-T1, panels A and B) or bacteria

able to trigger ruffling (S.TmSopE, panels C and D). After fixation

and staining of the nuclei, automated microscopy and automated

image analysis was done using the open source program

CellProfiler [58] and custom algorithms. Thereby nuclei were

identified and the areas of the cells estimated. ‘‘Infectious spots’’

(one or more bacteria of a given color) were identified in the red

and the green channel and allocated to the corresponding cell.

Therefore, 4 types of cells can be distinguished: i) Cells with only

green or ii) Cells with only red S. Typhimurium associated, iii)

Cells with both, red and green bacteria associated (shown in

yellow) and iv) Cells without any associated bacteria. Please note,

that with the helper strain S.TmSopE (panels C and D) more red

and green S. Typhimurium are recruited to the cells. (E,

F):Reporter strain associated with the host cell: The fraction of

cells with associated reporter bacteria (green bacteria, either

S.TmD4 or S.Tm-T1) is indicated. This number is calculated by

adding the respective green and yellow bars in panels A–D. Please

note, that in this plot we cannot distinguish whether the recruited
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reporter bacterium remains extracellular or intracellular. (G, H)

Invasion by the reporter strain: The fraction of cells with invaded

reporter bacteria from a parallel experiment is indicated. In this

experiment, reporter bacteria (either S.TmD4 or S.Tm-T1) were

carrying plasmid pM975. This plasmid specifically induces gfp-

production in intracellular bacteria. Thus, infected cells can be

specifically detected. The invasion experiment and automated

quantification of cells with intracellular S. Typhimurium was done

as described [32]; the percentage of cells with invaded reporter

bacteria is given. Invasion of the reporter induced by the helper

strain is clearly visible. (I, J) Docking of the reporter strain

stimulated by the helper strain: The fraction of cells exclusively

harboring extracellular bacteria was calculated by subtracting the

fraction of cells with intracellular S. Typhimurium(panels E,

F)from the fraction of cells with associated S.Typhimurium (panels

G, H). This calculation is a conservative estimation because cells

can harbor both, docked and invaded bacteria. The area between

both curves (outside bacteria with helper S.TmD4 and S.TmSopE)

represents the fraction of cells with reporter bacteria recruited by

ruffling in the most conservative estimation. Taken together, this

experiment thus demonstrates that ruffling induced by the helper

strain stimulates both: docking to the outside of the cell and

cellular invasion of the reporter strain. The data shown are

representative of two independent experiments. Similar results

were obtained after switching of the plasmids for the reporter and

helper strains (data not shown).

(EPS)

Figure S7 Centrifugation enables immotile S. Typhi-
murium to dock onto HeLa cells but does not restore the
preference for cellular ruffles. HeLa cells were incubated

with a 1:1 mixture of a motile (S.TmD4) or immotile (S.TmD4 fliGHI)

gfp-labelled reporter strain and a ruffle inducing (S.TmSopE) or

inactive (S.TmD4) reporter strain at an m.o.i. of 62.5 for 6 minutes.

Combinations were (A, C) S.TmD4 (pGFP)/S.TmD4 or S.TmD4

(pGFP)/S.TmSopE;(B, D) S.TmD4 fliGHI (pGFP)/S.TmD4 or

S.TmD4 fliGHI (pGFP)/S.TmSopE as indicated. In (C, D) centrifu-

gation was performed to enable cellular binding of immotile S.

Typmiurium. Either docking onto whole non-ruffling cells (grey

bars) or cellular ruffles (red bars) was quantified, as indicated. The

motile strainS.TmD4 (pGFP) docked onto cells and(with even

higher efficiency) onto cellular ruffles. Without centrifugation,

immotile S.TmD4 fliGHI (pGFP) did not dock onto cells or ruffles.

After centrifugation, S.TmD4 fliGHI (pGFP) was found associated

with cells and ruffles with equal affinity but no preference for

ruffles was detected. As an internal control, the helper strain

S.TmSopE was also quantified. This strain associated with ruffles

with high affinity in all scenarios (red bars with white stripes). Each

plot summarizes binding to 21 to 104 cells or ruffles. *: p,0.05.

***: p,0.0001, Mann-Whitney-U test.

(EPS)

Figure S8 E.coli Nissle can target to Salmonella-trig-
gered membrane ruffles. HeLa cells were infected with a 1:1

mixture of S.Tmwt and E.coli Nissle (pGFP) at an m.o.i. of 200 for

6 min, fixed and stained for actin (646-phalloidin), nuclei (DAPI)

and S. Typhimurium (using an anti-LPS antibody). Images were

acquired using a Zeiss Axiovert 200 m inverted microscope

equipped with an Ultraview confocal head using a 1006objective.

S.Tmwt is shown in red, E.coli Nissle in green, nuclei in grey and

actin in blue. Scale bar: 10 mm. It should be noted that overall

binding efficiency of E.coli Nissle to HeLa was much lower than in

the case of S.TmD4. This might be attributable to the lack of key

adhesins, i.e. the TTSS-1. However, all E.coli Nissle bacteria which

bound to the cell layer were found to be associated with cellular

ruffles.

(EPS)

Video S1 S. Typhimurium swimming along the surface
of HeLa cells. HeLa cells were infected with S.TmD4 at an m.o.i.

of 0.5and a DIC movie was acquired using a 636objective at 23

frames per second and is shown in real time. S. Typhimurium

move in and out of focus following the cellular surface before

stopping at a mitotic cell.

(WMV)

Video S2 Larger magnification ofS.TmD4NSSat the
surface of HeLa cells from the same experiment shown
in Video S1.

(WMV)

Video S3 S. Typhimurium NSS on a glass surface with
glass bead obstacles. Gelatine coated glass beads (500 mm

diameter) were placed onto a glass-bottom dish filled with HBSS

buffer and the swimming behavior of S.Tmwt(mCherry) was

recorded (20 frames per second; 300 frames) by confocal

fluorescence microscopy using a 1006 objective (oil NA1.4, Zeiss

Axio Observer). The overlay of all frames (maximum intensity

plot; ImageJ software) is shown in Fig. 4B.

(WMV)

Video S4 Stopping of S. Typhimurium atcellular ruffles.
HeLa cells were infected with a 1:1 mixture of S.TmD4(pGFP) and

S.TmSopE(pM2112, constitutive rfp-plasmid) at an m.o.i. of

5,6 minutes before movie acquisition. A 2.5 minute DIC movie

was acquired using a 636 objective and 2-fold optovar, at 23

frames per second and is shown in real time. Images in the

fluorescence channel showed that both S.TmD4 (non-invasive

mutant) and S.TmSopE (invasive mutant) were associated with the

membrane ruffle (data not shown).

(WMV)
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