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Abstract: Renewable solar energy is the key target to reduce fossil fuel consumption, minimize global
warming issues, and indirectly minimizes erratic weather patterns. Herein, the authors synthesized an
ultrathin reduced graphene oxide (rGO) nanosheet with ~47 nm via an improved Hummer’s method.
The TiO2 was deposited by RF sputtering onto an rGO nanosheet with a variation of temperature
to enhance the photogenerated electron or charge carrier mobility transport for the photoanode
component. The morphology, topologies, element composition, crystallinity as well as dye-sensitized
solar cells’ (DSSCs) performance were determined accordingly. Based on the results, FTIR spectra
revealed presence of Ti-O-C bonds in every rGO-TiO2 nanocomposite samples at 800 cm–1. Besides,
XRD revealed that a broad peak of anatase TiO2 was detected at ~25.4◦ after incorporation with
the rGO. Furthermore, it was discovered that sputtering temperature of 120 ◦C created a desired
power conversion energy (PCE) of 7.27% based on the J-V plot. Further increase of the sputtering
temperature to 160 ◦C and 200 ◦C led to excessive TiO2 growth on the rGO nanosheet, thus resulting
in undesirable charge recombination formed at the photoanode in the DSSC device.
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1. Introduction

The demand of global energy usage has increased tremendously by 0.9%, equivalent to a 120 million
tonnes of oil (Mtoe) in 2019 as compared to 2018 [1]. The consumption of fossil fuel (i.e., oil, coal,
gas) is expected to keep rising due to economic growth and increasing population around the world.
Further emission of fossil fuels produces carbon monoxide (CO) gas, a driver of the greenhouse effect.
This continuous reliance on conventional energy resources will lead to a negative impact on the global
warming crisis [2]. These climate change issues will result in erratic patterns like ice melt, sea levels
and ocean acidification, plants and animals, and also social effects [3].

In this context, transitioning away from fossil fuels by executing alternative research for renewable
energy with low-carbon sources is mandatory. Solar energy is an obvious choice towards a clean
energy source, which is free, abundant, and everlasting source that could be provided in a pollution
free manner. Nowadays, photovoltaic (PV) technologies have received great attention from researchers
due to its ability in generating electricity that is clean, inexpensive, and sustainable, from sunlight [4–6].
To date, these technologies are achievable for the optimization of crystalline silicon solar cells at
a power conversion energy (PCE) of about 27.6% [7]. Further generation in thin film solar cells
involving CIGS, CdTe, and amorphous silicon, could achieve as high as 23.4% in 2019 [7–9]. However,
these technologies have high cost production and mass scale panels [10].

Emerging PV technology cells of dye-sensitized solar cells (DSSCs), relatively low-cost, and ease
for fabrication, have obtained an ideal PCE of 12.6% [11]. Practically, the PCE performance of DSSCs
usually depends on the materials used in the photoanode part. Thus, the photoanode is the crucial
element, which is applicable for absorbing the incoming light and allowing it to pass into the dyes for
photoelectrochemical process [12]. Commonly, titanium dioxide (TiO2) is utilized for photoanodes due
to its high thin film transparency and good photocatalytic characteristics [13,14]. However, TiO2 has
some drawbacks such as recombination and the potential of causing undesirable effects for the excited
photogenerated electrons in the interfacial transfer and leads to low PCE performance [15].

Recently, a two-dimensional (2D) carbon nanomaterial, graphene, has attracted interest with
several outstanding properties that fit the DSSCs and its mechanism features in photoanode [16–18].
Furthermore, graphene exhibits efficient charge carrier transport, which will probably facilitate
the excited electrons’ flow towards the outer circuit and improve the overall PCE performance of
DSSCs [19]. Moreover, graphene has excellent optical transparency properties with good absorption
rate that could efficiently allow the illumination light into the dye molecules. However, graphene
without functionalized or further incorporation with other metal oxide is insufficient to be applied as a
photoanode [20]. Besides, it also suffers from lattice defects and this leads to low PCE for DSSCs [21].

Researchers have attempted to improve the PCE performance of DSSCs by incorporating the TiO2

with reduced graphene oxide (rGO) as reported elsewhere [22,23]. Recently, it has been discovered
that hydrothermal deposition of rGO could be deposited onto TiO2 with various concentrations of
GO for photocatalytic degradation of RhB dye [24]. Later, Sayali et al. and their group found that
the rGO-TiO2 nanocomposite preparation via ultrasound assisted/sonochemical method could obtain
good Ti-O-C bonding [25]. Some recent updates about rGO-TiO2 formation via different techniques
are shown in Table 1. However, these techniques are emphasized on surface deposition/coating and
there is a lack of accurate bonding onto the material lattice and inadequate concentration formation by
the dopant.

In this paper, the preparation rGO-TiO2 nanocomposite as photoanode for DSSCs is reported
via an RF sputtering technique approach. Specifically, an optimization of sputtering temperature
of the TiO2 target and direct penetration of the rGO nanosheet could suppress the recombination
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while improving the photoinduced charge carrier transport. Furthermore, the sputtering technique is
promising to maximize the opportunity to fill the oxygen vacancy to reduce the intrinsic defect of rGO
in oxides lattice with TiO2. Herein, RF sputtering is a better approach comparable to other physical
coating or depositing for exterior dopants. In fact, this technique is associated with a better adhesion
and uniform distribution onto rGO nanosheet with efficient atom bombardment. Until now, detailed
studies of rGO decorated with TiO2 with various sputtering temperatures onto rGO nanosheet for
DSSCs performance are still lacking. Yet, the influence of sputtering temperature of TiO2 onto rGO
nanosheet, reaction mechanism, and their physical/chemical characteristics as photoanode remains
unclear. Henceforth, comprehensive work is conducted to optimize the rGO-TiO2 nanocomposite as
photoanode element for DSSCs and to be tested under 100 W solar illumination power.

Table 1. Summary of rGO-TiO2 nanocomposites by different techniques.

Composite
Formation

Optimized
Concentration Dopants Method Findings Ref.

rGO/TiO2 3 wt% GO solvothermal ACT degradation and
mineralization on photocatalytic [26]

TiO2-rGO 0.5 wt% GO hydrothermal FM photodegradation [27]
TiO2-rGO 0.4 wt% GO hydrothermal DSSCs [28]
rGO-TiO2 0.5mg rGO hydrothermal DSSCs [29]

Ag/rGO/TiO2 - GO solvothermal Plasmonic DSSCs [30]

2. Experimental Details

2.1. Materials

Graphite powder (<20 µm; 99.99%); potassium permanganate, KMnO4 (≥99.0%); hydrazine solution
(35 wt% in H2O); fluorine doped tin oxide coated glass slide, FTO coated glass (surface resistivity:
~7 Ω/sq), Di-tetrabutylammonium cis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)ruthenium(II)
(ruthenium dye), platinum, Pt (≥99.9% trace metals basis), and silver conductive paste were purchased
from Sigma Aldrich, Malaysia. Sulfuric acid, H2SO4 (95–97%); ortho-phosphoric acid, H3PO4 (85%);
hydrogen peroxide, H2O2 (30%); hydrochloric acid fuming, HCl (37.0%); absolute ethanol, C2H5OH
(≥99.5%), acetonitrile, C2H3N (41.05 g/mol), and potassium iodide electrolyte, KI (≥99.0%) were
purchased from Merck, Malaysia. Titanium target for sputtering (99.99% purity, diameter in 50,800 µm
with thickness of 6350 µm) was purchased from ULVAC Inc. The deposition process of TiO2 onto rGO
nanosheet was conducted using an RF sputtering machine at SIRIM Berhad, Malaysia.

2.2. GO and rGO Preparation

Ideal GO and rGO nanosheets were synthesized via improved Hummer’s method and chemical
reduction technique as reported in our previous work [31–33]. The overall reaction is illustrated
in Figure 1a whereas the chemical structure of graphite, GO, and rGO are shown in Figure 1b–d,
respectively. Comprehensively, GO was prepared from graphite powder as the precursor material
via improved Hummer’s method. A total of 1.5 g of graphite powder was poured into an acid ratio
of 9:1 (H2SO4:H3PO4) [34]. Next, 9.0 g of oxidizing agent, KMnO4, was then slowly poured into the
mixture under ice bath condition (<20 ◦C). The solvent color changed from dark purplish green to
dark brown, indicating that the oxidizing process was taking place. After 24 h, the solvent mixture
was slowly transferred into ~200 mL ice solution and the overall reaction was conducted under ice
bath condition. The oxidization process was terminated by adding 3 mL of H2O2 dropwise into the
mixture and turned the color from dark brown to light brownish, indicating that a high oxidation level
of graphite was well formed [34]. The suspension was centrifuged and washed with diluted HCl and
DI water until pH7 was achieved. The sol-gel GO byproduct was formed after being dried for 24 h in a
dry oven. Furthermore, 1.26 g of fine GO was produced from graphite powder. For rGO synthesis,
it was well prepared via a chemically reduction process. Additionally, 300 mg of GO flakes were
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added into 100 mL distilled water while 100 µL of hydrazine solvent was immediately dropped into
the mixture. The overall reaction was heated under oil bath conditions and maintained at ~80 ◦C [35].
The mixture was centrifuged and the supernatant was decanted away. Lastly, approximately 0.84 g of
rGO samples were formed after being dried in a dry oven for 24 h. Henceforth, the yield production of
synthesized rGO from GO went up to 67%.

Molecules 2020, 25, x FOR PEER REVIEW 4 of 19 

bath condition. The oxidization process was terminated by adding 3 mL of H2O2 dropwise into the 
mixture and turned the color from dark brown to light brownish, indicating that a high oxidation 
level of graphite was well formed [34]. The suspension was centrifuged and washed with diluted 
HCl and DI water until pH7 was achieved. The sol-gel GO byproduct was formed after being dried 
for 24 h in a dry oven. Furthermore, 1.26 g of fine GO was produced from graphite powder. For rGO 
synthesis, it was well prepared via a chemically reduction process. Additionally, 300 mg of GO flakes 
were added into 100 mL distilled water while 100 µL of hydrazine solvent was immediately dropped 
into the mixture. The overall reaction was heated under oil bath conditions and maintained at ~80 °C 
[35]. The mixture was centrifuged and the supernatant was decanted away. Lastly, approximately 
0.84 g of rGO samples were formed after being dried in a dry oven for 24 h. Henceforth, the yield 
production of synthesized rGO from GO went up to 67%. 

 

 
Figure 1. Cont.



Molecules 2020, 25, 4852 5 of 18Molecules 2020, 25, x FOR PEER REVIEW 5 of 19 
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Figure 1. (a) Schematic diagram of GO and rGO synthesis, chemical structure of (b) graphite, (c) GO,
and (d) rGO.
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2.3. rGO-TiO2 Nanocomposite Formation

The rGO-TiO2 nanocomposite via sputtering technique was prepared as an efficient photoanode
for DSSCs devices as depicted in Figure 2. Firstly, the rGO nanosheet layer was deposited onto FTO
glass via an electrodeposition technique as reported in our finding [33]. Size of the entire DSSCs
device had been fixed with 2 cm × 2 cm area for both the anode and the cathode. The rGO was
deposited on FTO glass for the anode part with an active area of 0.67 cm2. From our understanding,
the sputtering method is one of the effective routes to produce photoanode to achieve an ideal PCE
of DSSC performance [36]. In other words, the sputtering technique has the potential to allow more
dopant atom particles to penetrate onto the rGO nanosheet under high acceleration and are well formed
within a second [37]. Thus, it would enhance the properties of rGO-TiO2 nanocomposites in terms of
charge carrier transport rate, resulting in high PCE of DSSC performance. In this typical procedure,
several FTO with coated rGO were placed for RF sputtering with different sputtering temperatures of
40, 80, 120, 160, and 200 ◦C. The utilized titanium dioxide target was placed in a chamber with the
optimization of being placed with distance of 10 cm apart [33]. For the uniformity of dopant onto
the rGO nanosheet, the sputtering duration of TiO2 and input power were maintained at 60 s and
150 W, respectively. The flow rate of Argon, Ar, gas was 15 mL/min, pressure at 266.64 mPa with
base pressure of 0.67 mPa. Finally, the rGO-TiO2 nanocomposite was successfully formed for the
photoanode element.
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2.4. DSSCs Fabrication

Theoretically, a working DSSCs device is integrated in a sandwich configuration, which consists of
TCO/photoanodes/dye/electrolyte/counter electrode/TCO as shown in Figure 3. Practically, our study
aims at modification of rGO photoanodes (conventional in TiO2 material), which is the core element
for the incoming light absorption ability. The main role of the photoanode is used to allow the excited
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photo-electron from dye molecules into the conduction band of TiO2 under the illumination process.
In addition, the incorporation of rGO with TiO2 is applied to lift-down the incoming electrons at TiO2

since it is a wide band gap metal oxide semiconductor material (3.2 eV). The role of rGO also helps in
the internal movement of exciton electrons from the valence band of TiO2 into the conduction band of
TiO2, where it is possesses high carrier mobility with almost zero band gap characteristics [16]. In this
way, the rGO-TiO2 nanocomposite could efficiently transfer the excited photo-electrons by minimizing
the charge recombination.
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For details of DSSCs fabrication process, photoanode contained rGO-TiO2 was soaked into a
solvent containing 0.5 mL N719 dye (0.3 mM) and C2H5OH for 24 h. The photoanode was rinsed with
C2H3N and post baked for 10 min. Then, the counter electrode was coated with Pt with an active area
of 0.67 cm2 via spin coating method. Both of the electrodes were sandwiched and 0.5 M KI electrolyte
were dropped on the gap. The overall device was sealed by silver paste.

2.5. Characterization

The surface morphologies of graphite, GO, and rGO were observed using field emission scanning
electron microscopy (FESEM, FEI Quanta 200 FEG) with attachment of energy dispersive X-ray
analysis (EDX), 5 kV. For surface morphologies of TiO2, it was viewed under scanning electron
microscopy TM3030 tabletop microscope at a working distance of approximately 2.0 mm at high
vacuum mode with 5.0 kV. Besides, the rGO-TiO2 nanocomposite was monitored under HITACHI
UHR Cold-Emission FE-SEM SU 8000. The lattice of rGO-TiO2 nanocomposite was examined under
high-resolution transmission electron microscopy (HRTEM), JEM 2100F with an accelerating voltage
of 200 kV. The topologies of the rGO-TiO2 nanocomposite were measured using atomic force
microscope controller—AFM5000II with 3D rotation. The purity phases of TiO2, crystalline of rGO,
and rGO-TiO2 nanocomposite were determined using X-ray diffraction (XRD), D8 Advance X-ray
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diffractometer-Bruker AXS, the spectra were measured from 10◦ to 70◦ with scanning rate of 0.033 deg/s
under CuKα radiation (λ = 1.5418 Å). The structural characterization of rGO, TiO2, and rGO-TiO2

nanocomposite were recognized by the Raman analysis, Renishaw inVia microscope with applied
HeCd laser source with λ = 514.0 nm at room temperature. Furthermore, its functional groups of
rGO, TiO2, and rGO-TiO2 nanocomposite were identified under the Fourier transform infrared (FTIR)
spectroscopy, Bruker-IFS 66/S along 500–4000 cm−1 wavelength by the KBr pellet method. The J-V
curves of DSSCs were obtained from Autolab PGSTAT204 with solar irradiation (mercury xenon lamp)
under 100 W input power.

3. Results and Discussion

3.1. Morphology

The FESEM images of graphite, graphene oxide (GO), and rGO are shown in Figure 4a–c,
respectively. There are thick massive graphite flakes with nonuniform graphitic sheets distributed
along the sample (Figure 4a). Figure 4b shows thin layers of GO after oxidation and exfoliation. On the
other hand, Figure 4d shows the TiO2 nanoparticles, which are sputtered on the surface of rGO to form
the rGO-TiO2 nanocomposite (Figure 4e) with average nanoparticles of ~30 nm (inserted in Figure 4e).
Furthermore, the EDX results revealed that the atomic, at.%, content of carbon, C, element in the
rGO-TiO2 nanocomposite have been recorded at 37.29%, which is almost three times more than the
titanium, Ti, element with 12.61%. However, the overall oxygen, O, remained the most contained
element due to its contribution from the oxygenated group of graphene and also oxygen from TiO2.
The broad peak detected at 4.5 eV with high Ti content, is mainly due to the huge amount of Ti material
sputtered and mixed along the rGO surface.
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3.2. HRTEM

Further insight into the detailed microstructure of HRTEM and the typical image under 2 nm
magnification determined that the TiO2 is homogenously well anchored with rGO and formed
rGO-TiO2 nanocomposite as shown in Figure 5. Generally, the brighter color (0.336 nm) represented
rGO nanomaterial; darker color (0.349 nm) those composed of TiO2 nanoparticles, while grey color
(0.399 nm) denoted the rGO-TiO2 nanocomposite [33]. These phenomena were in agreement as Ti-O-C
bonding, which was present and proven in Figure 8. The lattice fringes of the rGO (3.36◦) and TiO2

(3.49◦) correspond to the rGO (002) plane and TiO2 (101) plane, respectively [31].
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3.3. AFM

The topologies and cross-section of rGO-TiO2 nanocomposite were analyzed by atomic force
microscopy (AFM) as shown in Figure 6. Scanning areas for the surface were up to 300 nm × 300 nm
whereas Figure 6a shows the 3D images with the highest depth of ~25 nm. In addition, the entire
thickness with roughness of rGO-TiO2 nanocomposite was ~75 nm, which the highest with brightest
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color denoted as TiO2. Besides, the 2D image was focused under 250 nm scan area for a better view
on the surface roughness (refer Figure 6b). It is clearly shown that there are two different formation
colors, whereby the bottom with darker color classified as TiO2 was fully sputtered onto the rGO
nanosheet and formed rGO-TiO2 nanocomposite whereas the standalone brighter color represented
sputtered TiO2 that covered the top of the nanocomposite. Moreover, the cross-section of rGO-TiO2

nanocomposite along Figure 6b revealed that the surface thickness was ~35 nm, which was in agreement
with Figure 6a.
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3.4. FTIR

The functional groups of graphene oxide (GO) and rGO were completely analyzed and identified
as shown in Figure 7. Several intense peaks appeared in the GO sample, indicating oxygen containing
groups that successfully formed from graphite after oxidation (Figure 7a). The absorption peaks
including aromatic C-H deformation at 670 cm−1, C-O stretching at 1052 cm−1, phenolic C-OH
stretching at 1200 cm−1, C-OH at 1361 cm−1, hydroxyl groups of molecular water and C=C at 1625 cm−1,
C=O stretching at 1729 cm−1, and a broad peak assigned as O-H stretching vibrations of C-OH groups
at 3400 cm−1 [31]. Definitely, the broad band of O-H stretching at 3400 cm−1 is significantly reduced and
also the presence of C-O at 1052 cm−1 and C-OH at 1361 cm−1 in the rGO pattern. These phenomena
clearly indicate that the GO has been reduced and the oxygenated group is eliminated [38].
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Figure 7. FTIR spectra of (a) GO and (b) rGO.

The FTIR transmission spectrum of rGO is placed in Figure 8 for further investigation between
the TiO2 and rGO-TiO2 nanocomposite, which is formed via different sputtering temperatures.
The FTIR spectrum of TiO2 was also been identified and depicted the peaks as high purity TiO2,
which corresponded to TiO2. From the TiO2 spectrum, several peaks at 467 cm−1, 1345 cm−1, 1629 cm−1,
and 3396 cm−1 can be observed. To the best of our understanding, the broad peak in the range
of 500–1000 cm−1 region is ascribed to the Ti-O and Ti-O-Ti bridging stretching modes while the
peak is denoted as anatase titania [39]. In the rGO-TiO2 samples, most of the rGO peaks did not
appear in nanocomposite samples except 80 ◦C and 200 ◦C in the range between 1600–1750 cm−1,
which indicated high C=C content. Interestingly, the intense peak absorption appeared for each
rGO-TiO2 nanocomposite sample in the range of 550–900 cm−1 that was designated as Ti-O-C or
Ti-O-Ti linkage bonds formed. This shows that these nanocomposite samples were well formed and
established agreement for rGO-TiO2 via sputtering method [40].
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3.5. XRD

The XRD pattern was utilized to analyze the crystallinity of introduced TiO2 that sputtered onto
the rGO nanostructure. Figure 9 shows the XRD spectra for synthesized rGO, TiO2, and rGO-TiO2

nanocomposites deposited at various sputtering temperatures. The XRD of rGO had a sharp peak
presence at 25.2◦, 43.8◦, and 45.6◦ as shown in Figure 9a. These peaks correspond to (002), (001),
and (001) diffraction planes while the 25.2◦ peak indicated that the reduction process from graphene
oxide (GO) was successfully obtained [41,42]. Moreover, less intense peaks at 43.8◦ and 45.6◦ indicated
highly disordered carbon material [32]. On the other hand, Figure 9b shows XRD patterns of high
crystallinity TiO2 as raw nanoparticle recorded in the range from 15◦ to 65◦. The sharp Bragg peaks
indicate that the highly crystalline TiO2 nanomaterials are well-formed. The presence of the broad
peaks and Bragg diffraction peaks indexed along 25.4◦, 28.1◦, 41.0◦, and 54.6◦ with (101), (112), (211),
and (204) orientations, respectively, corresponded to anatase phase TiO2 (JCPDS card no: 21-1272) [43].
The XRD patterns from (c) to (g) were detected for rGO-TiO2 nanocomposite in variations of sputtering
temperature and well aligned along at 25.2◦, which were in good agreement with the obtained unique
properties along the (101) orientation.
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3.6. Raman

The Raman spectra of rGO, anatase TiO2, and rGO-TiO2 nanocomposites deposited at temperatures
of 40 ◦C, 80 ◦C, 120 ◦C, 160 ◦C, and 200 ◦C, respectively, are shown in Figure 10. The appearance of rGO
peaks in the Raman spectrum of D band and G band at 1348.20 cm−1 and 1592.84 cm−1, respectively, as
analyzed in our previous work, confirmed successful reduction of GO to rGO [31,44]. Besides, the
significance peaks for the sputtered TiO2 have been identified as anatase phase TiO2 due to the aligned
Raman frequencies at 148.24 cm−1 (Eg1), 391.37 cm−1 (B1g), 508.64 cm−1 (A1g), and 629.65 cm−1 (Eg),
which correspond to the literature [45]. Meanwhile, the Raman spectrum of rGO-TiO2 nanocomposites
with different sputtered temperatures have recognized entire material characteristics as every essential
peak for particular anatase TiO2 and rGO clearly appeared in the composite. Furthermore, the ID/IG

ratios of rGO and rGO-TiO2 nanocomposites were calculated and displayed in Figure 10. The ID/IG

ratio could determine the defects of carbon nanomaterial based on the intensity of D band and G band.
Among these rGO-TiO2 nanocomposites, sputtered temperature condition at 80 ◦C was the highest
defect credited to its ID/IG ratio. In contrast, the sputtered temperature at 200 ◦C with lowest ID/IG ratio
indicated that the ideal sp2 C-C network was well formed. Based on our understanding, D band-mode
represented disordered structure of graphene material (sp3-bonded) whereas G band arose from C-C
bond stretching in graphitic material or known as more relevant to sp2-bonded carbon atoms [46].
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3.7. DSSCs

The DSSCs performance of sputtered raw TiO2 and rGO-TiO2 nanocomposite with different
sputtering temperature onto rGO nanosheets were tabulated in Figure 11. The values of Table 2 are
calculated based on the results in Figure 11 by reference from the equations below:

FF =
Vmp Jmp

JscVoc
(1)

η =
JscVocFF

Pin
(2)

where Jsc = short circuit current; Voc = open circuit voltage; Jmp = maximum current; Vmp = maximum
voltage; FF = fill factor; Pin = input power; and η = efficiency.

The PCE performance (η) of the DSSCs based on sputtering temperature studies of rGO-TiO2 were
determined accordingly by the details of photovoltaic characteristics such of DSSCs as short circuit
current (Jsc), open circuit voltage (Voc), maximum power current (Jmp), maximum power voltage
(Vmp), and fill factor (FF) (Table 2). It was revealed that 120 ◦C rGO-TiO2 nanocomposites obtained
an ideal PCE result of 7.27% with Jsc of 15.74 A/cm2, Voc of 0.70 V, Jmp of 12.16 A/cm2, Vmp of 0.60,
and FF of 0.66. Among these rGO-TiO2 nanocomposite samples, 120 ◦C also achieved the highest
Voc, which indicated the shifting energy band of sputtered TiO2 with effective transferring of the
photoinjected electrons from excited electron into the conduction band [47]. Furthermore, this impact
would definitely benefit the 120 ◦C rGO-TiO2 nanocomposite with the efficient electron lifetime and
obtained the highest value of FF.
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Table 2. Summary of photovoltaic characteristics of DSSCs via different sputtering temperatures
of TiO2.

Sputtering
Temperature, ◦C

Short Circuit
Current, Jsc

Open Circuit
Current, Voc

Maximum Power
Current, Jmp

Maximum Power
Voltage, Vmp

Fill Factor,
FF

Efficiency,
η

TiO2 3.98 0.36 2.82 0.28 0.55 0.79
40 5.75 0.35 5.07 0.25 0.63 1.27
80 19.18 0.39 12.58 0.30 0.50 3.74
120 15.74 0.70 12.16 0.60 0.66 7.27
160 11.31 0.60 9.69 0.30 0.43 2.92
200 16.46 0.38 14.85 0.10 0.24 1.50

From Table 2, a sputtered raw anatase TiO2 was measured and attained the lowest PCE with
0.79% while 40 ◦C sputtering temperature of TiO2 has the lowest PCE of 1.27% due to its small
amounts of TiO2 content reacts at photoanode element and difficult to absorb visible light from solar
simulator [48]. The PCE is significantly increased from 40 ◦C with 1.27% to 80 ◦C and 120 ◦C with 3.74%
and 7.27%, respectively. There was an estimate that improved by double according to the increases of
sputtering temperature. In contrast, the PCE dramatically dropped from 7.27% to 2.92% (160 ◦C) and
lastly to 1.50% (200 ◦C). This occurrence might be due to the excessive amount of TiO2 which act as
recombination centers that lead to high resistance of photo-induced charge carriers flow through the
outer circuit [49].

4. Conclusions

This work discussed the effects of sputtering temperature of TiO2 introduced onto rGO nanosheet
and photoanode film for DSSCs PCE performance was accomplished. The sputtering route for rGO-TiO2

nanocomposite formation is an impressive and effective approach. In this study, the rGO nanosheet
was applied to facilitate photoinduced charge carrier electron transport while reducing electron-hole
recombination pairs, resulting in better PCE performance of doped TiO2. The uniform distribution
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of TiO2 was found at 120 ◦C sputtering temperature on the rGO nanosheet as demonstrated by
FESEM images where the lattice of rGO, TiO2, and rGO-TiO2 nanocomposites were presented. Surface
roughness of rGO-TiO2 nanocomposite was measured at ~35 nm. Crystallinity of TiO2 onto rGO
nanosheets was analyzed and this confirmed that a mixture of TiO2 anatase phase was sputtered.
Both symmetry modes of rGO and anatase TiO2 were presented on rGO-TiO2 nanocomposite samples
for various sputtering temperatures. The presence of Ti-O-C bonds was confirmed by FTIR spectra,
associated with the oxygenated functional groups as shown in GO and rGO, respectively. It was found
that 120 ◦C sputtering temperature eventually enhanced the overall mobility of electron transport to
the outer circuit. The TiO2 sputtered at 120 ◦C possessed the ideal PCE of 7.27%, five times better
PCE than the 40 ◦C sputtering temperature. The results indicated that precise charge carrier loading
concentration of TiO2 is applied to achieve great absorptivity of dyes and charge separation, thus it
improves the overall transportation properties. In contrast, the formation of rGO-TiO2 nanocomposite
at highest sputtering temperature with 200 ◦C acquired the lowest PCE performance of 1.50%, which is
attributed to its excessive amounts of TiO2 that penetrated and performed higher electron-hole pair
recombination centers.
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