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Escherichia coli RseP, a member of the site-2 protease family
of intramembrane proteases, is involved in the activation of the
σE extracytoplasmic stress response and elimination of signal
peptides from the cytoplasmic membrane. However, whether
RseP has additional cellular functions is unclear. In this study,
we used mass spectrometry–based quantitative proteomic
analysis to search for new substrates that might reveal un-
known physiological roles for RseP. Our data showed that the
levels of several Fec system proteins encoded by the fecABCDE
operon (fec operon) were significantly decreased in an RseP-
deficient strain. The Fec system is responsible for the uptake
of ferric citrate, and the transcription of the fec operon is
controlled by FecI, an alternative sigma factor, and its regulator
FecR, a single-pass transmembrane protein. Assays with a fec
operon expression reporter demonstrated that the proteolytic
activity of RseP is essential for the ferric citrate–dependent
upregulation of the fec operon. Analysis using the FecR pro-
tein and FecR-derived model proteins showed that FecR un-
dergoes sequential processing at the membrane and that RseP
participates in the last step of this sequential processing to
generate the N-terminal cytoplasmic fragment of FecR that
participates in the transcription of the fec operon with FecI. A
shortened FecR construct was not dependent on RseP for
activation, confirming this cleavage step is the essential and
sufficient role of RseP. Our study unveiled that E. coli RseP
performs the intramembrane proteolysis of FecR, a novel
physiological role that is essential for regulating iron uptake by
the ferric citrate transport system.

While bacterial cellular membranes act as a barrier to
protect a cell from extrinsic damages caused by various xe-
nobiotics and hazardous changes in environmental conditions,
they must mediate not only selective import of nutrients and
other small molecules but also transduction of signals from the
external milieu to adapt to environmental changes. A variety of
mechanisms exist to transmit information across the mem-
brane. Among them, regulated intramembrane proteolysis
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(RIP) is a crucial mechanism conserved among all kingdoms
(1, 2). In RIP, a class of membrane proteases called intra-
membrane proteases (IMPs) mediate transmembrane (TM)
signaling through the cleavage of target membrane proteins.
IMPs are unique membrane-integrated proteases in that they
have their proteolytic active site located within the lipid bilayer
and catalyze proteolysis in the membrane. IMPs are classified
into four families: site-2 protease (S2P; zinc metallopeptidase),
rhomboid protease (serine protease), presenilin/signal peptide
peptidase (aspartyl protease), and Rce1 (glutamyl protease)
(3, 4). IMPs cleave various substrates and thereby play diverse
cellular roles including stress responses, development of Alz-
heimer’s disease, induction of apoptosis, maintenance of
mitochondrial homeostasis, invasion of apicomplexan para-
sites, and quality control of membrane proteins and bacterial
pathogenicity (5–8).

Escherichia coli RseP is one of the most well-studied
members of the S2P family proteases. RseP was first identi-
fied as a key factor that regulates the σE extracytoplasmic stress
response through the cleavage of a single membrane-spanning
anti-σE protein, RseA (9–11). In the σE extracytoplasmic stress
response, the accumulations of misfolded outer membrane
proteins and lipopolysaccharide biosynthesis intermediates in
the cell envelope act as stress cues to induce the cleavage of
RseA by DegS, a membrane-anchored serine protease, on the
periplasmic side (site-1 cleavage). This first cleavage triggers
the following RseP-catalyzed second cleavage of RseA inside
the membrane (site-2 cleavage), leading to liberation from the
membrane of the RseA cytoplasmic domain fragment com-
plexed with σE. Finally, degradation of the RseA cytoplasmic
domain fragment by cytoplasmic proteases such as ClpXP
activates σE to induce the transcription of stress genes (12, 13).
The first cleavage of RseA by DegS is a prerequisite for the
subsequent site-2 cleavage by RseP. Similarly, most of the
other S2P family proteases are known to catalyze intra-
membrane proteolysis of a target protein only after preceding
trimming of the substrate on the extracytoplasmic side by
other protease(s). E. coli RseP has also been shown to eliminate
remnant signal peptides generated during the membrane
translocation of presecretory proteins that would contribute to
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E. coli RseP-catalyzed intramembrane proteolysis of FecR
the quality control of the cytoplasmic membrane (14). RseP
homologs (or S2P family proteases) of many gram-negative
and gram-positive bacteria are involved in various cellular
processes (7). They include the production of sex pheromones
in Enterococcus faecalis (15), sporulation in Bacillus subtilis
(16), acid response in Salmonella enterica (17), mucoid con-
version and alginate overproduction in Pseudomonas aerugi-
nosa (18), production of cholera toxin in Vibrio cholerae (19),
and iron acquisition in Bordetella bronchiseptica and
P. aeruginosa (20, 21), RseP spans the membrane four times
with both of its N terminus and C terminus facing the peri-
plasmic space. The residues of the first and third TM segments
constitute the intramembrane proteolytic active site (22, 23),
and the central periplasmic region between the second and the
third TM segments contains tandemly arranged two PDZ
domains (PDZ tandem) (24, 25) and an amphiphilic helix that
is presumably involved in the proper positioning of the PDZ
tandem and a substrate (26). RseP and other S2P proteases
generally cleave a single-spanning membrane protein with type
II (NIN-COUT) topology. We previously proposed a model that
the bulky PDZ tandem acts as a size-exclusion filter to prevent
the access of a substrate with a large periplasmic domain to the
protease active site in the membrane (25, 27). According to
this model, the DegS-cleaved form of RseA that has lost most
of its periplasmic domain (leaving a ~30 a. a. C-terminal
periplasmic tail), but not the full-length (FL) RseA, can pass
through the PDZ filter and access the active site of RseP.
Cleavage of other known substrates (remnant signal peptides
(14) and a small membrane protein, YqfG (28)) can also be
explained by this model because the formers are generated by
the preceding cleavage of precursor secretory proteins around
the periplasmic surface of the cytoplasmic membrane by a
leader peptidase, and this processing is required for the
cleavage of signal peptides by RseP, whereas the latter intrin-
sically has a very small (~12 a. a.) periplasmic domain. The TM
segments of the known substrates of RseP share no detectable
homology in their primary sequences, suggesting that RseP
does not recognize a specific sequence motif(s) in the TM
segment of a substrate for its cleavage. Mutational analysis of
the TM segments of model substrates showed that the stability
of their helical structures is an important determinant for their
susceptibility to RseP (28, 29). Consistently, RseP homologs in
other bacteria cleave a variety of membrane proteins with no
apparent sequence homology. The sequence diversity of the
RseP/S2P substrates makes it difficult to predict potential
substrates from a simple sequence analysis of TM sequences of
membrane proteins. It would thus be reasonable to assume
that RseP still has unidentified substrates and plays important
roles in some cellular processes by cleaving these substrates,
and a more comprehensive approach is needed to search for
novel substrates and cellular functions of RseP.

In this study, we employed a proteomic approach to
achieve the above objective. Proteomic analysis is a powerful
technique to identify novel substrates of proteases as re-
ported previously (30–33). We found that the accumulation
of several proteins encoded in the fecABCDE operon (fec
operon) decreased considerably in the RseP-deficient strain.
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The Fec proteins constitute the Fec system that mediates the
uptake of ferric citrate by a cell (34, 35). We demonstrated
that FecR receives sequential processing at the membrane
and that RseP plays an essential role in the activation of FecI,
an alternative sigma factor dedicated to the transcription of
the fec operon (36–39), through the regulated intra-
membrane cleavage of a periplasmically processed form of
FecR, the regulator of the fec operon expression (40–42),
which produces the N-terminal cytoplasmic tail fragment of
FecR having a “pro-sigma” activity (40, 43) as the last step in
the sequential processing of FecR at the membrane. These
results uncover the details of the FecR processing in the
ferric citrate–induced TM signaling and a new physiological
role of RseP in the iron uptake in response to the environ-
mental conditions in E. coli.
Results

Search for new physiological substrates of RseP by
quantitative proteomic analysis

For comprehensive understanding of the cellular
functions of RseP in E. coli, we attempted to identify new
physiological substrates of RseP by a quantitative prote-
omic approach. We expected that this analysis would
enable us to find not only direct proteolytic substrates of
RseP but also proteins whose expression is regulated as a
result of substrate proteolysis by RseP. We compared the
protein levels in the membrane fractions prepared from
the ΔrseA ΔrseP mutant strain expressing the WT or a
proteolytically inactive form (a mutant having a Glu-23
to Gln alteration (E23Q) in the conserved zinc metal-
lopeptidase active site motif, HE23xxH) of RseP from a
plasmid. Although the rseP gene is essential for growth,
it can be deleted in the absence of the functional rseA
gene encoding anti-σE protein RseA, a physiological
substrate of RseP. In both the strains, σE is constitutively
activated because of the absence of RseA, and thus, we
can exclude the possible changes in protein expression
resulting from RseP-dependent induction of the σE stress
response. The membrane fractions were prepared from
these strains grown to mid-log phase in L broth con-
taining 1 mM isopropyl-β-D-thiogalactopyranoside
(IPTG), an inducer of the plasmid-encoded RseP de-
rivatives, and subject to nanoLC/MS/MS analysis. As a
result, we identified 13,815 unique peptides derived from
1419 proteins (E. coli strain K-12). Among the identified
proteins, 17 exhibited a significant (p < 0.05) increase,
whereas 41 exhibited a significant decrease in the sam-
ples prepared from the RseP(E23Q)-expressing strain
compared with the samples prepared from RseP(WT)-
expressing strain (Table 1 and Table S1). Gene
ontology enrichment analysis using the DAVID (44, 45)
showed that the former included groups related to TonB
box receptor and TM beta strand, and the latter included
proteins related to iron transport (Fold Enrichment > 10,
Table S2). Among the former proteins, three [CyoE
(heme O synthase (46, 47)), AmtB (ammonium



Table 1
Significantly changed proteins (p-value < 0.05) depending on the proteolytic activity of RseP

Log2 (E23Q/WT) -Log10 p-value Gene names Protein names Location

Upregulated
2.20 3.80 cyoE Protoheme IX farnesyltransferase IM
1.54 2.94 amtB Ammonia channel IM
1.14 1.55 zupT Zinc transporter ZupT M
0.85 1.73 ycfJ Uncharacterized protein YcfJ M
0.63 1.67 fiu Catecholate siderophore receptor Fiu OM
0.62 1.65 hdeB Acid stress chaperone HdeB Peri
0.61 1.76 osmB Osmotically inducible lipoprotein B M
0.58 2.01 mdtA Multidrug resistance protein MdtA IM
0.57 1.85 cirA Colicin I receptor OM
0.55 1.41 wzc Tyrosine-protein kinase wzc IM
0.52 1.38 glnB Nitrogen regulatory protein P-II 1 -
0.48 1.56 yjiY Inner membrane protein YjiY IM
0.46 1.46 rseP Regulator of sigma-E protease RseP IM
0.46 1.49 fepA Ferrienterobactin receptor OM
0.44 1.72 yqiC Uncharacterized protein YqiC Cyto
0.44 1.77 zntA Lead, cadmium, zinc and mercury-transporting ATPase IM
0.39 2.18 mdtB Multidrug resistance protein MdtB IM

Downregulated
−3.30 4.15 fecD Fe(3+) dicitrate transport system permease protein FecD IM
−3.27 4.42 fecA Fe(3+) dicitrate transport protein FecA OM
−1.80 3.90 fecE Fe(3+) dicitrate transport ATP-binding protein FecE IM
−0.76 2.06 yeeR Inner membrane protein YeeR IM
−0.72 1.76 znuA High-affinity zinc uptake system protein ZnuA Peri
−0.71 1.39 flu Antigen 43; Antigen 43 alpha chain; Antigen 43 beta chain Peri
−0.69 1.47 sucD Succinyl-CoA ligase [ADP-forming] subunit alpha -
−0.64 1.39 yaaA UPF0246 protein YaaA -
−0.58 1.34 putA Bifunctional protein PutA; Proline dehydrogenase; Delta-1-

pyrroline-5-carboxylate dehydrogenase
-

−0.56 1.51 cstA Carbon starvation protein A IM
−0.54 1.48 truB tRNA pseudouridine synthase B -
−0.50 1.48 purN Phosphoribosylglycinamide formyltransferase -
−0.48 1.32 rluB Ribosomal large subunit pseudouridine synthase B -
−0.44 1.50 accA Acetyl-coenzyme A carboxylase carboxyl transferase subunit

alpha
Cyto

−0.44 1.62 ycbX Uncharacterized protein YcbX -
−0.43 1.39 thrS Threonine–tRNA ligase Cyto
−0.43 1.45 thiI tRNA sulfurtransferase Cyto
−0.41 1.48 gltA Citrate synthase -
−0.41 1.45 sodB Superoxide dismutase [Fe] -
−0.40 1.78 hrpA ATP-dependent RNA helicase HrpA -
−0.40 1.48 rne Ribonuclease E Cyto
−0.39 2.19 pepP Xaa-Pro aminopeptidase Cyto
−0.39 1.51 serC Phosphoserine aminotransferase Cyto
−0.39 1.71 ybeD UPF0250 protein YbeD -
−0.39 1.64 selB Selenocysteine-specific elongation factor Cyto
−0.38 1.44 degP Periplasmic serine endoprotease DegP IM
−0.35 1.41 tehB Tellurite methyltransferase Cyto
−0.35 1.38 gmhA Phosphoheptose isomerase Cyto
−0.34 1.70 oppF Oligopeptide transport ATP-binding protein OppF IM
−0.33 1.42 uvrA UvrABC system protein A Cyto
−0.31 1.34 rlmJ Ribosomal RNA large subunit methyltransferase J -
−0.30 1.38 clpP ATP-dependent Clp protease proteolytic subunit Cyto
−0.30 2.52 helD Helicase IV -
−0.29 1.38 cspB Cold shock-like protein CspB Cyto
−0.29 1.69 fadD Long-chain-fatty-acid–CoA ligase IM
−0.27 1.42 ybaY Uncharacterized lipoprotein YbaY IM
−0.24 1.55 yciO Uncharacterized protein YciO -
−0.23 1.64 lrp Leucine-responsive regulatory protein -
−0.22 1.42 pncB Nicotinate phosphoribosyltransferase -
−0.21 1.49 fdhE Protein FdhE Cyto
−0.21 1.35 ahpF Alkyl hydroperoxide reductase subunit F -

E. coli RseP-catalyzed intramembrane proteolysis of FecR
transporter (48)), and ZupT (heavy metal divalent cation
transporter (49, 50))], exhibited a fold change greater
than 2 (Fig. 1). Although these proteins accumulated
under the RseP-deficient condition, they are unlikely to
be the direct substrates of RseP, as S2P proteases
generally cleave a single membrane-spanning protein
with type II membrane topology. The top three of the
latter group were FecA, FecD, and FecE, which also
exhibited a fold change greater than 2. These proteins
constitute the Fec system, one of the iron uptake systems
in E. coli. Expression of these proteins is known to be
induced in response to the availability of environmental
iron. The decrease in their levels in the RseP-deficient
strain indicates that they should also not be the direct
substrates of RseP. However, because it has been shown
that many bacterial S2P proteases are involved in cellular
responses to environmental changes including the avail-
ability of iron (e.g., B. bronchiseptica HurR (21),
P. aeruginosa FpvR (20), FoxR (51), HxuR, HasS (52) and
Pseudomonas putida IutY (53)), we further examined the
J. Biol. Chem. (2021) 296 100673 3
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Figure 1. The RseP-dependent changes of the proteomic profile of the
E. coli membrane fraction. The identified proteins were ranked in a vol-
cano plot according to their statistical p-value (-log10 p-value, y-axis) and
their relative abundance ratios (log2 fold-change, x-axis) between mem-
brane fraction from the wildtype RseP(WT) or a protease active site mutant
RseP(E23Q) expressing strains. KK377 (ΔrseA ΔrseP) cells carrying pKK47
(RseP(WT)) or pYK2 (RseP(E23Q)) were grown at 30 �C in L medium con-
taining 1 mM IPTG and 1 mM cAMP until mid-log phase. The membrane
fractions were prepared by sonical disruptions of cells followed by ultra-
centrifugation and suspended in PTS solution. After reduction, extracted
proteins were digested and the resultant peptides were subjected to
nanoLC/MS/MS analyses. The proteins with p-value < 0.05 and log2
fold-change < 0 are indicated by red circles, and p-value < 0.05 and log2
fold-change > 0 are indicated by blue circles, and the other proteins are
indicated by black circles. IPTG, isopropyl-β-D-thiogalactopyranoside.
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possible involvement of RseP in the regulation of the Fec
system gene expression.

RseP function is required for the transcriptional activation of
the fecABCDE operon

Because iron is generally an essential micronutrient for living
organisms, cells now have many evolved iron-uptake systems
(54). An E. coli cell is also equipped with multiple iron uptake
systems. Among them, the Fec system acts in the uptake of ferric
ion (Fe3+) in the form of ferric citrate (Fig. 2A). Ferric citrate in
the extracellular milieu is first transported into the periplasmic
space by FecA, an outer membrane transporter (55–57), and
then imported into the cytoplasm via the ABC transporter
FecCDE with the assistance of the periplasmic protein FecB (58).
These Fec proteins are expressed from the single fecABCDE
operon (fec operon) whose transcription is under the control of
an alternative sigma factor, FecI (36–39). Because the genes for
FecA, FecD, and FecE that exhibited decreased accumulation in
the membranes of the RseP-deficient strain belong to the same
4 J. Biol. Chem. (2021) 296 100673
fec operon (38), we supposed that RseP is involved in the
upregulation of this operon and examined this possibility. It
should be noted that FecC, another membrane component of
the Fec system, was not identified even in the sample from the
rseP+ strain. This is probably because FecC yields only one
theoretically detectable tryptic peptide in LC/MS/MS because of
its hydrophobic nature, and our previous LC/MS/MS experi-
ment also failed to identify FecC from the E. coli membrane-
enriched and whole cell samples (59).

To easily monitor the transcription of the fec operon, we
constructed a reporter (fec reporter) plasmid in which the lacZ
reporter gene was placed under the FecI-dependent promoter
of the fec operon (PfecA). The ΔompA ΔompC cells (used as the
rseP+ strain) carrying the reporter plasmid exhibited about 10-
fold higher LacZ activity when 1 mM Na3 citrate was added to
the medium containing 0.1 μM FeCl3 (Fig. 2B, rseP+). Note
that the addition of increasing concentrations of FeCl3 to the
medium led to a drastic decrease in LacZ activity in both
ΔompA ΔompC (Fig. S1A) and WT (ompA+ ompC+) cells
(Fig. S1B). This effect was presumably caused by the negative
regulation of PfecA by Fur, a global transcriptional regulator for
iron homeostasis (38, 39, 41, 60). These results showed that
our reporter plasmid can be used to evaluate the transcription
from PfecA in response to ferric citrate.

We then introduced the reporter plasmid into the ΔompA
ΔompC ΔrseP cells (rseP can be deleted in a strain lacking the
two outer membrane proteins OmpA and OmpC (61)) and
examined the effect of rseP disruption on the transcriptional
activation of the fec operon in response to ferric citrate. In
sharp contrast to rseP+ cells, the expression of the fec operon
as revealed by LacZ activity was not increased by the addition
of citrate (Fig. 2B, ΔrseP/vec). Expression of the WT RseP with
a C-terminal His6-Myc tag (hereafter RseP-HM), but not its
E23Q derivative, from another plasmid restored a citrate-
dependent reporter expression (Fig. 2B, WT and E23Q),
whereas the anti-RseP immunoblotting showed that the
accumulation levels of the expressed RseP proteins were
comparable (Fig. 2C). These results strongly suggest that the
proteolytic activity of RseP is essential for the ferric citrate–
dependent transcriptional activation of the fec operon.
Proteolytic function of RseP is involved in the processing of
the FecR protein

The transcription of the fec operon is known to be
controlled by FecI, an alternative sigma factor whose activity is
regulated by FecR (40–42) (Fig. 2A). FecR is a single-spanning
cytoplasmic membrane protein of type II topology, similar to
other RseP substrates, and has been reported to be processed
into several fragments in vivo (62, 63). In addition, its N-ter-
minal cytoplasmic region has been suggested to exhibit an
activity (“pro-sigma” activity) that is required for the function
of FecI (40, 43). These facts led us to examine the possibility
that FecR is cleaved by RseP to activate FecI.

We first investigated whether RseP could affect the in vivo
processing of FecR. To this end, we constructed a derivative of
FecR with an N-terminal 3xFLAG tag (F-FecR) (Fig. 3A). We
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also constructed a new ΔfecR (ΔfecR1) strain in which a part of
the chromosomal fecR gene was deleted so that the deletion
totally disrupts the FecR function but negligibly affects the
expression of the upstream and downstream genes (see
Supplementary Experimental Procedures). Assays with the fec
reporter using the ΔfecR cells showed that the expression of F-
FecR restored the ferric citrate–dependent induction of tran-
scription from PfecA that was abolished in the ΔfecR cells,
indicating that F-FecR is functional (Fig. 3B). We examined the
effects of rseP deletion on the processing of the FecR protein
(Fig. 3C). F-FecR was expressed in a ΔrseA rseP+ and a ΔrseA
ΔrseP strain by growing the cells in M9 medium supplemented
with 1 mM Na3-citrate and 10 μM FeCl3 (Fig. 3C, lanes 9 and
10). Note that 10 μM FeCl3 was added to the medium during
the analyses of the FecR processing to obtain clear and
reproducible results (see Supplementary Results). Anti-FLAG
immunoblotting with total cellular proteins showed that in
addition to the FL F-FecR band (~37 kDa), several smaller
FecR-derived fragments were accumulated; FL and an ~25 kDa
band (labeled as CL(a)) were detected in both rseP+ and ΔrseP
strains, whereas a ~17 kDa band (CL(b)) and a ~15 kDa band
(CL(c)) were detected only in rseP+ and ΔrseP strains,
respectively. Also, CL(b) and CL(c) were generated in a citrate-
dependent manner (Fig. 3C, compare lanes 5 and 6 with 9 and
10). While CL(a) was generated irrespective of the addition of
citrate, the accumulation levels of CL(a) were considerably
higher in the absence of citrate than in its presence (Fig. 3C,
compare lanes 5 and 6 with 9 and 10). Taken together, these
results suggest that ferric citrate affects the generation and/or
accumulation of FecR species in the cells. All these species
J. Biol. Chem. (2021) 296 100673 5
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Figure 3. RseP is involved in the proteolytic processing of FecR. A,
schematic representations of FecR and the N terminally 3xFLAG-tagged
FecR model substrate (F-FecR). The predicted transmembrane region and
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full length F-FecR. B, ability of various FecR model substrates to transmit the
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tivities normalized by the LacZ activity of fecR+ cells grown in medium
containing 1 mM Na3-citrate are shown. C, behaviors of the F-FecR protein
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grown at 30 �C in M9-based medium containing 1 mM IPTG, 1 mM cAMP,
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in Figure 2B. The proteins were analyzed by 15% Bis-Tris SDS-PAGE and anti-
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(CL(a), CL(b), and CL(c)) should be N-terminal fragments of
F-FecR as they retained the N-terminal 3xFLAG tag and most
likely are the degradation products of FecR. Citrate did not
6 J. Biol. Chem. (2021) 296 100673
affect the accumulation levels of the RseP proteins in these
strains. When WT RseP-HM was ectopically expressed in the
ΔrseP strain, CL(b) disappeared and instead CL(c) was detec-
ted, whereas no such effect was observed with the expression
of the protease active-site mutant RseP(E23Q) (Fig. 3C, lanes
11 and 12). These results suggest that CL(c) is generated by the
RseP-dependent proteolytic cleavage of the FecR-related
proteins.
RseP cleaves the transmembrane region of FecR to yield the
cytoplasmic tail fragment

In the above immunoblotting experiments, we observed
significant variations in the relative amounts of the FecR-related
species (data not shown). We suspected that these variations
could be caused by the instability of these species in a cell. In
addition, the positive feedback regulation of the Fec system
(34, 35) could complicate the results as it could enhance the
ferric citrate–dependent signal and as a result the signal-
induced processing of FecR. To circumvent these problems,
we constructed a FecR-derived model substrate, F-MBP-FecR,
in which the entire cytoplasmic domain (residue 1-73) of FecR
was replaced with a tightly folded MBP (maltose binding pro-
tein) domain (Fig. 4A). This approach has proved to be useful to
analyze the RseP-mediated or periplasmic proteolysis in our
past studies (14, 29). The expression of F-MBP-FecR in the
ΔfecR strain did not activate the expression of the fec reporter in
the presence or absence of citrate, suggesting that it is not
functional, as expected from its lack of the cytoplasmic domain
required for the interaction with and activation of FecI (Fig. 3B).
Next, we examined the in vivo processing of the F-MBP-FecR
protein by immunoblotting (Fig. 4B and Fig. S2). In the pres-
ence of citrate, we obtained essentially the same results as those
obtained with F-FecR; we detected four F-MBP-FecR-derived
species that should correspond to FL, CL(a), CL(b), and CL(c),
ascertaining from their sizes, and CL(c) was generated in the
presence of chromosomal or ectopically expressed functional
RseP, whereas CL(b) was detected instead of CL(c) under RseP-
deficient conditions. Without the addition of citrate, the
amounts of CL(a) were increased substantially both in the
presence and absence of functional RseP, which also reproduced
the results with F-FecR (Fig. 4B, compare lanes 5–8 with 9–12).
Remarkably, even in the absence of citrate, small but significant
amounts of the CL(b) and CL(c) bands were detected with
F-MBP-FecR, and the pattern of their generation was essentially
the same as that in the presence of citrate, whereas we did not
observe CL(b) and CL(c) with F-FecR in the absence of citrate.
Quantification of the band intensities demonstrated high
reproducibility of the results with F-MBP-FecR (Fig. S2). These
observations suggest that (i) F-MBP-FecR retains its “re-
sponsibility” to ferric citrate with respect to the generation of
the N-terminal fragments, although it is not functional in signal
transduction and no longer enhances the Fec signaling through
its positive feedback loop, and (ii) the replacement of the
cytoplasmic domain of FecR with the F-MBP domain stabilizes
the N-terminal fragments, which would allow for the detection
of CL(b) and CL(c) without the addition of ferric citrate. These
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results demonstrate that F-MBP-FecR can be used as a suitable
model substrate for studying of the FecR processing.

To estimate the approximate position of the C-terminal end
of the CL(a), CL(b), and CL(c) fragments, we constructed a
series of C-terminally truncated versions of F-MBP-FecR
(Fig. 4A). The TM region of FecR was predicted to be located
between residues 80 and 100 (with the N-terminal Met residue
of FecR set to residue 1) by the topology prediction algorithm
SPOCTOPUS (http://octopus.cbr.su.se/index.php) (64).
Accordingly, we constructed two truncated mutants, F-MBP-
FecR101 and F-MBP-FecR79, in which the regions after resi-
dues 101 and 79 had been deleted, respectively. F-MBP-
FecR79 lacks the predicted TM and periplasmic regions,
whereas F-MBP-FecR101 only lacks the periplasmic region.
Because an alternative region (residues 86–100) of FecR has
been suggested to span the membrane in a previous study (42),
we also constructed a truncated mutant (F-MBP-FecR85) that
lacked the region after residue 85. In addition, based on the
previous studies that reported the self-cleavage of FecR be-
tween Gly-181 and Thr-182 (51, 62, 65), we constructed F-
MBP-FecR181 without the region after residue 181, as a mimic
of the N-terminal fragment generated by self-cleavage. Finally,
we systematically constructed three additional C-terminally
truncated mutants (F-MBP-FecR161, 141, and 121) by deleting
C-terminal 20, 40, or 60 residues from F-MBP-FecR181,
respectively. These constructs were expressed in ΔrseA ΔrseP
cells, and their sizes were compared with the CL(a), CL(b), and
CL(c) fragments that had been generated from FL F-MBP-
FecR in vivo (Fig. 4C). With F-MBP-FecR181, two bands
having nearly the same mobilities as CL(a) and CL(b),
J. Biol. Chem. (2021) 296 100673 7
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respectively, were detected (Fig. 4C, compare lanes 1–3 with
4). The former band would be intact in F-MBP-FecR181,
suggesting that CL(a) is a self-cleavage product of F-MBP-
FecR (51, 62, 65). Similarly, two bands were observed with F-
MBP-FecR161, 141, and 121 (Fig. 4C, lanes 4–7), and the
upper bands would also represent their “intact” form. The
second (smaller) bands generated for the above four constructs
had almost the same apparent size as CL(b). In contrast, only a
single band was detected for F-MBP-FecR101, 85, and 79
(Fig. 4C, lanes 8–10), each having no periplasmic region.
Taken together, these results strongly suggest that FecR re-
ceives a cleavage in its periplasmic region to generate CL(b).
As the “intact” band of F-MBP-FecR121 was slightly larger
than the CL(b) band, the possible cleavage site would be
located just upstream of residue 121.

The mobility of CL(c), whose production is dependent on
the proteolytic function of RseP, was almost the same as that of
F-MBP-FecR85 (compare Fig. 4C, lanes 8–10 and 11), sug-
gesting that CL(c) would be generated by the RseP-mediated
cleavage around residue 85. This cleavage site is highly likely
to be located within the TM region of FecR, given that RseP
cleaves a TM segment of a substrate. Accordingly, our results
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support the prediction that the FecR spans the membrane in
the region between residues 80 and 100.
RseP cleaves the FecR CL(b) fragment and converts it to the
CL(c) fragment

The apparent RseP-dependent conversion of CL(b) to CL(c)
can be well-explained if CL(c) is produced by the intra-
membrane proteolysis of CL(b) by RseP. To substantiate this
possibility, the stability and the production kinetics of F-MBP-
FecR and its derivatives (CL(a), CL(b), and CL(c)) were
investigated by pulse-chase experiments (Fig. 5 and Fig. S3). F-
MBP-FecR was expressed in the ΔrseP strain, labeled with [35S]
methionine and chased with unlabeled methionine up to
81 min after initiation of the chase. FL and CL(a) band were
the only species detected just after the start of the chase
(Fig. 5A, and the close-up view of the quantified results for the
early periods of the pulse-chase experiments is shown in
Fig. S3B, at 0.25-min time point). FL almost completely dis-
appeared within 3-min chase. On the other hand, CL(a)
decreased gradually with time with a small amount detectable
even after the 81 min-chase (Fig. 5B). In contrast, CL(b)
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appeared at 1-min chase point and increased during the chase
period. Co-expression of WT RseP-HM only marginally
accelerated the disappearance of FL and CL(a). In this case,
however, CL(b) was not detected, but instead CL(c) was
generated. CL(c) increased with a similar kinetics to that of
CL(b) observed in the absence of the RseP-HM co-expression.
Generation of CL(c) was dependent on the proteolytic func-
tion of RseP-HM as co-expression of RseP(E23Q)-HM did not
exert such an effect, although the accumulation levels of RseP-
HM and RseP(E23Q)-HM were comparable (Fig. S3A). These
results strongly suggest that both CL(b) and CL(c) are derived
from CL(a). However, it was still unclear from these results
whether CL(c) was generated from CL(a) or generated from
CL(b).
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To address this point, we designed an assay procedure
(Fig. 6, A and B and Fig. S4) in which cells expressing F-MBP-
FecR from a constitutive expression vector were pulsed-
labeled and chased for 5.5 min, and then, RseP-HM or
RseP(E23Q)-HM was induced (Fig. 6, A and B). At 0.5 min
before the induction of RseP, only CL(a) and CL(b) were
detected. We expected that, if RseP is indeed involved in the
cleavage of CL(b), (i) this experimental system could enable us
to detect the possible RseP-dependent conversion of preex-
isting CL(b) to CL(c) and also (ii) the presence of an excess
amount of the unlabeled FL and CL(c) molecules (as the result
of their constitutive expression) compared with RseP-HM that
could retard apparent degradation rate of labeled CL(b) and
facilitate detection of the conversion process. Actually, we
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captured the CL(b) to CL(c) conversion upon the induction of
RseP-HM but not that of RseP(E23Q)-HM. These results
strongly support the idea that RseP directly cleaves CL(b) to
produce CL(c). Although the accumulation levels of RseP-HM
and RseP(E23Q)-HM varied significantly in the two indepen-
dent experiments (Fig. S4B), the results of the pulse-chase
analysis of the F-MBP-FecR derivatives were highly repro-
ducible (Fig. 6B and Fig. S4A). Although the reason of this
observation remains unclear, it might suggest that only a
limited portion of overexpressed RseP acts in the CL(b)
cleavage.

To confirm the direct involvement of RseP in cleavage of
CL(b), we examined the effect of RseP on the degradation of
the C-terminally truncated mutants of F-MBP-FecR. F-MBP-
FecR121, which lacked almost the entire periplasmic region,
had a slightly larger size than that of CL(b) and generated
CL(b) but not CL(a). The model proteins were co-expressed
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with WT or the E23Q mutant form of RseP-HM (Figs. 4A
and 6C). CL(b) generated from F-MBP-FecR121 and F-MBP-
FecR181 were converted to CL(c) in the functional RseP-
dependent manner (Fig. 6C, lanes 4–7). On the other hand,
the band pattern and accumulation of F-MBP-FecR85, which
mimics the CL(c) fragment, was little affected by the RseP
function (Fig. 6C, lanes 8 and 9). These results further support
the RseP-catalyzed cleavage of CL(b) to yield CL(c).

The FecR CL(b) fragment is generated from the CL(a) fragment

CL(b) was generated from F-MBP-FecR181 that mimics
CL(a) (Fig. 4C lane 4 and Fig. 6C lane 5). It would be thus
conceivable that CL(b) is a degradation product of CL(a). Our
pulse-chase results, showing the apparent precursor-product
relationship between CL(a) and CL(b) (that is, the disappear-
ance of CL(a) is accompanied by the appearance of CL(b))
(Fig. 5), also strongly support that CL(a) is converted to CL(b).
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E. coli RseP-catalyzed intramembrane proteolysis of FecR
Immunoblotting analysis showed that the addition of citrate to
the medium led to the increase in the accumulation of CL(b)
and the concomitant decrease in that of CL(a) [Compare
Fig. 3C lanes 6 with 10 (F-FecR), or Fig. 4B lanes 6 with 10
(F-MBP-FecR); the quantified results of Fig. 4B are shown in
Fig. S2]. These results suggest that the CL(a) to CL(b) con-
version is promoted by the ferric citrate signal.

The essential function of RseP in the transcriptional activation
of the fec operon is to produce the FecR CL(c) fragment

The above results showed that RseP proteolytically converts
FecR CL(b) to CL(c). The generation of CL(c) was well-
correlated with the ferric citrate–dependent activation of the
fec operon (Figs. 2 and 3). In addition, a previous study showed
that the expression of the predicted cytoplasmic domain of
FecR (FecR(1–85)) (40, 42, 66), which mimics CL(c), activated
the transcription of the fec operon with no need of the ferric
citrate signal. These results strongly suggest that RseP activates
the fec operon by producing the CL(c) fragment. However, it
still cannot be excluded that RseP plays an additional role in
the activation of the fec operon. We thus investigated the
requirement of RseP in the fec operon activation by the cyto-
plasmic fragment of FecR (Fig. 7). When expressed in the
ΔfecR strain, F-FecR85, a 3xFLAG-tagged cytoplasmic domain
(residue 1–85) of FecR showed almost the same mobility as
that of CL(c) generated from F-FecR (Fig. 7A, compare lanes 5
and 6 with 4), further supporting that CL(c) is generated by the
cleavage around the residue 85. F-FecR85 accumulated at
similar levels in the presence or absence of citrate (Fig. 7A,
lanes 5 and 6). Also, the expression of F-FecR85, in contrast to
that of FL F-FecR, activated the fec operon transcription in a
citrate-independent manner (Fig. 7B, pF-FecR). The N termi-
nally attached 3xFLAG tag little affected the function of FecR
and FecR85 as the un-tagged versions of these proteins gave
essentially the same results (Fig. 7B, compare pFecR with pF-
FecR). LacZ activities showed apparent correlations with the
accumulation levels of F-FecR85 or F-FecR CL(c) fragment
(Fig. 7A, lanes 3–6 and Fig. 7B, pF-FecR). These results
confirmed the previous finding that the cytoplasmic domain of
FecR can constitutively activate the transcription of the fec
operon (40, 42, 66). The RseP function was not required for
this ferric citrate–independent activation of the fec operon
(Fig. 7C), as the reporter activities of the cells expressing F-
FecR85 were elevated considerably in a citrate-independent
manner both in the presence or absence of chromosomal
rseP. Consistent with the above result, the accumulation level
of F-FecR85 in the rseP+ and ΔrseP cells was not affected by
the addition of citrate (Fig. S5). In this experiment, the re-
porter activities in the ΔrseP cells were apparently a little
higher than those in the rseP+ cells, possibly reflecting the
increased accumulation of the F-FecR85 protein in the former
cells (Fig. S5), although the exact reason for this differential
accumulation is unclear. Taken together, these results
demonstrated that the essential role of RseP in the activation
of the fec operon is to produce the CL(c) fragment that co-
functions with FecI from CL(b).
Discussion

In this study, we performed proteomic analysis to identify
the substrates of RseP, the S2P family IMP of E. coli, to explore
novel functions of this protease and unveiled that RseP is
involved in the regulation of the Fec system (Ferric citrate
uptake system) genes through the intramembrane cleavage of a
novel physiological substrate, FecR. Our proteomic analysis of
the membrane proteins identified multiple membrane com-
ponents of the Fec system (FecA, FecD, and FecE) encoded by
the fec operon as proteins whose levels were significantly
decreased in the RseP-deficient strain, suggesting that RseP is
required for the expression of the fec operon. We thus
examined the transcriptional regulation of this operon by us-
ing a lacZ-reporter and demonstrated that proteolytic activity
of RseP is essential for its activation. Transcription of this
operon is known to be controlled by FecI, an alternative sigma
factor (36–39), whose activity is regulated by a cytoplasmic
membrane protein, FecR (40–42). Because FecR is a single-
pass TM protein of type II topology, which is a shared
feature of substrates of the bacterial S2P proteases including
RseP, we examined the possibility that RseP cleaves this pro-
tein to induce expression of the fec operon. The experiments
using the FecR-derived model substrates revealed that FecR
receives sequential processing at the membrane and that RseP
participates in the last step in the processing that generates the
cytoplasmic tail fragment of FecR required for the transcrip-
tional activation of the fec operon.

FecR was processed to yield the fragments that we named
here CL(a), CL(b), and CL(c) (Fig. 5). We demonstrated that
RseP cleaves the TM region of CL(b) and converts it to CL(c)
(Fig. 6). The production of CL(c) is required and sufficient for
the FecI-mediated activation of the fec operon transcription
(Figs. 2 and 7). These observations coincide with and further
support the results of previous studies, which showed that the
expression of a cytoplasmic region of FecR (e.g., FecR(1–85) or
(1–59)) led to the ferric citrate–independent activation of the
transcription of the fec operon (40, 42, 66). A previous study
showed that FecR(1–85) can directly interact with FecI (63)
and acts as a “pro-sigma” factor to facilitate the transcription
of the fec operon. It is thus suggested that the RseP-mediated
cleavage of CL(b) would liberate CL(c) from the membrane to
activate the fec operon transcription by forming a complex
with FecI. Braun et al. (2006) (67) previously proposed a model
wherein the RseP-catalyzed intramembrane proteolysis of
FecR is involved in the activation of the fec operon, although it
has not been demonstrated experimentally.

Our results suggest that CL(b) is produced by the cleavage
of CL(a) and that this process is promoted by the ferric citrate
signal. Thus, CL(a) apparently receives two successive cleav-
ages to yield CL(c), which is reminiscent of the two-step
cleavage of E. coli RseA triggered by the extracytoplasmic
stresses. In case of RseA, it is recognized and cleaved by RseP
(“site-2 cleavage”) only after it received prior “site-1 cleavage”
by the membrane serine protease DegS on the periplasmic
side. While the two successive cleavages are common among
many bacterial S2P substrates, the protease catalyzing the site-
J. Biol. Chem. (2021) 296 100673 11
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1 cleavage is not necessarily a DegS homolog (53, 68).
Although we have no information on the putative protease(s)
responsible for the production of CL(b) from CL(a) in the
FecR-mediated signal transduction, the ferric citrate signal
might induce some conformational change in CL(a) to make it
susceptible to the site-1 cleavage. Alternatively, the ferric cit-
rate signal might directly activate the putative “site-1” protease.
Further analysis, especially the identification of the putative
“site-1” protease will be needed to reveal the detailed molec-
ular mechanism of this process.

The production of CL(a) occurred immediately after the
synthesis of FecR and independently of RseP. A previous study
suggested that CL(a) is generated by the cleavage between Gly-
181 and Thr-182 (62), which is consistent with our result that
CL(a) migrated on an SDS-PAGE gel to almost the same po-
sition as the FecR-derivative that had been truncated at Gly-
181. This GT motif is conserved among several antisigma
factors of P. aeruginosa and P. putida (51) and E. coli FecR. It
would be very likely that E. coli FecR CL(a) is generated by the
enzyme-independent self-cleavage at the GT motif as sug-
gested for P. aeruginosa FoxR (51, 65). While the CL(b) is
produced from FL FecR as a result of two successive cleavages,
whether the first cleavage (autoproteolysis) is required for the
second cleavage to generate CL(b) is unclear.
FecI

PfecA

FecI
fecABCDE

FecA

FecR
FLCL(a)CL(b)CL(c)

RseP

CL(c)

Signal

Unknown
protease(s) ?

OM

IM

Cyto

Peri
Self cleavage

ferric citrate

(i)(ii)(iii)

(iv)

Figure 8. A model of the sequential processing of FecR and the
involvement of RseP in it in the ferric citrate-induced signal trans-
duction. (i) FecR undergoes a self-cleavage immediately after translation to
generate CL(a). (ii) CL(a) is cleaved or trimmed by unknown protease(s) in
the periplasm to yield CL(b), which is promoted by the ferric citrate signal.
(iii) CL(b) then receives RseP-mediate intramembrane proteolysis inside the
membrane to release CL(c) from the membrane. (iv) sigma factor FecI
bound to CL(c) activates the transcription of the fec operon.
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We propose a model of the FecR-processing cascade in the
signal transduction by the Fec system (Fig. 8) based on the
results of preceding studies by other researchers and the
present study. (i) FecR is self-cleaved almost immediately after
synthesis and generates CL(a). (ii) In response to the ferric
citrate signal transmitted via FecA, CL(a) receives the C-ter-
minal truncation or trimming by unknown protease(s) in the
periplasmic space to generate CL(b). (iii) CL(b) is then
recognized and cleaved by RseP within the membrane, leading
to the release of CL(c) from the membrane. (iv) Finally, the
liberated CL(c) that is associated with the FecI promotes the
transcription of the fec operon. The cleavage of FecR to induce
the fec operon transcription in the signal-dependent activation
of the Fec system would be one of the typical instances of RIP-
mediated TM signaling.

We previously proposed that the periplasmic PDZ tandem
of RseP serves as a size-exclusion filter to avoid proteolysis of
membrane proteins with a large periplasmic domain by RseP
(25, 27). In the σE extracytoplasmic stress response, the stress-
dependent σE activation is achieved by RseP-catalyzed cleavage
of the site-1–cleaved (periplasmically truncated) form of ResA
that can pass through the PDZ-filter (Fig. S6, see also start of
the text). Similarly, in the case of FecR, we expect that the
conversion of CL(b) to CL(c) that has a smaller periplasmic tail
would make FecR accessible to the intramembrane active site
of RseP through the PDZ filter. As the CL(b)-to-CL(c) con-
version is promoted by the ferric citrate, the PDZ filter–
mediated discrimination of the substrates contributes to the
ferric citrate signal-dependent activation of FecI as well.

The predicted TM sequence of FecR (R80HVMKG
LLLLLGAGGGWQLWQ100) has no apparent sequence ho-
mology to the known substrates of RseP (14, 28, 29). We
previously suggested that the stability of a TM helix in the
membrane, but not the exact primary sequence, is an impor-
tant determinant for its susceptibility to cleavage by RseP (28,
29). Consistent with this notion, RseA and FecR have several
residues such as Lys, Arg, and Gln that potentially destabilize a
helix in a hydrophobic environment (69) in their predicted TM
segments. These residues might be required for the efficient
cleavage of these proteins by RseP. In addition, similar to
RseA, the TM sequence of FecR has relatively low hydropho-
bicity compared with TM segments of typical membrane
proteins such as lactose permease (LacY). The assigned TM
sequences of FecR and RseA are not predicted as a TM seg-
ments by a TM prediction program such as TMHMM (70) in
contrast to the TM segments of LacY (Fig. S7). The products
of intramembrane proteolysis could be released from the
membrane because they have a shorter hydrophobic stretch
and the polarity or charges at their N terminus and C terminus
generated by the intramembrane cleavage (71). The low hy-
drophobicity of the TM segments of RseA and FecR could
further facilitate efficient liberation of the N-terminal frag-
ments of RseA and FecR from the membrane after the RseP-
mediated intramembrane proteolysis and accelerate the TM
signaling in each system. Interestingly, the first and fifth TM
segments of LacY can be efficiently cleaved by RseP when
placed in a model substrate (29) despite of their high
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hydrophobicity, suggesting that the overall hydrophobicity of a
TM segment is not a critical determinant for its susceptibility
to RseP.

Here, by using a proteomic approach, we identified FecR as
a novel substrate of RseP. In this analysis, we found significant
changes in the accumulation levels of some proteins, in addi-
tion to the Fec proteins, depending on the proteolytic activity
of RseP. Among the group of proteins that exhibited increased
accumulation in the RseP-deficient strain, CyoE (72), Fiu (73),
CirA (74), and FepA (75) have been reported to be negatively
regulated by the Fur protein. Fur acts as a global repressor for
the expression of genes involved in iron uptake upon its
interaction with iron (76). The increased expression of the Fur-
regulated genes in the cells expressing RseP(E23Q) might at
least partially be ascribed to a decreased intracellular iron level
resulting from the lowered expression of the Fec components.
In contrast to the abovementioned proteins, the increased
accumulation was observed for AmtB and ZupT (fold change
>2) in the cells expressing RseP(E23Q) (Fig. 1 and Table 1).
Both AmtB and ZupT are transporters of the cytoplasmic
membrane; the former facilitates the uptake of ammonia (48,
77) whereas the latter imports divalent metal cations (49, 50).
Because these proteins are multispanning TM proteins, it is
unlikely that RseP directly proteolyze these proteins. Their
expression or stability might be indirectly affected by the loss
of the proteolytic function of RseP. It should be noted that
FecR evaded detection in our proteomic analyses. One possi-
bility would be that the FecR level was below the detection
threshold in our experiments. Another possibility would be
that most of the FecR molecules were lost during the prepa-
ration of the membrane fraction. As discussed above, FecR and
RseA have a TM segment of relatively low hydrophobicity. We
often encountered the significant decrease or loss of RseA and
its derivatives in the membrane fraction possibly as a result of
their falling-out from the membrane (unpublished observa-
tions). It is possible that we overlooked other RseP substrates
by similar and/or other reasons. For the systematic identifi-
cation of RseP substrates, it is necessary to improve the
methods of sample preparations in mass analyses (31, 78, 79)
and also use additional approaches such as the co-isolation of
possible substrates with a proteolytically inactive RseP and
systematic screening of type II membrane proteins in combi-
nation with the mass analysis-based proteomic approach. Such
approaches would also be useful to search for the unknown
substrate of other IMPs.

Recently, the Fec system has been reported to be crucial in
bovine mastitis caused by a pathogenic E. coli strain (80).
Bovine mastitis is a disease in dairy cows that causes eco-
nomic loss to the global dairy industry. This study and
further analysis of the regulation of the Fec system may
hopefully contribute to unveiling the mechanism and
development of the treatment of this disease. Our mass
analysis results suggest that the levels of the proteins
involved in a variety of cellular activities such as ion trans-
port, rRNA processing, and acetylation are affected by the
impairment of the RseP function (Table S2). It raises the
possibility that RseP may have additional substrates and act
directly or indirectly in still unknown cellular processes.
Further study by using a variety of approaches discussed
above will lead to the comprehensive understanding of the
significance of RseP in cellular activities.

Experimental procedures

Media

L broth (10 g/l Bacto Tryptone, 5 g/l yeast extract and 5 g/l
NaCl; pH adjusted to 7.2 by using NaOH) and M9 medium
(without CaCl2) (81) supplemented with 2 μg/ml thiamine and
0.4% glucose were used for cultivation of E. coli cells. Ampi-
cillin (50 μg/ml), chloramphenicol (20 μg/ml), and/or specti-
nomycin (50 μg/ml) were added for selecting transformants
and for growing plasmid-harboring cells. Bacterial growth was
monitored using mini photo 518R (660 nm; TAITEC) or Klett-
Summerson colorimeter (filter no. 54; Klett Manufacturing).

Strains, plasmids, and oligonucleotides

E. coli K-12 strains, plasmids, and oligonucleotides used in
this work are listed in Tables S3–S5, respectively. Construction
of the individual strains and plasmids are described in
Supplementary Experimental Procedures.

Antibodies

Monoclonal anti-FLAG M2 antibody (MilliporeSigma),
Rabbit polyclonal anti-RseP antibody (82), and anti-SecB
antibody (26) were used for immunoblotting. Monoclonal
anti-FLAG M2 Affinity Gel (MilliporeSigma) was used for
Immunoprecipitation in pulse-chase assay.

NanoLC/MS/MS sample preparation

Cells were grown in L broth supplemented with 0.4% glucose,
1 mM IPTG and 1 mM cAMP at 30 �C until a mid-log phase.
Harvested cells were washed with 10 mM Tris-HCl (pH 8.1)
and suspended in buffer containing 10 mM Tris-HCl (pH 8.1)
and Protease Inhibitor Cocktail (Nacalai Tesque). Cell suspen-
sion was frozen, thawed, and lysed by sonication. After cell
debris was removed by low speed centrifugation, membrane
fractions were collected by ultracentrifugation (at 125,000g,
60 min) and suspended in PTS solution (12 mM sodium
deoxycholate, 12 mM sodium N-lauroylsarcosinate, 100 mM
Tris-HCl (pH 9.0)) (83). Membrane-enriched samples fromWT
or RseP(E23Q) mutant were prepared in triplicate each (as
biological replicates). After incubation at room temperature for
30 min and at 37 �C for 5 min, the protein amount was
confirmed with a BCA protein assay kit (Thermo Fisher Sci-
entific). Proteins were reduced by treatment with 10 mM DTT
for 30 min, alkylated by treatment with 50 mM chloroacetamide
for 30 min in the dark. Next, the protein solution was 5-fold
diluted with 50 mM ammonium bicarbonate, and the proteins
were digested with Lys-C (w/w 1:100) for 3 h, followed by
trypsin digestion (w/w 1:100) overnight at 37 �C. The peptides
were desalted using StageTip (84) with SDB-XC Empore disk
membranes (GL Sciences). The peptides from WT and
ResP(E23Q) mutant samples (tripliate each) were labeled with
J. Biol. Chem. (2021) 296 100673 13
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6-plexed Tandem Mass Tag (TMT) (Thermo Fisher Scientific),
fractionated using strong cation exchange chromatography
StageTips (85) and suspended in the loading solution (0.5% TFA
and 4% ACN) for subsequent nanoLC/MS/MS analyses.

NanoLC/MS/MS analyses

NanoLC/MS/MS analyses were performed on an Orbitrap
Fusion Lumos (Thermo Fisher Scientific), connected to an
Ultimate 3000 pump (Thermo Fisher Scientific) and an HTC-
PAL autosampler (CTC Analytics). Peptides were separated on
a self-pulled needle column (150 mm length × 100 μm ID,
6 μm opening) packed with Reprosil-C18 AQ 3 μm reversed-
phase material (Dr Maisch). The flow rate was set to 500 nl/
min. The mobile phase consisted of (A) 0.5% acetic acid and
(B) 0.5% acetic acid in 80% acetonitrile. Three-step linear
gradients of 5 to 10% B in 5 min, 10 to 40% B in 60 min, and 40
to 100% B in 5 min were employed. For TMT-labeled samples,
synchronous precursor selection-MS3 (SPS-MS3) (86) was
performed. The MS scan range was m/z 375 to 1500. MS scans
were performed by the Orbitrap with r = 120,000, MS/MS
scans were performed by the Ion Trap in Turbo mode, and
MS3 scans were performed by the Orbitrap with r = 15,000.
Auto gain control was set to 4.00 × 105, 1.00 × 104, 5.00 × 104

for MS, MS/MS, and MS3, respectively. The normalized CID
collision energy was set to 35.

Database searching

The raw MS data files were analyzed by MaxQuant v1.6.2.3
(87). Peptides and proteins were identified by means of auto-
mated database searching using Andromeda against the E. coli
K-12 SwissProt Database (version 2018-07, 4324 protein en-
tries) with a precursor mass tolerance of 20 ppm for first
search and 4.5 ppm for main search, and a fragment ion mass
tolerance of 0.5 Da Enzyme was set as trypsin/P (cleaves after
lysine and arginine also if a proline follows), and semispecific
search was performed. Cysteine carbamidomethylation was set
as a fixed modification. Methionine oxidation and acetylation
on protein N-termini were set as variable modifications. The
search results were filtered with false discovery rate <1% at the
peptide spectrum match and protein levels. The intensities of
all six TMT reporter ions at the MS3 level were quantified by
MaxQuant with default parameters. Statistical analysis for the
volcano plot was performed with Perseus using intensity cor-
rected values with default parameters as described previously
(88).

β-galactosidase (LacZ) activity assay

LacZ activity of the cells carrying the reporter plasmid
pYK149 (PfecA-lacZ) was measured basically according to the
procedure described previously (89). The cells were grown at
30 �C in M9-based medium with 20 μg/ml each of the 20
amino acids, 2 mg/ml thiamine, and 0.4% glucose until mid-log
phase. The cells were mixed with Reporter 5xLysis buffer
(Promega), frozen at −80 �C for more than 1 h, and thawed by
incubation at 37 �C for 30 min in a clear 96-well plate. Then,
the equal volume of Z-buffer (60 mM Na2HPO4⋅7H2O, 40 mM
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NaH2PO4⋅H2O, 10 mM KCl, 1 mM MgSO4⋅7H2O, 40 mM β-
mercaptoethanol) containing 1.32 mg/ml 2-nitrophenyl β-D-
galactopyranoside (ONPG, MilliporeSigma) was added to this
lysate and incubated at room temperature, followed by
detection of the absorbance at 420 and 550 nm at every 2 min
using the Viento Nano microplate reader (BioTek In-
struments). The relative LacZ activity was calculated as fol-
lows. First, the “raw LacZ activity” was calculated according to
the following equation; “raw LacZ activity (arbitrary units)” =
(A420 − 1.75 × A550)/(incubation time (min)). The value of the
raw LacZ activity of each sample was divided by that of a
standard cell sample (CU141 cells cultured in M9-based me-
dium), and then by A600 of the bacterial culture at the time of
collection, giving the “corrected LacZ activity”. Finally, the
relative LacZ activity of each sample was obtained by dividing
the value of the corrected LacZ activity by that of the corre-
sponding control (see the legends for the control in each
experiment).

SDS-PAGE

Proteins were dissolved in SDS sample buffer (62.5 mM
Tris-HCl (pH 8.5), 2% (w/v) SDS, 10% glycerol, 10% β-mer-
captoethanol, trace of bromophenol blue) and separated by
SDS-PAGE using 10% or 12.5% Laemmli gel as described
previously (90). For separation of the F-FecR protein and its
derivatives, SDS-PAGE using a 15% Bis-Tris gel (107 mM bis-
Tris (pH6.8 with HCl), 15% acrylamide/Bis, 0.1% APS, 0.1%
TEMED), and MES SDS running buffer (50 mM Tris, 50 mM
MES, 1 mM EDTA, 0.1% (w/v) SDS) was used.

Immunoblotting

Cells were grown at 30 �C in M9-based medium with 20 μg/
ml each of the 20 amino acids, 2 μg/ml thiamine, and 0.4%
glucose until mid-log phase. Total cellular proteins were
precipitated with 5% trichloroacetic acid, washed with acetone,
and dissolved in SDS sample buffer. Immunoblotting was car-
ried out essentially as described previously (90, 91). Proteins
were separated by SDS-PAGE and electroblotted onto an
Immobilon-P membrane filter (MilliporeSigma). Only when
15% bis-Tris gel was used for SDS-PAGE, a transferred mem-
brane filter was dried at 37 �C for 30min and then hydrophilized
withmethanol. After blocking with BLOTTO (90), the filter was
incubated with an appropriate antibody. For anti-RseP immu-
noblotting, anti-RseP antibodies were preincubated with whole-
cell lysates of AD1840 (theΔrseAΔrsePΔdegS strain) at 4 �C for
1 h to reduce a background as described previously (82). The
filter was then washed and incubated with goat anti-mouse or
anti-rabbit IgG conjugated with horseradish peroxide (Bio-
Rad). After washing of the filter, proteins that reacted with
secondary antibodies were visualized using ECL or ECL Prime
Western Blotting Detection Reagents (Cytiva) and Bio image
analyzer LAS4000mini (Cytiva).

Pulse-chase experiment

Cells were grown at 30 �C in M9-based medium with 20 μg/
ml each of the 18 amino acids (other than methionine and
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cysteine), 2 μg/ml thiamine, and 0.4% glucose until early-log
phase. In the experiments shown in Figure 5 and Fig. S3B,
the cells were induced with 1 mM IPTG and 1 mM cAMP for
10 min before pulse-labeling with [35S]methionine for 1 min
and chase with an excess amount of unlabeled methionine for
the indicated periods. In the experiments shown in Figure 6, A
and B and Fig. S4A, cells were pulse-labeled with [35S]methi-
onine for 1 min and chased with an excess amount of unla-
beled methionine, where 1.2 mM IPTG and 1.2 mM cAMP
were added to the medium 5.5 min after the initiation of the
chase. The proteins were precipitated with 5% trichloroacetic
acid, washed with acetone, and dissolved in 30 μl of 50 mM
Tris-HCl (pH 8.1) containing 1 mM EDTA and 1% SDS by
vigorous mixing for 30 min at room temperature followed by
incubation at 37 �C for 5 min. The samples were diluted 33-
fold with 1 ml Triton buffer (50 mM Tris-HCl (pH 8.1),
0.1 mM EDTA, 2% Triton X-100, 150 mM NaCl). After clar-
ification by centrifugation, the supernatants were mixed with
anti-FLAG M2 Affinity Gel and Protein A Sepharose (Cytiva)
and incubated at 4 �C overnight. The antigen–antibody
complexes were recovered by centrifugation, washed with
Triton buffer and then with 10 mM Tris-HCl (pH 8.1) and
dissolved in SDS sample buffer. The proteins were separated
by SDS-PAGE and visualized and quantified using a phosphor
imager (BAS5000) (Cytiva).

Data availability

The MS raw data and analysis files have been deposited to
the ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the jPOST partner repository
(http://jpostdb.org) (92) with the data set identifier
PXD023797.
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