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Abstract

Arthropod-borne viruses are a major cause of emerging disease with significant public health and economic impacts.
However, the factors that determine their activity and seasonality are not well understood. In Australia, a network of sentinel
cattle herds is used to monitor the distribution of several such viruses and to define virus-free regions. Herein, we utilize
these serological data to describe the seasonality, and its drivers, of three economically important animal arboviruses:
bluetongue virus, Akabane virus and bovine ephemeral fever virus. Through epidemiological time-series analyses of sero-
surveillance data of 180 sentinel herds between 2004–2012, we compared seasonal parameters across latitudes, ranging
from the tropical north (210uS) to the more temperate south (240uS). This analysis revealed marked differences in
seasonality between distinct geographic regions and climates: seasonality was most pronounced in southern regions and
gradually decreased as latitude decreased toward the Equator. Further, we show that both the timing of epidemics and the
average number of seroconversions have a strong geographical component, which likely reflect patterns of vector
abundance through co-varying climatic factors, especially temperature and rainfall. Notably, despite their differences in
biology, including insect vector species, all three viruses exhibited very similar seasonality. By revealing the factors that
shape spatial and temporal distributions, our study provides a more complete understanding of arbovirus seasonality that
will enable better risk predictions.
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Introduction

Arthropod-borne viruses (arboviruses) are one of the most

important categories of emerging pathogens. They cause a wide

range of diseases in humans and domestic animals, and many are

increasing in global distribution as a result of climate change,

urbanization and changing patterns of travel and trade [1].

Because of the need for transmission by haematophagous

arthropods, climatic factors are important aspects of arbovirus

ecology, with the potential to influence seasonality, longer-term

cyclic emergence patterns, and the opportunity for spread into

new geographic regions. A thorough understanding of the factors

that shape the patterns of arbovirus distribution is therefore of

major importance in managing emergence risks and limiting

future impacts of these viruses.

Australia, which spans tropical to sub-tropical latitudes favor-

able to arthropod survival, experiences a wide range of arthropod-

borne viruses. In addition, as an island continent with a strict

quarantine policy and extensive disease surveillance systems, it

presents an extremely informative study population. Human

populations in Australia experience seasonal outbreaks of infection

with Ross River, Barmah Forest, Murray Valley encephalitis and

West Nile (Kunjin strain) viruses, as well as outbreaks of dengue

fever, which is introduced sporadically by travellers. Other

arboviruses affect wildlife and livestock and have the potential to

severely impact the Australian economy [2,3].

Three major arboviruses affect domestic and wild ruminants in

Australia: bluetongue virus (BTV), Akabane virus (AKAV) and

bovine ephemeral fever virus (BEFV). BTV is regarded as a

globally important emerging pathogen, with many of the 26

serotypes occurring on all continents other than Antarctica. The

virus is classified in the genus Orbivirus, family Reoviridae
(segmented, double-stranded RNA viruses). Bluetongue disease

primarily affects sheep and white-tailed deer, causing acute and

widespread haemorrhaging and ulceration of the oral and nasal

tissue, coronitis and laminitis, and a pulmonary edema that can be

fatal [4]. The viraemia associated with BTV infection can have a

duration of several weeks [5]. Disease can also occur in cattle but,

as in Australia, they usually serve as reservoirs of infection with no

apparent signs of disease. AKAV is a member of the Simbu group
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in the genus Bunyavirus, family Bunyaviridae (segmented, single-

stranded, negative-sense RNA viruses), which also contains

Schmallenberg virus and Aino virus. AKAV has been reported

in several African countries, Israel, Turkey, Korea, Japan and

Australia [6–9], and infects a wide range of wild and domesticated

ruminants. Although viraemia lasts only a few days (less than six),

AKAV can cross the placenta during this period, causing abortions

and fetal congenital abnormalities, primarily in cattle [10,11].

Finally, BEFV is classified in the genus Ephemerovirus, family

Rhabdoviridae (non-segmented, single-strand, negative-sense RNA

viruses). It occurs as a single serotype and infects wild and

domestic ruminants across a vast area of Africa, the Middle East,

Asia and Australia, causing ‘three-day sickness’, a highly

debilitating febrile disease in cattle and water buffalo. Although

long-term sequellae and mortalities can occur, the disease and the

viraemia are usually of short duration (approximately three days)

and primarily affect milk production [12,13]. The major economic

impacts of BTV, AKAV and BEFV accrue through enforced

limitations on trade and loss of production.

The distribution of arbovirus vectors is determined by complex

interactions between climate, geography and their animal hosts

[14]. In Australia, BTV and AKAV are transmitted by biting

midges, predominantly Culicoides brevitarsis although other

Culicoides species (i.e., C. fulvus, C. actoni and C. wadai) have

been found to play a role in BTV transmission and have different

efficiencies and distributions [15,16]. Culicoides are found

worldwide, with the exception of New Zealand and Antarctica,

and, in light of the recent emergence of BTV and Schmallenberg

virus in Europe, Culicoides-borne arboviruses appear to have the

potential to spread rapidly in previously unaffected geographic

regions [5,17]. In contrast, BEFV appears to be transmitted

predominantly by mosquitoes, with the abundant and widespread

species, Culex annulirostris, thought to be the major vector in

Australia [12]. Although the geographic distribution of Cx.
annulirostris is similar to that of C. brevitarsis, it is often more

widespread [18]. In addition, BEFV has previously been isolated

from both Anopheles bancrojtii [19], as well as several culicine

species [18]. Also of note was the apparent absence of BEFV

seroconversions during an unprecedented outbreak of West Nile

virus in horses in southeast Australia in 2011 [20], presumably

driven by Cx. annulirostris in a region containing many of the

sentinel herds. This suggests that mosquito species involved in

BEFV transmission are subject to regional disparities, or that the

virus was absent in this area during this time.

In both midges and mosquitos, blood-feeding is restricted to

adult females who utilize protein for egg production. C. brevitarsis
exploits bovid dung for breeding sites, such as those found near

farmlands [5], while Cx. annulirostris breed in a variety of

habitats, typically in temporary ground pools on grassland and in

freshwater ponds, swamps and lakes, and its emergence in large

numbers follows heavy rains. The availability of these resources

and environments, as well as suitable climatic conditions, are key

determinants of vector geographic distribution.

Since 1969, sentinel herds have been employed in Australia to

monitor for arbovirus activity [21]. Progressive development of

this approach led to the establishment in 1992 of a nationally

coordinated program (National Arbovirus Monitoring Program,

NAMP), which now involves up to 180 sentinel herds across all six

States and the Northern Territory which are monitored serolog-

ically for evidence of infection with BTV, AKAV or BEFV [18].

Sentinel animals are replenished annually with young uninfected

cattle born on the property or introduced at six months of age.

Blood samples are collected monthly in areas of intensive virus

transmission, and quarterly or twice per year in less intensive areas

of transmission. Serological data is supplemented with data on

insect vector collections from sites across the same geographic

range. The data generated from the serosurveys and vector

collections are maintained in a carefully managed database that is

used for continually monitoring the geographic extent of infection

and to provide confidence towards exporting livestock from

arbovirus free areas. As such, this database provides a unique and

continuous record of these specific arboviruses and the associated

vector activity over a long period and on a continental scale.

Arboviruses often display well-defined seasonal peaks in

temperate climates compared to tropical regions where annual

patterns are not as clear [22]. National surveillance data has

shown that BTV, AKAV and BEFV activity across Australia

varies greatly between localities and is strongly linked with climate,

particularly temperature and rainfall. However, the exact drivers

of this seasonality are unclear, yet crucial for a basic understanding

of arboviral epidemiology and for creating accurate risk predic-

tions. Australia provides a valuable case study in this context as it

displays a wide range of climatic zones, from tropical in the north

(for example, in Cairns and Darwin) to temperate in the south (for

example, in Tasmania). In southerly regions, annual fluctuations of

temperature can range from above 40uC to below freezing,

whereas the north can experience rainfall varying from 600 mm in

one month to severe drought (Australian Bureau of Meteorology).

Importantly, climatic data can help make broad predictions of the

likely distribution of the insect vectors associated with these

viruses, allowing for estimates of their probable geographical

boundaries [23].

The quality and quantity of the Australian national surveil-

lance data on BTV, AKAV and BEFV, as well as its coverage

across a wide range of latitudes, and hence climatic conditions,

enables us to determine patterns of arbovirus distribution in

time and space, thereby defining their seasonal characteristics.

Using epidemiological time-series analyses, the present study

draws on this data set to reveal the factors that drive the

seasonality of a number of economically important arthropod-

borne viruses.

Author Summary

Arthropod-borne viruses (arboviruses) are a group of
viruses that can have major impacts on public health,
animal health and agricultural trade, and appear to be
increasing in both number and prevalence worldwide.
Despite their importance as emerging pathogens, the
spatial patterns, long-term seasonal characteristics and
drivers of seasonality in many arboviruses are poorly
understood. The island continent of Australia provides an
ideal case study for the spatial analysis of emerging
arboviruses, harboring diverse climatic conditions across a
wide range of latitudes. Herein we utilize long-term
serological data from a nationwide network of sentinel
herds in Australia to describe the seasonality of three
economically important animal arboviruses: bluetongue
virus, Akabane virus and bovine ephemeral fever virus.
Using epidemiological time series analysis, we demon-
strate that these viruses exhibit a distinct spatial pattern in
both the peak timing and intensity of annual epidemic
cycles, with the strongest seasonality observed in south-
erly geographic regions. In addition, we reveal the climatic
factors that drive patterns of arbovirus distribution and, by
doing so, provide a more complete understanding of
arbovirus seasonality, which in turn will improve the risk
assessment of these viruses.

Seasonal Characteristics of Arboviruses in Australia
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Methods

Arbovirus Surveillance
The surveillance data set analyzed here was sourced through

Animal Health Australia (http://www.animalhealthaustralia.com.

au, although not publicly available). The locations of sentinel herds

are based on defining the transmission, surveillance and free zones

for trade, which can be found in coastal and hinterland areas

where viruses are prevalent, and largely absent in the central,

desert region due to the inhospitableness of these areas and the

absence of cows and sheep (Figure 1). Typically, groups of 10

cattle are periodically recruited at six months of age to avoid

maternal antibody interference with test results, ensuring overlap

between old and new groups. Recruitment of new sentinel animals

typically takes place in May of each year, coinciding with the start

of the dry season in the north.

Serological evidence of BTV infection is detected by using a

competition enzyme-linked immunosorbent assay (cELISA) which

measures BTV-specific antibodies without detecting cross-reacting

antibodies to other orbiviruses known to circulate in Australia

[24,25]. Serological evidence of AKAV and BEFV infection was

obtained by using virus neutralization tests (VNTs) employing

microplate methods that have been described previously [7,26,27].

VNTs were conducted in hamster lung (HmLu-1) cells (AKAV) or

baby hamster kidney (BHK-21) cells (BEFV).

Light traps for the collection of biting midges were placed near

sentinel herds. These traps employ green light-emitting diodes and

were deployed before dusk and remained in the field for no more

than two nights. Insects were collected monthly, throughout the

year in northern Australia (12 collections), from December to May

in intermediate locations (6 collections) and from December to

March in southern Australia (4 collections). Insects were collected

into 70% ethanol and Culicoides, spp. were sorted, identified by

wing pattern and counted.

Sentinel cattle herds and insect collections have been operating

in Australia since 1969. However, we restricted our analysis to

data collected between July 2004 and June 2012 because sampling

over this period was more consistent across all monitoring

locations compared with previous years (i.e. before July 2004

monitoring was either restricted to certain areas only, or serology

was infrequently performed). In the southern hemisphere the

vector season begins in July and ends in the following June.

Accordingly, we analyzed data over these months. Each month,

the number of seroconversions to AKAV, BEFV and BTV were

reported from a total of 180 sentinel herds, as well as the number

of Culicoides trapped. In our analysis we have included four

important Culicoides species: C. brevitarsis, C. fulvus, C. actoni
and C. wadai, all of which have different efficiencies and

distributions as vectors. It is important to note that in this chosen

data set there is no distinction between midge sex, nor does it

contain information regarding other insect vectors such as

mosquitoes. In addition, all collections and isolations are

undertaken by NAMP.

Estimating Seasonal Parameters
To obtain a measure of the seasonal activity for these viruses,

time-series analyses were conducted using the Epipoi epidemio-

logical software package [28] and utilized in MatLab v.R2013a.

We analyzed the total number of seroconversions per month

between July 2004 and June 2012 from sentinel farms located in

distinct climate regions (tropical, grasslands, arid and warm-

temperate) for all three viruses. By summing the 12-monthly, 6-

monthly and 3-monthly harmonics (wave cycles that make up a

partial Fourier series), we obtained the periodic annual function

and seasonality. By doing so, we acquired estimates of the timing

and amplitude of the annual primary peak from 2004 to 2012 for

each sentinel herd. Timing of the annual primary peak is when the

maximum annual intensity of arbovirus activity within a herd is

usually detected, whereas peak amplitude is equivalent to the

strength of the epidemic cycle. We analyzed these parameters as a

function of latitude, first by including all farms and later by

excluding those farms located at longitudes west of the Great

Dividing Range; Australia’s longest mountain range that runs the

entire length of the east coast, which is known to have an

important impact on climate. Because this is necessarily an

Figure 1. (a) Map of Australia indicating the location of sentinel herds (circles) and weather stations used for climactic data
(diamonds), as well as the Great Dividing Range (purple line), and (b) Australia’s climate zones as defined by the Australian Bureau
of Meteorology.
doi:10.1371/journal.pntd.0003325.g001
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exploratory study, the p-values reported here are not useful for

hypothesis testing (as data from each site are not independent

given the existing spatial correlation).

Climatic Data
To determine seasonal drivers of arbovirus infection in Australia

we focused on climate data as seasonal predictors. Maximum and

minimum monthly temperature (uC) and rainfall (mm) between

July 2004 and June 2012 were obtained from the Australian

Bureau of Meteorology. These data were collected from 31

weather stations in close proximity (within one degree of latitude

and longitude) to at least one sentinel herd that detected positive

serology within this time frame (Figure 1). Seasonal parameters of

climatic data, such as the average timing and amplitude of annual

peaks between 2004 and 2012, were again obtained using the

Epipoi program [28]. We fitted linear regression models using

climatic characteristics as predictors of arbovirus seasonality; with

the above restrictions, only 50 sentinel herds that were located

close to a weather station were included in this analysis.

Results

To visualize seasonal changes in arbovirus activity across

climatic conditions, we analyzed the number of seroconversions

to BTV, AKAV and BEFV in four distinct climate regions across

Australia: tropical, grasslands, arid and warm-temperate. Notably,

our time-series analysis reveals a well-defined annual periodicity

(seasonality) of all three viruses in warm-temperate regions

(Figure 2). Grassland regions showed much weaker annual

periodicity while relatively broad annual peaks characterized arid

regions. Finally, tropical areas experienced a clear major annual

epidemic, with an additional semi-annual peak.

Seasonal parameters, such as the timing and amplitude of the

annual primary peak, were extracted from the time series

(Figure 3). Overall, we noted a negative latitudinal relationship

with the timing of the annual primary peak in both analyses (i.e.,

including and excluding herds located at longitudes west of the

Great Dividing Range; see plot for statistical values). Hence,

southern regions show annual peaks most often during late

summer to early autumn (March–April), while intermediate

geographic regions experience broad annual peaks concentrated

during the wet season with a decline during midwinter (June–July).

In contrast, northerly regions experience annual and semi-annual

epidemics, with a peak occurring in March–April and another

during September–November. In this latter region, the major peak

for both BEFV and BTV occurs in March–April, while the major

peak for AKAV is in September–November.

Peak amplitude, which is a measure relative of the magnitude of

the average seasonal signature across all years, was obtained by

dividing the wave height (difference between the peak and trough

values) by the peak value [28]. Peak amplitude also varied

geographically (Figure 3), with higher relative peaks in the south

compared to the north for all three viruses, although the

relationship was not statistically significant in the case of AKAV.

This correlation was only observed when sentinel herds across all

longitudes were included in the analysis (but no significant

correlation was found between seasonal parameters and longitude

alone). The adjacent maps in Figure 3 show the sentinel herd

location, in which open shapes represent sentinel herds with no

virus detected between 2004 and 2012. As shown, BEFV is found

Figure 2. Time series of the number of positive seroconversions per month between July 2004 - June 2012 in four distinct climate
regions: tropical, grasslands, arid and warm-temperate for Akabane virus (a), bovine ephemeral fever virus (b), and bluetongue
virus (c). The periodic annual function, obtained by summing the 12-monthly, 6-monthly and 3-montly harmonics (bold line) and the raw data
(faded line) is shown. Vertical grid lines represent 1st July for each year, coinciding with the start of the vector season in the southern hemisphere.
doi:10.1371/journal.pntd.0003325.g002
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in areas where both AKAV and BTV is present, but is also found

in more remote, inland locations across New South Wales where

AKAV and BTV are absent.

The percentage of seroconversions to all three viruses was

greater in northern regions between August and October, during

which time very few seroconversions occurred in the south,

coinciding with low temperatures that are likely to affect arthropod

blood-seeking behavior [29] (Figure 4). The percentage of

arbovirus activity in southern regions increased during summer

and autumn (February–May), reaching over 70% of the total

number seroconversions to AKAV, during which time activity

declined in the north. The south experiences an apparent

seroconversion to all three viruses in July. This coincides with

the first sampling of the replacement groups of calves in this

region. Seroconversion at this time is likely due to calves possessing

passive immunity from maternal antibodies, which may last up to

5–6 months before they become susceptible [30].

On average, the seroconversions to BTV, AKAV and BEFV

increased significantly as latitude decreased towards the Equator

(Figure S1; top panel). Furthermore, the number of seroconver-

sions was more similar between sentinel herds in closely proximity

to one another (Figure S1; lower panel). On average, all three

viruses exhibited a strikingly similar overall seasonal pattern, with

the greatest number of seroconversions detected during April

(Figure S2; top panel). However, in comparison to both BTV and

BEFV, seroconversion to AKAV was proportionally higher during

Figure 3. Seasonal parameters as a function of latitude are shown for Akabane virus (top), bovine ephemeral fever virus (middle),
and bluetongue virus (bottom). Left panel (a, b, c): estimated mean annual peak timing. Centre panel (d, e, f): estimated amplitude of annual
peak, relative to the mean standardized time series. Right panel (g, h, i): map of Australia showing location of sentinel herds. Colors correspond to
different climate regions (tropical: red; grasslands: orange; arid: yellow; warm-temperate: green) and shapes correspond to east (circles) and west
(triangles) of the Great Dividing Range. Shape size corresponds to the mean number of seroconversions. Open shapes represent sentinel herds for
which there has been no detection of these viruses. A black, solid line illustrates a line of best fit through all points while a dashed line shows the best
fit through circles only (i.e. east of the Great Dividing Range). Pearson’s R is shown (in parentheses for circles only), and an asterisk indicates whether it
is significantly different from zero (*p,0.05; **p,0.01).
doi:10.1371/journal.pntd.0003325.g003
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warmer months (October–February), while seroconversion to

BTV and BEFV was predominant during March–June (Figure

S2; lower panel).

Next, we analyzed climatic data including average daily rainfall

per month (mm) and temperature (uC), along with entomological

(number of C. brevitarsis trapped) and geographic data (latitude) as

predictors of arbovirus seasonal characteristics, using only data

from herds located in close proximity to a weather station.

Geographic and climate variables were often strongly associated

with seasonal characteristics for all three arboviruses (Table 1).

Specifically, the timing of maximum annual temperature was

significantly correlated with peak timing of AKAV and BTV,

while the peak amplitude of temperature and rainfall were

significantly correlated with peak amplitude of BEFV and BTV,

thus acting as strong predictors. Rainfall and temperature were

also associated significantly with geography. Both the timing and

amplitude of annual peak temperature decreased as a function of

latitude, while peak amplitude of average monthly rainfall

increased (Figure 5). In addition, we found a significant relation-

ship between annual peak amplitude of C. brevitarsis with all three

viruses, as well as with latitude. Further, peak timing of AKAV

and C. brevitarsis were also significantly correlated.

Discussion

Our study of the spatiotemporal patterns and seasonality of

three economically important arboviruses in Australian cattle has

revealed marked differences between distinct geographic regions

and climates, and which will be important in predicting the timing

of onset and spread of future epidemics, including those in other

geographic regions. Through access to long-term nationwide

surveillance data, we were able to identify diverse seasonal

characteristics across a wide latitudinal gradient.

Most notably, our analysis revealed that warm-temperate

regions within Australia experience a single, concentrated peak

in late summer to early autumn (March–April) with well-defined

annual periodicity; a pattern comparable to the seasonality of

BTV in California where the majority of seroconversions also

occur during Autumn (September–October) [31]. Grassland

regions show weaker annual periodicity while arid regions shows

broad annual peaks that only sharply decline during midwinter

(June–July). This prolonged persistence of arbovirus activity in this

region suggests that it might represent a potential ‘source’

population, continually seeding other geographic regions. How-

ever, at least for BTV, evidence suggests that the distribution of

some serotypes is restricted to northern latitudes [32], such that

further analysis of genome sequence data, which can reveal precise

aspects of viral spread in space [33], is required. In contrast,

tropical regions experience clear annual and semi-annual cycles: a

peak in late summer (March–April) and another peak during

September–November. In this region, the major peak for BEFV

and BTV appears to occur in March–April while the major peak

for AKAV was in September–November. The September–

November peak is likely due to increasing rainfall and associated

vector activity. A trough is then observed followed by a new peak

in March–April. While temperature remains relatively constant

during this period, rainfall increases significantly, peaking in

January, and then by March returns to levels similar to those seen

in September–November. This annual and semi-annual pattern in

the north suggests that heavy rainfall during the cyclonic season

Figure 4. Mean percentage positive seroconversions per month for northern Australia (north of 2236S) and southern Australia
(south of 2246S) for Akabane virus (a), bovine ephemeral fever virus (b), and bluetongue virus (c). The x-axis ranges from July through
June, representing start-to-finish of the vector season.
doi:10.1371/journal.pntd.0003325.g004
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(November–March) is unfavorable for arbovirus transmission,

perhaps by destroying breeding sites and thus reducing population

size.

Also of note was that the relative amplitude of the annual

primary peak varied across latitudes for all three viruses. Peak

amplitude was strongest in the south and decreased as latitude

drew closer to the Equator. In contrast, the proportion of

seroconversions to all three viruses increased significantly as

latitude decreased. The number of seroconversions is, on average,

greater in northern, tropical regions compared to southern, more

temperate, regions. This pattern is consistent with conditions

favorable for increased arthropod population size, as well as

shorter extrinsic incubation periods of virus development. Finally,

although AKAV and BTV are taxonomically assigned to different

virus families with different genome architecture and modes of

replication and transcription, they exhibited strongly congruent

spatial and temporal patterns, reflected in their shared host range

and transmission by biting midges. Nevertheless, AKAV was

proportionally more dominant during warmer months than BTV.

One possible explanation for this disparity is that while BTV has

only ever been isolated from Culicoides spp., AKAV has been

isolated from both Culicoides and mosquitoes [34], and thus

mosquito-borne transmission may be contributing to the epide-

miological pattern of AKAV. To our knowledge, however, AKAV

has not been isolated from mosquitos in Australia. Alternatively,

and perhaps more likely, this difference may be due to the higher

efficiency with which orthobunyaviruses are transmitted by

Culicoides spp. compared to orbiviruses. This was evident during

the recent outbreak of Schmallenberg virus versus BTV in Europe,

where Culicoides populations were more susceptible to the former

[35]. Furthermore, it has been shown experimentally that

Culicoides are very efficient vectors for the closely related AKAV

[36].

As well as revealing arbovirus seasonality, we also set out to

reveal its underlying causes. Climatic factors such as temperature

and rainfall affect the spread of arboviruses by influencing vector

behavior and survival [37]. Accordingly, the distribution of

Culicoides spp. and Culex annulirostris, and thus their associated

viruses, is strongly influenced by weather patterns. For example, C.
brevitarsis larvae and pupae can survive only when winter

temperatures are mild. If temperatures are too low (i.e., below

17uC for 50 consecutive days, as experienced in many southerly

regions of southern New South Wales) or too high (such as those

found in central desert regions, where summer temperatures can

reach above 50uC), larval survival diminishes [18] which, in turn,

will greatly reduce virus transmission. Conversely, temperatures

such as those often experienced in northern areas such as Darwin,

along with optimum midsummer rainfall, aid the development of

Figure 5. (a) The number of Culicoides trapped (log); (b) maximum and minimum monthly rainfall (mm); and (c) maximum and
minimum monthly temperature (6C) between July 2004–June 2012 is shown for four distinct climate regions: tropical, grasslands,
arid and warm-temperate. Below, seasonal parameters are estimated as a function of latitude: mean peak timing and amplitude of annual peak,
relative to the mean standardized time series. An asterisk indicates Pearson’s R is significantly different from zero (*p,0.05; **p,0.01).
doi:10.1371/journal.pntd.0003325.g005
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high insect population densities [38] and hence virus activity.

Indeed, the surveillance data described here shows that serocon-

version to AKAV, BTV and BEFV occurs most frequently in these

areas. However, it is notable that BEFV is also found in more

remote, inland regions where the fluctuation of summer and

winter temperatures can be much more severe. One suggestion is

that the associated vector, possibly the mosquito Cx. annulirostris,
is less susceptible to climatic extremes compared to the biting

midge, C. brevitarsis [18]. Alternatively, this difference in

distribution may be due to availability of breeding sites: C.
brevitarsis has a strict need for cattle dung whereas Cx.
annulirostris breeds in freshwater habitats that are typically

associated with heavy rainfall.

Consistent with global climate trends, long-term climatic data in

Australia show that temperature is increasing [39–41]. This rise in

temperature has been predominantly observed in Queensland,

where 2013 was the warmest spring on record with an increase of

1.57uC since 1960 (Australian Bureau of Meteorology). Modeling

suggests that changing global temperatures will likely extend the

geographic range of arthropod-borne disease [42,43] and even

increase their transmissibility [44], influencing both vector

abundance and immunity as well as the pathogen itself by

affecting virulence and replication rates in the vector [45].

Extreme weather events also include varying patterns of precip-

itation that affect the availability of moist breeding sites, while

changing patterns of wind direction and intensity aid insect

dispersal and support new colonization events that lead to

increased outbreaks of disease in previously unaffected regions

[46]. Although we did not observe any significant change in

temperature or number of insects collected between 2004–2012,

this likely reflects the relatively short time period of our analysis.

Importantly, our study shows that even simple climatic variables,

such as monthly averages of temperature and rainfall, can provide

effective risk assessment tools for arbovirus activity. Nevertheless,

to fully determine the effect of climate change on the distribution

of arboviruses, it may be necessary to incorporate daily climatic

variation into predictive models [47]. More generally, under-

standing the interactions between changing climatic conditions

and arthropod-borne viruses is clearly of vital importance for

public health and biosecurity. Ongoing monitoring of arboviruses

in Australia is therefore clearly of fundamental importance.

Serological surveillance of sentinel herds – which covers a vast

geographical scale across Australia, including the island of

Tasmania – is a powerful tool for monitoring the epidemiology

of arboviruses. Herein, we have utilized these data to undertake a

novel investigation of arbovirus seasonal characteristics using time-

series analysis and from this determine the drivers of seasonality in

three economically important animal arboviruses. Accordingly,

this study has revealed important differences in arbovirus

seasonality across a wide range of latitudes in Australia, covering

tropical to subtropical regions, and shown how the interaction

between climatic and vector abundance shapes patterns of viral

seasonality and transmission. Although the current study does not

account for abiotic factors that may also influence patterns of viral

spread, such as the human-mediated movement of livestock within

Australia, these are likely to be of negligible importance in the

overall seasonal pattern. Finally, although there is an increasing

availability of genome sequence data from these viruses that might

ultimately reveal aspects of viral population structure and

migration (e.g., [12,32]), including whether there are distinct

source populations both nationally and on a global scale, it is

important that these are combined with the types of surveillance

data analyzed here. These unified data sets will provide a fuller

picture of arbovirus epidemiology and phylodynamics [48], in turn

greatly facilitating risk assessment.

Supporting Information

Figure S1 Plots depict the prevalence of Akabane virus (left),

bovine ephemeral fever virus (center), and bluetongue virus (right).

The proportion of positive seroconversions as a function of latitude

is shown in the upper panel and semivariograms are shown in the

lower panel. Colors in the upper panel correspond to different

climate regions (tropical, grasslands, arid and warm-temperate).

Pearson’s R and Spearman’s rho are indicted on the plot.

(TIF)

Figure S2 Mean number seroconversions per month between

2004–2012 (with error bars showing the standard error of the

Table 1. Seasonal parameters.

Annual Peak Timing Relative Amplitude of Annual Peak

Virus Predictor Estimate SE R-squared P-Value Estimate SE R-squared P-Value

AKAV Rainfall 0.19 0.32 0.01 0.56 20.06 0.11 0.008 0.59

Temperature 0.84 0.4 0.12 0.04* 0.22 0.12 0.09 0.08

C. brevitarsis 0.38 0.17 2.2 0.03* 0.28 0.12 2.14 0.04*

Latitude 20.68 0.23 0.099 0.003** 20.29 0.16 0.04 0.08

BEFV Rainfall 0.27 0.28 0.03 0.34 20.24 0.11 0.13 0.03*

Temperature 0.45 0.38 0.04 0.24 0.34 0.12 0.21 0.006**

C. brevitarsis 20.17 0.16 1.01 0.32 0.32 0.12 2.62 0.01*

Latitude 20.58 0.26 0.052 0.026* 20.36 0.14 0.06 0.01*

BTV Rainfall 0.14 0.36 0.005 0.71 20.37 0.13 0.22 0.008**

Temperature 1.2 0.44 0.21 0.01* 0.5 0.14 0.32 0.0009**

C. brevitarsis 0.009 0.22 0.04 0.96 0.32 0.14 2.3 0.03*

Latitude 20.77 0.23 0.15 0.001** 20.5 0.16 0.13 0.003**

Linear regression analysis: a comparison between arbovirus seasonal parameters with climate (rainfall and temperature), entomology (C. brevitarsis) and geographic
location (latitude). An asterisk indicates R-squared is significantly different from zero (*p,0.05; **p,0.01).
doi:10.1371/journal.pntd.0003325.t001
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mean) (a, b, c); and the mean percentage seroconversions per

month, comparing each virus in northern regions (latitudes north

of 223uS) and southern regions (latitudes south of 224uS) (bottom

panel – (d): AKAV and BTV; (e): AKAV and BEFV; (f): BEFV

and BTV). The x-axis ranges from July through June, representing

start-to-finish of the vector season.

(TIF)
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