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The immune cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has
been widely concerned as a tumor therapy because of its ability of selective triggering
cancer cell apoptosis; nevertheless, hepatocellular carcinoma (HCC) exhibits acquired
resistance to TRAIL-induced apoptosis. In the present study, tumor-suppressive lncRNA
cancer susceptibility candidate 2 (CASC2) was downregulated in HCC tissues and cell
lines; HCC patients with lower CASC2 expression predicted a shorter overall survival rate.
In vitro, CASC2 overexpression dramatically repressed HCC cell proliferation and inhibited
cell apoptosis; in vivo, CASC2 overexpression inhibited subcutaneous xenotransplant
tumor growth. CASC2 affected the caspase cascades and NF-kB signaling in TRAIL-
sensitive [Huh-7 (S) and HCCLM3 (S)] or TRAIL-resistant cell lines [Huh-7 (R) and
HCCLM3 (R)] in different ways. In Huh-7 (S) and HCCLM3 (S) cells, CASC2 affected cell
apoptosis through the miR-24/caspase-8 and miR-221/caspase-3 axes and the caspase
cascades. miR-18a directly targeted CASC2 and RIPK1. In Huh-7 (R) and HCCLM3 (R)
cells, CASC2 affected cell proliferation through the miR-18a/RIPK1 axis and the NF-kB
signaling. RELA bound to CASC2 promoter region and inhibited CASC2 transcription. In
conclusion, CASC2 affects cell growth mainly via the miR-24/caspase-8 and miR-221/
caspase-3 axes in TRAIL-sensitive HCC cells; while in TRAIL-resistant HCC cells, CASC2
affects cell growth mainly via miR-18a/RIPK1 axis and the NF-kB signaling. These
outcomes foreboded that CASC2 could be a novel therapeutic target for further study
of HCC-related diseases.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant tumors worldwide, and its high fatality rate and high
incidence are a serious threat to public health (1). Tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) is a
member of the tumor necrosis factor (TNF) family and widely
expresses in a variety of tissues; due to the difference in sensitivity
to TRAIL between normal cells and tumor cells, TRAIL can
selectively induce apoptosis of tumor cells but almost has no
killing effect on normal cells; hence, TRAIL is considered a
promising antitumor agent (2–4). However, in phase II clinical
trials, the efficacy of TRAIL preparations has not yet reached
expectations, and many types of tumor cells, including liver
cancer, are resistant to TRAIL (5, 6). Therefore, exploring the
mechanism underlying HCC resistance to TRAIL would provide
novel directions in the clinical applications of TRAIL therapy.

According to previous studies, TRAIL acts on sensitive and
resistant tumor cells through different signaling pathways (7).
Upon TRAIL binding with death receptor 4/5 (DR4/5), the
homotrimer recruits FADD (fas-associated death domain) and
procaspase-8/10 to form the DISC (death-inducing signaling
complex) (8–10); thus, caspase-8/10 cleavage in the DISC leads
to the activation of downstream caspase-3/6/7, inducing
apoptosis (1, 11). On the other hand, activated caspase-8
promotes the expression of RIPK1 (receptor-interacting serine/
threonine-protein kinase 1), inhibits the activation of NF-kB
pathway, and inhibits the proliferation of tumor cells (12).
However, since death receptors showed to be expressed
ubiquitously in both cancer and non-cancerous cells (13, 14),
HCC exhibits acquired resistance to TRAIL-induced apoptosis
(15–18). In TRAIL-resistant cell lines (9–11), TRAIL recruits
TNF receptor 1 associated death domain protein (TRADD)/TNF
receptor-associated factors (TRAFs) through the receptor DR4/
DR5 receptor to activate the NF-kB pathway and promote cell
proliferation, while activated NF-kB targeted and inhibited the
caspase pathway, thereby inhibiting tumor cell apoptosis.
Therefore, inhibiting the activation of the NF-kB pathway to
amplify the caspase cascades might be the key to reversing
TRAIL resistance of HCC.

For the past few years, non-coding RNAs, including long
non-coding RNAs (lncRNAs) and miRNAs, were found to act as
significant regulatory factors in the development of cancers and
other diseases, and it has been reported that lncRNAs and
miRNAs are implicated in the chemotherapy resistance to
multiple agents (19, 20). Notably, many studies have evaluated
the efficacy of TRAIL in combination with miRNAs and
lncRNAs for HCC treatment (16, 21–23). In our previous
study, we found that miR-24 and miR-221 could suppress the
expression level of caspase-8/3, leading to HCC TRAIL
resistance; nevertheless, cancer susceptibility candidate 2
(CASC2), a widely known antitumor lncRNA (24, 25), could
inhibit the effects of miR-24 and miR-221 via acting as their
“sponge,” suggesting that CASC2 could enhance the sensitivity of
HCC cells to TRAIL treatment through CASC2/miR-24/miR-
221 axis (26). LncRNA CASC2, located at chromosome 10q26,
was first identified to be dysregulated in endometrial carcinoma
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(27). CASC2, as a tumor suppressor, was subsequently
discovered to play a crucial part in multiple tumor diseases,
including pancreatic cancer (28), papillary thyroid cancer (29),
cholangiocarcinoma (30), glioma (31), and so on. Given the
critical role of the NF-kB pathway in HCC resistance to TRAIL,
identifying more lncRNA CASC2/miRNA axes modulating the
NF-kB pathway in HCC cells might provide novel targets for
restoring TRAIL sensitivity.

Herein, the expression of lncRNA CASC2 was determined in
HCC tissue samples and cell lines. Then, the in vitro effects of
CASC2 on HCC cell proliferation and apoptosis and the in vivo
effects of CASC2 on subcutaneous xenotransplant tumor growth
were examined. The key factors of the caspase cascades (RIPK1,
caspase-8, and caspase-3) and NF-kB signaling (IKKb, p-IkBa,
and p-p65) were monitored in TRAIL-sensitive cell lines [Huh-7
(S) and HCCLM3 (S)] and TRAIL-resistant cell lines [Huh-7 (R)
and HCCLM3 (R)], and the effects of CASC2 on two signaling
pathways were investigated in TRAIL-sensitive and TRAIL-
resistant cell lines, respectively. Next, the effects of the CASC2/
miR-24/caspase-8 and CASC2/miR-221/caspase-3 axes on
TRAIL-sensitive cell [Huh-7 (S) and HCCLM3 (S)] apoptosis
were investigated. Given the key role of RIPK1 in TRAIL therapy,
miRNAs that might target CASC2 and RIPK1 were analyzed,
and miR-18a was selected. The predicted bindings between
CASC2 and miR-18a or between miR-18a and RIPK1 were
validated. The dynamic effects of the CASC2/miR-18a/RIPK1
axis on the NF-kB signaling and TRAIL-resistant cell [Huh-7 (R)
and HCCLM3 (R)] proliferation were investigated. Given that
online tools predicted possible RELA binding sites on CASC2
promoter region, the predicted bindings were validated using
dual-luciferase reporter and ChIP assays. Finally, the expression
and correlation of key factors in tissue samples were investigated.
MATERIALS AND METHODS

Clinical Sampling
Under the approval by the Research Ethics Committee of the
Third Xiangya Hospital, samples were obtained from patients
who had never received any therapies before sampling and
signed written informed content in advance. A total of 15
HCC tissues were obtained from patients diagnosed with HCC
via histopathological examination. Paired tumor tissues and
adjacent non-cancerous samples were obtained at the same
time. HCC diagnosis is depending on three factors, namely,
chronic liver disease background, the positive iconography
examination results, or the positive pathological examination.
All HCC patients were free from other viral infections, such as
Human Immunodeficiency Virus (HIV), hepatitis virus. These
patients were also free from any other types of liver disease (32).
All samples were stored at −80°C until further experimental use.

Cell Lines
Huh-7 cell line (3111C0001CCC000679) was obtained from
China Center for Type Culture Collection (CCTCC; Beijing,
China) and Dulbecco’s Modified Eagle’s Medium (DME-H-21
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4.5 g/Liter Glucose; Invitrogen) supplemented with 10% FBS
(Invitrogen). HCCLM3 (C6303) was obtained from Beyotime
(Shanghai, China) and cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM) supplemented with 10% FBS (Invitrogen).

The human liver cancer cell line Huh-7 and HCCLM3 were
exposed to gradually increased concentrations of recombinant
human TRAIL (rhTRAIL; 1, 10, 100, and 1,000 ng/ml) as
described previously (26, 33, 34) for establishing the TRAIL-
resistant Huh-7 (R) and HCCLM3 (R).

Real-Time qPCR
The target cell monolayers in 12-well plate were rinsed with PBS
and harvested for RNA isolation and qPCR as described
previously (35). Total RNA (1 mg) was reverse transcribed into
cDNA using High-Capacity RNA-to-cDNA Reverse
Transcription Kit (Applied Biosystems). The expression levels
of lncRNA, miRNA, and mRNA were quantified using an ABI
7500 Fast real time PCR (Applied Biosystems, Thermo Fisher
Scientific). The relative mRNA expression was calculated using
the 2−DDCt method with b-actin or U6 as an internal reference
gene. The primers were listed in Table S1.

Cell Transfection
The overexpression or silencing of lncRNA CASC2 was achieved
in cells by transfecting pcDNA3.1-CASC2 (CASC2, vector as a
negative control) or vector containing short hairpin RNA
targeting CASC2 (sh-CASC2, sh-NC as a negative control).
miRNA overexpression or inhibition was achieved in cells by
transfecting miRNA mimics or inhibitor (NC mimics or NC
inhibitor as a negative control). The overexpression or
knockdown of RIPK1 was achieved in cells by transfecting
pcDNA3.1-RIPK1 (RIPK1, vector as a negative control) or
vector containing short hairpin RNA targeting RIPK1 (sh-
RIPK1, sh-NC as a negative control). The primers for vector
construction are listed in Table S1. All the transfections were
performed using Lipofectamine 3000 Reagent (Thermo Fisher
Scientific, Waltham, MA, USA).

MTT Assay for Cell Viability
MTT (3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium
ammonium bromide) was used to detect the cell survival rate
according to the method before (36). Cells took in the MTT
through the plasma membrane potential, and the MTT was then
reduced to formazan by intracellular NAD(P)H-oxidoreductases.
Next, the supernatant was discarded, and the DMSO was added
for dissolving the formed formazan. Finally, 490 nm OD values
were measured and the cell survival rate (cell viability) was
calculated taking the non-treated cell (control) viability as 100%.

EdU Assay for DNA Synthesis Capacity
EdU assay was performed using the Click-IT EdU Alexa Fluor
647 kit (Thermo Fisher, Waltham, MA, USA) as previously
described (37, 38). Apollo staining and DAPI staining for
nuclei staining were performed. Under a fluorescence
microscope, the blue fluorescence represents the nucleus
stained by DAPI, and the red fluorescence represents the newly
Frontiers in Oncology | www.frontiersin.org 3
synthesized DNA stained by EdU. The incorporation rate of EdU
was equal to the ratio of EdU-positive cells (red)/DAPI-positive
cells (blue).

Flow Cytometry for Cell Apoptosis
Flow cytometry was used to detect apoptosis as previously
described (39). Collect cells after digestion by 0.25% trypsin
and resuspend with 100 ml of binding buffer. Then, cells were
added with 5 ml of Annexin V-FITC and 5 ml of Propidium
Iodide (PI) and incubated at room temperature in the dark for 15
min. At the end of the incubation, cell apoptosis was examined
by an FACS Calibur FCM (BD Biosciences, San Jose, USA).
Experiments in triplicate helped to reduce errors. FACS Diva
software was adopted at data analysis.

Immunoblotting for Protein Levels
The protein levels of cyclin D1, ki67, caspase-8, caspase-3,
cleaved-caspase-8, cleaved-caspase-3, RIPK1, IKKb, p-IkBa,
and p-p65 were examined by immunoblotting following the
methods described before (36) with antibodies against cyclin
D1 (60186-1-Ig; Proteintech, Wuhan, China), ki67 (27309-1-AP,
Proteintech), caspase3 (19677-1-AP, Proteintech), cleaved-
caspase 3 (ab2302, Abcam, Cambridge, MA, USA), caspase-8
(ab32397, Abcam), cleaved-caspase-8 (# 9496S; Cell Signaling;
Danvers, MA, USA), IKKb (07-1008; Sigma-Aldrich, St. Louis,
MO, USA), p-IkBa (#9246; CST, Danvers, MA, USA), p-p65
(ab194726, Abcam), and b-actin (60008-1-Ig, Proteintech). b-
actin was taken as an endogenous control. The incubation of
membranes with primary antibody was followed by another
incubation with HRP-conjugated secondary antibodies. Protein
blots were then visualized using enhanced chemilumescent
(ECL) substrates (Millipore, MA, USA).

Lentivirus and Cell Transduction
Human lncRNA CASC2 overexpressing lentivirus (lv-CASC2
TU=1.5×109/ml) or CASC2 knockdown lentivirus (lv-sh-
CASC2 TU=1.5×109/ml) and negative control lv-NC or lv-sh-
NC were prepared by Genechem (Shanghai, China). Human
hepatocellular carcinoma cell lines Huh-7 and HCCLM3 were
plated into 12-well plates at a density of 4×104 cells/well and then
infected with lv-CASC2, lv-sh-CASC2, lv-NC, or lv-sh-NC in
serum-free medium, using polybrene (5 µg/µl) reagent to
increase the efficiency of infection according to the
manufacturer’s protocol. After 12 h incubation, the medium
was changed to DMEM supplemented with 10% FBS. Then, the
cells were incubated for another 48 h before proceeding
with experiments.

Subcutaneous Xenotransplant Tumor
Model in Nude Mice
Huh-7 cells infected with lentivirus overexpressing lncRNA
CASC2 or negative control lentivirus were implanted
subcutaneously to the left flank of female nude mice (BALB/c
mice; 18–22 g, 5 weeks old, obtained from SLAC laboratory
animal center, Changsha, China). Tumor volume was measured
every 3 days from the 9th day after injection, when the tumor
January 2022 | Volume 11 | Article 726622
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began to form. On the 25th day, nude mice were sacrificed and
the tumor weight was measured. Tumor tissues were collected to
detect the content of related proteins.

Hematoxylin and Eosin Staining for
Histological Analysis
Tumor tissues were weighed and cut immediately after
sacrificing the mice; further, the tumor tissues were fixed in
10% neutral-buffered formalin overnight. The sections were
stained with hematoxylin and eosin (H&E) to observe the
morphological changes.

Dual-Luciferase Reporter Assay
For validating miR-18a binding RIPK1 3’-UTR and lncRNA
CASC2, respectively, and RELA binding CASC2 promoter
region, dual-luciferase reporter assay was performed. CASC2
or RIPK1 3’-UTR was amplified by PCR using genomic DNA of
the Huh-7 cell line and cloned downstream of the Renilla
luciferase open reading frame in the Renilla psiCHECK2 vector
(Promega, Madison, WI, USA). Mutations were introduced to
the seed region of the miR-18a binding site in CASC2 or RIPK1
3’-UTR, and the construct was named mut-CASC2 or mut-
RIPK1 3’-UTR. Next, 293T cells were seeded in 96-well plates
and co-transfected with miR-18a-5p mimics/ miR-18a-5p
inhibitor together with psiCHECK-2 reporter vectors (wt-/
mut-RIPK1 3’-UTR or wt-/mut-CASC2). The luciferase
activity was measured using the dual-luciferase reporter gene
detection system (Promega) according to the manufacturer’s
instructions 48 h following the transfection. The values are
double-normalized to cells transfected with blank psiCHECK-2
control vector and firefly luciferase activity.

Chromatin Immunoprecipitation-
PCR Analysis
ChIP was performed with anti-IgG or anti-NF-kB. Briefly, cells at
a concentration of 2×106 cells/ml were treated with 1%
formaldehyde in medium for 10min at room temperature. After
two washes with ice-cold PBS containing protease inhibitors, the
cells were pelleted by centrifugation and resuspended in SDS lysis
buffer. After incubation for 15 min at 4°C, the lysates were
sonicated 12 times (30 s each). After centrifugation, the
supernatant was diluted in ChIP dilution buffer and incubated
overnight at 4°C with anti-IgG or anti-NF-kB and protein G
beads. Samples were washed two times in lysis buffer, four times in
1M lysis buffer (50 mM Tris, pH 7.4, 1M NaCl, 1 mM EDTA,
0.1% SDS, 1% NP-40, and 0.5% sodium deoxycholate), and the
beads were then resuspended in lysis buffer and treated with
proteinase K at 45°C for 45min. Coprecipitated DNAs were
purified using a QIAquick DNA purification spin column
(Qiagen, Germantown, MD, USA) and eluted in 50 ml nuclease-
free water. The immunoprecipitated DNA was quantified using
PCR, and all values were normalized to the input.

Statistical Analysis
All the experiments were repeated for at least three times. Data
from at least three independent experiments are processed by
Frontiers in Oncology | www.frontiersin.org 4
GraphPad (GraphPad Software, San Diego, CA, USA) and then
presented as the mean ± S.D. Where applicable, the Student’s
t-test is used for statistical comparison between means. In the
above analysis, the difference between more than two groups was
estimated using one-way analysis of variance and Turkish post-
hoc test. A P value of less than 0.05 is considered
statistically different.
RESULTS

In Vitro Effects of lncRNA CASC2
on HCC Cells
Given the tumor-suppressive role of CASC2 in HCC by our and
other groups’ studies (26, 40–42), the expression of CASC2 was
first validated in collected clinical tissue samples and cell lines.
Figure 1A showed that in 15 cases HCC samples, CASC2
expression was significantly downregulated compared with that
in normal non-cancerous samples. More importantly, Kaplan-
Meier Plotter online tool (https://kmplot.com/analysis/index.php?
p=service) indicated that higher CASC2 expression was a
protective factor for HCC patients (Figure 1B). To validate the
specific effects of CASC2, CASC2 overexpression or silencing was
achieved in Huh-7 and HCCLM3 cells by transfecting CASC2-
overexpressing vector [CASC2, empty vector (vector-NC) as a
negative control] or vector containing short hairpin RNA against
CASC2 (sh-CASC2, sh-NC as a negative control), and employed
real-time PCR to verify the transfection efficiency and CASC2
overexpressing or silencing in HCC cells was successfully
conducted (Figure 1C). Then, Huh-7 and HCCLM3 cells were
transfected accordingly and examined for cell phenotypes.
Figures 1D, E showed that CASC2 overexpression markedly
inhibited, whereas CASC2 silencing promoted cell viability and
DNA synthesis capacity. Consistently, CASC2 overexpression
significantly downregulated, whereas CASC2 silencing
upregulated the protein contents of proliferating markers cyclin
D1 and ki67 (Figure 1F). As shown in Figure 1G, CASC2
overexpression promoted, whereas CASC2 silencing repressed
cell apoptosis.

In Vivo Effects of lncRNA CASC2 on Huh-7
Cell Tumor Growth
To verify the in vitro findings, subcutaneous xenotransplant
tumor model was established in nude mice by injecting Huh-7
or HCCLM3 cells infected with human lncRNA CASC2-
overexpressing lentivirus (lv-CASC2) or negative control lv-NC
and CASC2-knockdown lentivirus (lv-sh-CASC2) or shRNA
control lv-sh-NC. lncRNA CASC2 overexpression or
knockdown within Huh-7 or HCCLM3 cells were examined by
real-time qPCR (Figure 2A). Tumor volume was measured every
3 days from day 10; Figure 2B showed that CASC2
overexpression in Huh-7 or HCCLM3 cells dramatically
decreased tumor volumes compared with the lv-NC group;
while CASC2 silencing notably promoted tumor volumes. On
the 25th day, nude mice were sacrificed and the tumor weight
was measured; consistently, CASC2 overexpression in Huh-7 or
January 2022 | Volume 11 | Article 726622
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FIGURE 1 | In vitro effects of lncRNA CASC2 on hepatocellular carcinoma (HCC) cells. (A) LncRNA CASC2 expression was determined in HCC (n=15) and adjacent
non-cancerous tissues (n=15) using qRT-PCR. (B) The correlation of CASC2 expression and the survival probability of 167 free from hepatitis virus infections HCC
patients was analyzed using Kaplan-Meier Plotter online tool (https://kmplot.com/analysis/index.php?p=service) and a log-rank analysis. (C) The overexpression or
silencing of lncRNA CASC2 was achieved in cells by transfecting pcDNA3.1-CASC2 (CASC2, empty vector as a negative control) or vector short hairpin RNA
targeting CASC2 (sh-CASC2, sh-NC as a negative control). The transfection efficiency was confirmed by real-time PCR. Then, HCC cell lines Huh-7 and HCCLM3
were transfected with CASC2 or sh-CASC3 and examined for cell viability by MTT assay (D); DNA synthesis capacity by EdU assay (E); the protein levels of
proliferating markers cyclin D1 and ki67 by Immunoblotting (F); cell apoptosis by Flow cytometry assay (G). *p < 0.05, **p < 0.01, ***p < 0.005 compared with
normal or vector-NC group, #p < 0.05, ##p < 0.01, compared with sh-NC group.
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HCCLM3 cells considerably decreased the tumor weight as
compared to the lv-NC group; while CASC2 silencing showed
the opposite effect (Figure 2C). Images of the tumors in each
group are shown in Figure 2D. H&E staining was then
performed to examine the histopathological characteristics of
the tumors; Figure 2E shows that CASC2 overexpression in
Huh-7 or HCCLM3 cells improved the necrosis of tumor tissues;
while CASC2 silencing markedly inhibited necrosis of tumor
tissues. Then, the protein levels of proliferating and apoptosis
markers in tumor tissues were also examined. Consistently,
CASC2 overexpression significantly decreased and CASC2
silencing increased proliferating markers cyclin D1 and ki67 in
tumor tissues (Figure 2F). Thus, CASC2 overexpression might
repress subcutaneously transplanted tumor growth in mice;
while knockdown of CASC2 efficiently facilitated the
tumorigenesis ability of HCC cells.
Frontiers in Oncology | www.frontiersin.org 6
Effects of lncRNA CASC2 on Caspase-
Cascades and the NF-kB Pathway
TRAIL has two different modes of action in TRAIL-sensitive and
TRAIL-resistant cell lines as in previous studies (43) (Figure 3A).
Therefore, it is reasonable to speculate that lncRNA CASC2 affects
the response of cancer cells to TRAIL through two different modes
of action. To select proper cell model for investigation, regular and
TRAIL-resistant Huh-7 [Huh-7 (R) andHuh-7 (S)] and HCCLM3
cells [HCCLM3 (R) and HCCLM3 (S)] were treated with 1, 10,
100, or 1,000 ng/ml TRAIL, the cell viability was determined and
shown as IC50 values. Figure 3B showed that compared with the
Huh-7 (S) and HCCLM3 (S) cells, IC50 values for Huh-7 (R) and
HCCLM3 (R) were significantly elevated (P value = 0.0005 or
0.0021, respectively).

Next, to monitor the alterations of the caspase cascades and
the NF-kB signaling, regular and TRAIL-resistant cells were
A

D

E F

B C

FIGURE 2 | In vivo effects of lncRNA CASC2 on Huh-7 cell tumor growth. (A) Subcutaneous xenotransplant tumor model was established in nude mice by injecting
Huh-7 or HCCLM3 cells infected with human lncRNA CASC2-overexpressing lentivirus (lv-CASC2) or negative control lv-NC and CASC2-knockdown lentivirus (lv-sh-
CASC2) or corresponding control (lv-sh-NC). The expression of lncRNA CASC2 in Huh-7 or HCCLM3 cells were examined by real-time qPCR. (B) Tumor volume
was measured every 3 days from the 10th day after injection, when the tumor began to form. (C) On the 25th day, nude mice were sacrificed and the tumor weight
was measured. (D) Images of the tumors in each group. (E) The histopathological characteristics of the tumors were examined by hematoxylin and eosin (H&E)
staining. (F) The protein levels of proliferating markers in tumors were examined by Immunoblotting. **p < 0.01, compared with lv-vector-NC, ##p < 0.01 compared
with Lv-sh-NC group.
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FIGURE 3 | Effects of lncRNA CASC2 on caspase-cascades and the NF-kB pathway. (A) A schematic diagram showing two different modes of TRAIL acting on
TRAIL-sensitive and TRAIL-resistant cell lines. (B) Huh-7 and HCCLM3 cells were exposed to 1, 10, 100, and 1,000 ng/ml rhTRAIL protein and examined for the cell
viability by MTT assay. The IC50 values were calculated and shown. Regular Huh-7 and HCCLM3 cells were then divided into TRAIL-sensitive Huh-7 (S) and
HCCLM3 (S) and TRAIL-resistant Huh-7 (R) and HCCLM3 (R). (C) Huh-7 (S), HCCLM3 (S), Huh-7 (R), and HCCLM3 (R) cells were treated with 0 or 150 ng/ml
rhTRAIL and examined for the protein levels of RIPK1, caspase-8, caspase-3, IKKb, p-IkBa, and p-p65 using Immunoblotting. (D) CASC2 expression was
determined in Huh-7 (S), HCCLM3 (S), Huh-7 (R), and HCCLM3 (R) cells using qRT-PCR. (E) Huh-7 (S) and HCCLM3 (S) cells were transfected with CASC2 or sh-
CASC2 and examined for the protein levels of caspase-8 and caspase-3 using Immunoblotting. (F) Huh-7 (R) and HCCLM3 (R) cells were transfected with CASC2
or sh-CASC2 and examined for the protein levels of IKKb, p-IkBa, and p-p65 using Immunoblotting. **p < 0.01, compared with sensitive group or vector-NC group,
##p < 0.01, compared with sh-NC group.
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treated with 0 or 150 ng/ml TRAIL and examined for the protein
levels of caspase cascades key factors (RIPK1, caspase-8, and
caspase-3) and NF-kB signaling key factors (IKKb, p-IkBa, and
p-p65). Figure 3C showed that the protein levels of caspase
cascades factors, RIPK1, caspase-8, and caspase-3, in TRAIL-
resistant Huh-7 (R) and HCCLM3 (R) cells were reduced
compared to those in the TRAIL-sensitive Huh-7 (S) and
HCCLM3 (S) cells; on the contrary, NF-kB signaling key
factors, IKKb, p-IkBa, and p-p65 proteins, were notably
increased in Huh-7 (R) and HCCLM3 (R) cells when
compared to Huh-7 (S) and HCCLM3 (S) cells, suggesting the
suppression of caspase cascades and the activation of the NF-kB
signaling were observed in TRAIL-treated resistant cells when
compared to TRAIL-treated sensitive cells. Besides, the proteins
of RIPK1, caspase-8, and caspase-3 were significantly increased
in 150 ng/ml TRAIL-treated sensitive Huh-7 (S) and HCCLM3
(S) cells when compared to 0 ng/ml TRAIL-treated Huh-7 (S)
and HCCLM3 (S) cells; contrariwise, IKKb, p-IkBa, and p-p65
proteins were significantly increased in 150 ng/ml TRAIL-treated
resistant Huh-7 (R) and HCCLM3 (R) cells when compared to 0
ng/ml TRAIL-treated Huh-7 (R) and HCCLM3 (R) cells,
suggesting the activation of caspase cascades and the NF-kB
signaling in TRAIL-treated sensitive or resistant cell lines under
TRAIL treatment. In the meantime, lncRNA CASC2 expression
was significantly downregulated in Huh-7 (R) and HCCLM3 (R)
cells compared with Huh-7 (S) and HCCLM3 (S) cells
(Figure 3D), further suggesting that lncRNA CASC2 might
affect the response of cancer cells to TRAIL through
different mechanisms.

Considering the activation of the caspase cascades in TRAIL-
sensitive cell lines, CASC2 overexpression or knockdown was
achieved in Huh-7 (S) and HCCLM3 (S) cells, and the levels of
caspase-8 and caspase-3 were examined. Figure 3E showed that
in Huh-7 (S) and HCCLM3 (S) cells, CASC2 overexpression
increased, whereas CASC2 knockdown decreased the levels of
caspase-8 and caspase-3. Considering the activation of the
NF-kB signaling in TRAIL-resistant cell lines, CASC2
overexpression or knockdown was achieved in Huh-7 (R) and
HCCLM3 (R) cells, and the levels of IKKb, p-IkBa, and p-p65
were examined. Figure 3F showed that in Huh-7 (R) and
HCCLM3 (R) cells, CASC2 overexpression decreased, whereas
CASC2 knockdown increased the levels of IKKb, p-IkBa, and p-
p65. These data indicate that CASC2 indeed affects the activation
of the caspase cascades and the NF-kB signaling in TRAIL-
sensitive or TRAIL-resistant cell lines in different ways.

LncRNA CASC2 Regulates Caspase-8 and
Caspase-3 by Targeting miR-24/221
In our previous study, we demonstrated CASC2/miR-24/
caspase-8 and CASC2/miR-221/caspase-3 axes in HCC cells,
modulating HCC cell resistance to TRAIL (26). Thus, CASC2/
miR-24/caspase-8 and CASC2/miR-221/caspase-3 axes might be
the mechanism of the caspase cascades activation in Huh-7 (S)
and HCCLM3 (S) cells. In Huh-7 (S) and HCCLM3 (S) cells,
CASC2 overexpression downregulated, whereas CASC2
knockdown upregulated miR-24 and miR-221 expression
Frontiers in Oncology | www.frontiersin.org 8
(Figure 4A). Next, miR-24/miR-221 overexpression or
inhibition was achieved in Huh-7 (S) and HCCLM3 (S) cells
by transfecting miR-24/miR-221 mimics or inhibitor
(Figure 4B). In Huh-7 (S) and HCCLM3 (S) cells, miR-24
overexpression decreased, whereas miR-24 inhibition increased
caspase-8 protein (Figure 4C). In Huh-7 (S) and HCCLM3 (S)
cells, miR-221 overexpression decreased, whereas miR-221
inhibition increased caspase-3 protein (Figure 4D). Thus, in
Huh-7 (S) and HCCLM3 (S) cells, CASC2 modulates the
activation of the caspase cascades through the miR-24/caspase-
8 and miR-221/caspase-3 axes.

CASC2/miR-24/Caspase-8 and CASC2/
miR-221/Caspase-3 Axes Modulate
Apoptosis in Huh-7 (S) and HCCLM3
(S) Cells
Given that CASC2 modulates the activation of the caspase
cascades through the miR-24/caspase-8 and miR-221/caspase-3
axes in Huh-7 (S) and HCCLM3 (S) cells, next, the role of these
two axes in Huh-7 (S) and HCCLM3 (S) cell apoptosis was
investigated. Firstly, Huh-7 (S) and HCCLM3 (S) cells were
divided into six groups: NC, sh-CASC2, miR-24 inhibitor, miR-
221 inhibitor, sh-CASC2+miR-24 inhibitor, and sh-CASC2+miR-
221 inhibitor; Huh-7 (S) and HCCLM3 (S) cells were transfected
accordingly and examined for cell apoptosis. In both cell lines,
CASC2 knockdown significantly inhibited, whereas miR-24
inhibition or miR-221 inhibition promoted cell apoptosis
(Figure 5A); when co-transfected with sh-CASC2 and miR-24
inhibitor or sh-CASC2 and miR-221 inhibitor, the effects of
CASC2 knockdown were significantly attenuated by miR-24
inhibition or miR-221 inhibition (Figure 5A). Then, the protein
levels of caspase-8 and cleaved-caspase-8 were examined in NC,
sh-CASC2, miR-24 inhibitor, and sh-CASC2+miR-24 inhibitor
groups, whereas caspase-3 and cleaved-caspase-3 were examined
in NC, sh-CASC2, miR-221 inhibitor, and sh-CASC2+miR-221
inhibitor groups. Figure 5B showed that CASC2 knockdown
significantly decreased, whereas miR-24 inhibition increased the
levels of caspase-8 and cleaved-caspase-8; the effects of CASC2
knockdown could be significantly attenuated by miR-24
inhibition. Similarly, Figure 5C showed that CASC2 knockdown
significantly decreased, whereas miR-221 inhibition increased the
levels of caspase-3 and cleaved-caspase-3; the effects of CASC2
knockdown could be significantly attenuated by miR-
221 inhibition.

LncRNA CASC2 Targets miR-18a to
Modulate miR-18a Downstream RIPK1
Given that RIPK1 was significantly downregulated in Huh-7 (R)
and HCCLM3 (R) cells, next, ENCORI and TargetScan 7.2 were
used to analyze miRNAs that might bind to CASC2 and RIPK1;
moreover, HMDD v3.2 data were used to analyze miRNAs that
might relate to liver neoplasms. Figure 6A showed that miRNAs
obtained from three tools intersected in miR-18a and miR-24-3p.
In our previous study (26), we have confirmed the bind
relationship between miR-24-3p and CASC2. Here we
investigated the predicted bindings between CASC2 and miR-
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18a or miR-18a and RIPK1 using dual-luciferase reporter assay.
Wild- and mutant-type CASC2 and RIPK1 luciferase reporter
plasmids were constructed. The predicted miR-18a binding sites
in mutant-type CASC2 and RIPK1 reporter plasmids were
mutated. These reporter plasmids were then co-transfected in
293T cells with miR-18a mimics or inhibitor. Figures 6B, C
showed that when co-transfected with wild-type CASC2 or
RIPK1 reporter plasmid, miR-18a overexpression inhibited,
whereas miR-18a inhibition enhanced the luciferase activity of
wt-CASC2 or wt-RIPK1; when co-transfected with mutant-type
CASC2 or RIPK1 reporter plasmid, miR-18a overexpression or
inhibition failed to alter the luciferase activity. Thus, CASC2
directly binds to miR-18a and miR-18a directly binds to RIPK1.
In Huh-7 (R) and HCCLM3 (R) cells, CASC2 overexpression
downregulated, whereas CASC2 inhibition upregulated miR-18a
expression (Figure 6D). In Huh-7 (R) and HCCLM3 (R) cells,
miR-18a overexpression or inhibition was achieved by
transfecting miR-18a mimics or inhibitor (Figure 6E); miR-
18a overexpression downregulated RIPK1 mRNA and decreased
RIPK1 protein, whereas miR-18a inhibition exerted opposite
effects on RIPK1 mRNA and protein (Figures 6F, G). Besides,
miR-18a overexpression notably restrained CASC2 expression,
whereas miR-18a inhibition promoted CASC2 expression in
Huh-7 (R) and HCCLM3 (R) cells (Figure 6H). Moreover, in
Huh-7 (R) and HCCLM3 (R) cells, CASC2 overexpression
upregulated RIPK1 mRNA and increased RIPK1 protein,
whereas CASC2 knockdown exerted opposite effects; the effect
Frontiers in Oncology | www.frontiersin.org 9
of CASC2 on RIPK1 mRNA and protein expression could be
offset by miR-18a (Figures 6I, J). Thus, CASC2 acts as a
competing endogenous RNA (ceRNA) for miR-18a and
counteracts miR-18a-mediated RIPK1 suppression.

Dynamic Effects of the CASC2/miR-18a/
RIPK1 Axis on TRAIL-Resistant HCC Cell
Proliferation
After confirming the CASC2/miR-18a/RIPK1 axis in TRAIL-
resistant Huh-7 (R) and HCCLM3 (R) cells, the dynamic effects
of the axis on Huh-7 (R) and HCCLM3 (R) cell phenotypes were
investigated. Huh-7 (R) and HCCLM3 (R) cells were divided into
six groups: NC, sh-CASC2, sh-RIPK1, miR-18a inhibitor, sh-
CASC2+ miR-18a inhibitor, and sh-RIPK1+ miR-18a inhibitor;
cells in different groups were transfected accordingly and
examined for cell viability and DNA synthesis. Figures 7A, B
showed that miR-18a inhibition inhibited, whereas CASC2
knockdown or RIPK1 knockdown promoted Huh-7 (R) and
HCCLM3 (R) cell viability and DNA synthesis; when co-
transfected, the effects of CASC2 knockdown were partially
attenuated by miR-18a inhibition, whereas miR-18a inhibition
effects were partially attenuated by RIPK1 knockdown.
Consistently, miR-18a inhibition increased, whereas CASC2
knockdown or RIPK1 knockdown decreased the protein levels
of IKKb, p-IkBa, and p-p65 in Huh-7 (R) and HCCLM3 (R)
cells; when co-transfected, the effects of CASC2 knockdown on
these proteins were partially attenuated by miR-18a inhibition,
A B

C D

FIGURE 4 | LncRNA CASC2 regulates caspase-8 and caspase-3 by targeting miR-24/221. (A) Huh-7 (S) and HCCLM3 (S) cells were transfected with CASC2 or
sh-CASC2 and examined for the expression of miR-24 and miR-221 expression using qRT-PCR. (B) miR-24/miR-221 overexpression or inhibition was achieved in
Huh-7 (S) and HCCLM3 (S) cells by transfecting miR-24/miR-221 mimics or inhibitor; transfection efficiency was confirmed using qRT-PCR. (C) Huh-7 (S) and
HCCLM3 (S) cells were transfected with miR-24 mimics or inhibitor and examined for caspase-8 protein using Immunoblotting. (D) Huh-7 (S) and HCCLM3 (S) cells
were transfected with miR-221 mimics or inhibitor and examined for caspase-3 protein using Immunoblotting. **p < 0.01, compared with vector-NC or mimics NC
group, ##p < 0.01, compared with sh-NC or inhibitor NC group.
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whereas miR-18a inhibition effects on these proteins were
partially attenuated by RIPK1 knockdown (Figure 7C).

The Transcription Factor NF-kB Inhibits
lncRNA CASC2 Transcription
The transcription factor binding sites of lncRNA CASC2 gene
promoter region in liver cancer tissues were analyzed by ChIP-
ATLAS (https://chip-atlas.org/). It was found that lncRNA
CASC2 gene had RELA (p65) binding site on both the
upstream and downstream 2kb of transcription start site (TSS)
in Huh-7 cells (Table S2). Then, JASPAR (http://jaspar.genereg.
net/) predicted three RELA binding sites with high score (score >
8) in lncRNA CASC2 promoter regions (Table S3). TCGA
hepatocellular carcinoma data (TCGA_LIHC) were analyzed
using Spearman’s correlation analysis, and it has been found
that lncRNA CASC2 was weakly negatively correlated with
RELA (Figure 8A). Then, NF-kB overexpression or
knockdown was achieved in Huh-7 (R) and HCCLM3 (R) cells
by transfecting NF-kB-overexpressing plasmid (NF-kB) or short
Frontiers in Oncology | www.frontiersin.org 10
hairpin RNA targeting NF-kB (sh-NF-kB); the transfection
efficiency was confirmed using qRT-PCR (Figure 8B). To
confirm the predicted binding, dual-luciferase reporter and
ChIP assays were performed. Wild- and mutant-type CASC2
promoter luciferase reporter plasmids were co-transfected with
NF-kB or sh-NF-kB. Figures 8C, D showed that when co-
transfected with pro-wt-CASC2, NF-kB overexpression
inhibited, whereas NF-kB inhibition promoted the luciferase
activity; when co-transfected with mut-CASC2, NF-kB
overexpression or inhibition caused no changes in the
luciferase activity. Moreover, ChIP assay showed that
compared with immunoprecipitate by anti-IgG, the levels of
CASC2 promoter were significantly higher in immunoprecipitate
by anti-NF-kB (Figure 8E), indicating the direct binding of NF-
kB to CASC2 promoter region. In Huh-7 (R) and HCCLM3 (R)
cells, NF-kB overexpression downregulated, whereas NF-kB
inhibition upregulated CASC2 expression (Figure 8F). These
data indicate that NF-kB binds to CASC2 promoter region and
inhibits CASC2 transcription.
A

B

C

FIGURE 5 | CASC2/miR-24/caspase-8 and CASC2/miR-221/caspase-3 axes modulate apoptosis in Huh-7 (S) and HCCLM3 (S) cells. Huh-7 (S) and HCCLM3 (S)
cells were divided into six groups: NC, sh-CASC2, miR-24 inhibitor, miR-221 inhibitor, sh-CASC2+miR-24 inhibitor, and sh-CASC2+miR-221 inhibitor; Huh-7 (S) and
HCCLM3 (S) cells were transfected accordingly and examined for cell apoptosis using Flow cytometry (A); the protein levels of caspase-8 and cleaved-caspase-8 in
NC, sh-CASC2, miR-24 inhibitor, and sh-CASC2+miR-24 inhibitor groups using Immunoblotting (B); the protein levels of caspase-3 and cleaved-caspase-3 in NC,
sh-CASC2, miR-221 inhibitor, and sh-CASC2+miR-221 inhibitor groups using Immunoblotting (C). **p < 0.01 compared with NC group.
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FIGURE 6 | LncRNA CASC2 targets miR-18a to modulates miR-18a downstream RIPK1. (A) ENCORI and TargetScan 7.2 were used to analyze miRNAs that
might bind to CASC2 and RIPK1; HMDD v3.2 data were used to analyze miRNAs that might relate to liver neoplasms. miRNAs obtained from three tools intersected
in miR-18a and miR-24-3p. (B, C) Wild- and mutant-type CASC2 and RIPK1 luciferase reporter plasmids were constructed. The predicted miR-18a binding sites in
mutant-type CASC2 and RIPK1 reporter plasmids were mutated. These reporter plasmids were then co-transfected in 293T cells with miR-18a mimics or inhibitor,
and the luciferase activity was determined. (D) Huh-7 (R) and HCCLM3 (R) cells were transfected with CASC2 or sh-CASC2 and examined for miR-18a expression
using qRT-PCR. (E) miR-18a overexpression or inhibition was achieved in Huh-7 (R) and HCCLM3 (R) cells by transfecting miR-18a mimics or inhibitor; miR-18a
expression was confirmed using qRT-PCR. (F–H) Huh-7 (R) and HCCLM3 (R) cells were transfected with miR-18a mimics or inhibitor and examined for RIPK1
mRNA (F) and protein (G) levels or CASC2 mRNA (H) expression using RT-PCR and Immunoblotting. (I, J) Huh-7 (R) and HCCLM3 (R) cells were transfected with
CASC2 or sh-CASC2 and miR-18a mimics or inhibitor and examined for RIPK1 mRNA (I) and protein (J) levels using RT-PCR and Immunoblotting. **p < 0.01,
compared with vector-NC or mimics NC group, ##p < 0.01, compared with sh-NC or inhibitor NC group.
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Expression and Correlation of
Aforementioned Factors in
Tissue Samples
Finally, the expression of miR-24-3p, miR-221-3p, caspase-8, and
caspase-3 was determined in tissue samples; Figures 9A–D showed
that miR-24-3p and miR-221-3p were significantly upregulated,
whereas caspase-8 and caspase-3 were downregulated in HCC
tissues compared with non-cancerous tissues. In tissue samples,
Frontiers in Oncology | www.frontiersin.org 12
miR-24-3p was negatively correlated with CASC2 (Figure 9E) and
caspase-8 (Figure 9G), respectively; miR-221-3p was negatively
correlated with CASC2 (Figure 9F) and caspase-3 (Figure 9H),
respectively. Moreover, miR-18a expression was significantly
upregulated, whereas RIPK1 expression was downregulated in
HCC tissues compared with non-cancerous tissues (Figures 9I,
J). In tissue samples, miR-18a was negatively correlated with
CASC2 (Figure 9K) and RIPK1 (Figure 9L), respectively.
A

C

B

FIGURE 7 | Dynamic effects of the CASC2/miR-18a/RIPK1 axis on TRAIL-resistant HCC cell proliferation. Huh-7 (R) and HCCLM3 (R) cells were divided into six
groups: NC, sh-CASC2, sh-RIPK1, miR-18a inhibitor, sh-CASC2+ miR-18a inhibitor, and sh-RIPK1+ miR-18a inhibitor; cells in different groups were transfected
accordingly and examined for cell viability using CCK-8 assay (A); DNA synthesusing EdU assay (B); the protein levels of IKKb, p-IkBa, and p-p65 using
Immunoblotting (C). *p < 0.05 compared with NC group.
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DISCUSSION

Tumor-suppressive CASC2 (26) was downregulated in HCC
tissues and cell lines; HCC patients with lower CASC2
expression predicted a shorter overall survival rate. In vitro,
CASC2 overexpression dramatically repressed HCC cell
proliferation and inhibited cell apoptosis; in vivo, CASC2
overexpression inhibited subcutaneous xenotransplant tumor
growth. CASC2 affected the caspase cascades and NF-kB
signaling in TRAIL-sensitive [Huh-7 (S) and HCCLM3 (S)] or
TRAIL-resistant cell lines [Huh-7 (R) and HCCLM3 (R)] in
different ways. In Huh-7 (S) and HCCLM3 (S) cells, CASC2
affected cell apoptosis through the miR-24/caspase-8 and miR-
221/caspase-3 axes and the caspase cascades. miR-18a directly
targeted CASC2 and RIPK1. In Huh-7 (R) and HCCLM3 (R)
cells, CASC2 affected cell proliferation through the miR-18a/
RIPK1 axis and the NF-kB signaling (Figure 10). RELA bound to
CASC2 promoter region and inhibited CASC2 transcription.

The tumor suppressor effects of CASC2 on cancers were well-
known previously. CASC2 binds to miR-362-5p and the
downstream NF-kB signaling to inhibit the capacity of HCC
cells to proliferate, migrate, or invade (44). CASC2 inactivates
Wnt/beta-catenin signaling to directly downregulate miR-183,
thereby inhibiting the viability and the colony formation,
Frontiers in Oncology | www.frontiersin.org 13
migratory, and invasive capacities of HCC cells (45). Through
targeting miR-222, CASC2 attenuates HCC resistance to
cisplatin (42). Herein, the abnormal downregulation of CASC2
in HCC tissues and cell lines was confirmed again. In vitro,
CASC2 overexpression dramatically repressed HCC cell
proliferation and inhibited cell apoptosis; in vivo, CASC2
overexpression inhibited subcutaneous xenotransplant tumor
growth, confirming the tumor-suppressive role in HCC. More
importantly, we demonstrated the miR-24/caspase-8 and miR-
221/caspase-3 axes modulating HCC cell resistance to TRAIL
treatment (26). Given these previous findings, it is necessary to
investigate the underlying mechanisms of CASC2 affecting HCC
sensitivity and resistance to TRAIL treatment.

As aforementioned, TRAIL could act on both apoptotic and
non-apoptotic signaling. In TRAIL-sensitive cell lines, TRAIL
activates caspase-8 by binding to receptor DR4/DR5, triggering
the activation of caspase cascade signaling pathway and
promoting apoptosis. Moreover, caspase-8 promotes the
cleavage of RIPK1, inhibiting cell survival caused by NF-kB
activation (12, 46, 47). In TRAIL-resistant cell lines, TRAIL
recruits TRADD/TRAFs through the receptor DR4/DR5 to
activate the NF-kB pathway and promote cell proliferation
(48–50). Interestingly, in the present study, the increases in
RIPK1, caspase-8, and caspase-3 in TRAIL-sensitive Huh-7 (S)
A B C

D E F

FIGURE 8 | The transcription factor NF-kB inhibits lncRNA CASC2 transcription. (A) TCGA hepatocellular carcinoma data (TCGA_LIHC) were analyzed using
Spearman’s correlation analysis for the correlation between lncRNA CASC2 and RELA. (B) NF-kB overexpression or knockdown was achieved in Huh-7 (R) and
HCCLM3 (R) cells by transfecting NF-kB-overexpressing plasmid (NF-kB) or short hairpin RNA targeting NF-kB (sh-NF-kB); the transfection efficiency was
confirmed using qRT-PCR. (C, D) Wild- and mutant-type CASC2 promoter luciferase reporter plasmids were co-transfected with NF-kB or sh-NF-kB, and the
luciferase activity was determined. (E) ChIP assay was performed using anti-IgG or anti-NF-kB, and the levels of CASC2 promoter in immunoprecipitate by anti-
IgG or anti-NF-kB were determined using qRT-PCR. (F) Huh-7 (R) and HCCLM3 (R) cells were transfected with NF-kB or sh-NF-kB and examined for CASC2
expression using qRT-PCR. **p < 0.01, compared with vector or IgG group, ##p < 0.01, compared with shRNA-NC group.
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and HCCLM3 (S) cells and increases in IKKb, p-IkBa, and p-
p65 in TRAIL-resistant Huh-7 (R) and HCCLM3 (R) cells were
observed under TRAIL treatment, suggesting that TRAIL indeed
acts on TRAIL-sensitive and TRAIL-resistant cells through
different signaling pathways. As expected, in TRAIL-sensitive
Huh-7 (S) and HCCLM3 (S) cells, CASC2 modulated caspase-8
and caspase-3 levels, whereas in TRAIL-resistant Huh-7 (R) and
HCCLM3 (R) cells, CASC2 modulated IKKb, p-IkBa, and p-p65
levels, indicating that CASC2 also affects TRAIL-sensitive and
TRAIL-resistant HCC cells in different ways.

Increasing evidence support the hypothesis that lncRNA
serves as ceRNA for miRNAs, counteracting miRNA-mediated
repression on downstream mRNAs (51–53). More importantly,
it has been revealed that numerous miRNAs were involved in
HCC TRAIL resistance. For example, miR-26b targeted Mcl-1 in
HCC cells to modulate TRAIL-induced cell apoptosis (21). miR-
221 and miR-222 modulate the resistance to TRAIL and promote
tumorigenesis via downregulating PTEN and TIMP3 in both
aggressive non-small-cell lung cancer and hepatocarcinomatous
cells (22). Given that the caspase cascades are activated in
TRAIL-sensitive Huh-7 (S) and HCCLM3 (S) cells, and that
CASC2 modulates caspase-8 and caspase-3 levels in TRAIL-
Frontiers in Oncology | www.frontiersin.org 14
sensitive Huh-7 (S) and HCCLM3 (S) cells, CASC2 might act on
TRAIL-sensitive cells through the miR-24/caspase-8 and miR-
221/caspase-3 axes reported in our previous study (26). As
expected, in Huh-7 (S) and HCCLM3 (S) cells, CASC2
knockdown inhibited, whereas miR-24 inhibition or miR-221
inhibition promoted cell apoptosis and caspase-8/caspase-3
levels, the effects of CASC2 knockdown were significantly
attenuated by miR-24 inhibition or miR-221 inhibition. Thus,
CASC2 affects apoptotic signaling in TRAIL-sensitive cells
through the apoptotic miR-24/caspase-8 and miR-221/caspase-
3 axes and caspase cascades.

miRNAs interact with the 3’-UTR of target mRNAs to induce
mRNA degradation or translational inhibition. Given the key
role of RIPK1, a regulator of numerous programmed cell-death
pathways and inflammation and a cell death mediator in
hepatocarcinogenesis (54–58), online tools were used to
analyze miRNAs that might target CASC2 and RIPK1, and
miR-18a was selected. Altered miR-18a expression has been
found in various physiological and pathological processes,
including cell proliferation, apoptosis, epithelial-mesenchymal
transition (EMT), tumorigenesis, cancer invasion, and metastasis
(59). miR-18a has a dual functional role in different cancer types;
A B C D

E F G H

I J K L

FIGURE 9 | Expression and correlation of aforementioned factors in tissue samples. (A–D) The expression of miR-24-3p, miR-221-3p, caspase-8, and caspase-3
was determined in HCC tissues and non-cancerous tissues using qRT-PCR. (E–H) The correlations between CASC2, miR-24-3p, miR-221-3p, caspase-8, and
caspase-3 were analyzed using Pearson’s correlation analyses. (I, J) miR-18a and RIPK1 expression was determined in HCC tissues and non-cancerous tissues
using qRT-PCR. (K, L) The correlations between CASC2, miR-18a, and RIPK1 were analyzed using Pearson’s correlation analyses. **p < 0.01, ***p < 0.005,
compared with normal group.
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in cancers of lung, gastric, cervical, and prostate, miR-18a serves
as an oncogenic miRNA (59). In the present study, miR-18a
targeted RIPK1 3’-UTR and inhibited RIPK1 expression. Similar
to CASC2 knockdown, RIPK1 knockdown in TRAIL-resistant
Huh-7 (R) and HCCLM3 (R) cells also significantly promoted
HCC proliferation. As we have mentioned, in addition to the
canonical apoptotic signaling pathway, TRAIL could also
activate NF-kB, RIPK1, and TRAF2 signal pathways to be
involved in non-canonical signaling pathway (60). Consistent
with previous study, CASC2 or RIPK1 knockdown in TRAIL-
resistant Huh-7 (R) and HCCLM3 (R) cells significantly
inhibited NF-kB signaling activation; on the contrary, miR-18a
knockdown activated the NF-kB signaling. Thus, in TRAIL-
resistant Huh-7 (R) and HCCLM3 (R) cells, CASC2 modulates
HCC proliferation through the miR-18a/RIPK1 axis and the NF-
kB signaling. More importantly, according to the ChIP-Atlas
database and experimental investigation, RELA targeted the
promoter region of CASC2, inhibiting CASC2 transcription
and forming a regulatory loop with the NF-kB signaling,
modulating TRAIL-resistant Huh-7 (R) and HCCLM3 (R) cell
proliferation through the non-apoptotic signaling.
Frontiers in Oncology | www.frontiersin.org 15
In conclusion, CASC2 affects cell growth mainly via the miR-
24/caspase-8 and miR-221/caspase-3 axes in TRAIL-sensitive
HCC cells; while in TRAIL-resistant HCC cells, CASC2 affects
cell growth mainly via miR-18a/RIPK1 axis and the NF-kB
signaling. These occurrences forebode that regulating with
lncRNA CASC2 expression level could be deemed as a
newfangled strategy for the precaution and treatment of HCC
and related pathological processes.
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