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Abstract: In recent years, several studies have examined the multifaceted role of mitochondria in
Multiple Sclerosis (MS), suggesting that, besides inflammation and demyelination, mitochondrial
aberration is a crucial factor in mediating axonal degeneration, the latter being responsible for
persistent disabilities in MS patients. Therefore, mitochondria have been recognized as a possible
multiple sclerosis therapeutic target. Recently, mitochondrial transplantation has become a new
term for the transfer of live mitochondria into damaged cells for the treatment of various diseases,
including neurodegenerative diseases. In this hypothesis, we propose mitochondrial transplantation
as a new, potentially applicable approach to counteract axonal degeneration in multiple sclerosis.
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1. Introduction

Mitochondria are organelles responsible for cellular bioenergetics and play an im-
portant role in cellular functions such as calcium homeostasis, reactive-oxygen-species
production, cell survival, proliferation, apoptosis, and autophagy. Neurons have many
mitochondria, as these cells are highly dependent on oxidative energy metabolism, and mi-
tochondrial dysfunction is known to be involved in several neurodegenerative diseases [1,2].
A knowledge network search for “mitochondria multiple sclerosis” [3], showed that the
number of articles has increased significantly over the past two years (2019–2020), indicat-
ing that mitochondrial dysfunction has been recognized as a possible important target of
MS pathology. In MS patients, multiple studies have provided evidence of mitochondrial
dysfunction [4,5], which correlates with axonal degeneration and disease progression [6,7].
Ultrastructural analysis of demyelinated spinal cord lesions showed dramatically reduced
numbers of mitochondria, microtubules and axonal swelling. Several independent inves-
tigations have demonstrated that molecular changes converge on mitochondria within
neurons in MS. The most reproducible changes are related to mitochondrial respiratory
chain deficiency, abnormalities in mitochondrial transport and gene expression, oxidative
damage, and progressive accumulation of mutations [7] (Figure 1).

The more relevant mechanism contributing to the degeneration of demyelinated axons
is an imbalance between the increased energy demand for nerve conduction and the gen-
eration of ATP. In neurons, Na+/K+-ATPase, present in Ranvier’s nodes, creates impulse
transmission. In the demyelinated axon, the action of Na+/K+-ATPase is increased in order
to maintain impulse conduction with increased consumption of ATP. When ATP is not read-
ily available, excessive sodium concentration in the axon causes the Na+/Ca2+ exchanger to
operate in reverse, with consequent calcium overload, protease activation and consequent
degeneration of the demyelinated axon [8]. Neurons with healthy mitochondria respond to
demyelination by increasing the number of mitochondria in acutely demyelinated axons [9],
as evidenced in MS autopsy cases and experimental disease models. The increase in mito-
chondria numbers and activity represents an attempt to alleviate the energy imbalance in
the demyelinated axon (Figure 2). Recently, Licht-Mayer and collaborators [10] showed that
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upon demyelination, mitochondria move from the neuronal cell body to the demyelinated
axon, increasing axonal mitochondrial content, a process called the Axonal Response of
Mitochondria to Demyelination (ARMD). Interestingly, the enhancement of ARMD, by
targeting mitochondrial biogenesis and mitochondrial transport from the cell body to the
axon, was shown to protect demyelinated axons from degeneration [10]. Rosenkranz and
collaborators showed that boosting the activity of the PGC-1alpha gene, which encodes
for PGC-1a (a transcriptional coactivator that acts as a master switch for mitochondrial
function), by introducing extra copies of it into neurons, increases numbers of mitochondria
and mitochondrial activity (complex IV activity, and maximum respiratory capacity); this
makes animals more resistant to the effects of MS [11]. Thus, changes in mitochondrial
content and activity in neurons may offer a novel tool to improve neuronal function in
patients with MS. Mitochondrial transplantation (MT) is an alternative promising paradigm
that may target mitochondrial dysfunction in injury and disease states.
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2. Mitochondrial Transplantation

Recently, the possibility to transfer healthy mitochondria from one cell to another
has represented an attractive therapeutic strategy. With the name of mitochondrial trans-
plantation, it is now indicated that the transfer of live mitochondria into injured cells can
treat different diseases, including neurodegenerative diseases [12–17]. McCully and col-
leagues employed mitochondrial transplantation as a therapeutic approach to treat cardiac
ischemia in animal models and pediatric patients. Five child patients, aged between 2 days
and 2 years old, with cardiac ischemia participated in this study. The mitochondria were
extracted during 20–30 min from pieces of samples obtained from the rectus abdominis
muscle. The mitochondria were injected using a tuberculin syringe, directly into ischemic
areas. In four of the patients, cardiac functions improved, and they were separated from
extracorporeal membrane oxygenation support [17]. Although mitochondrial transfer has
mainly been utilized for cardiac injuries, this approach has been also applied for treatment
of neurodegenerative disease and other injuries of the CNS in animal models [18,19]. Sev-
eral routes have been used in vivo for MT into the brain, including in situ and systemic
approaches. Labelled mitochondria were injected by syringe and stereotactic surgery into
the spinal cord of injured rats; the transplanted mitochondria were found within microglia
24 h after the injection [20]. Transplanted mitochondria labelled with an allogenic pep-
tide into the 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD), were
injected specifically into the medial forebrain bundle. MT induced protective effects on
neurons in the nigrostriatal circuit. After a three-month follow up, the motor function of PD
rats improved, the mitochondrial function increased, and the cytotoxic effects of 6-OHDA
decreased [21]. In another study, mitochondria isolated from hamster cells were injected
into the ischemic brain of rats and were able to restore motor function [22]. Apoptotic cells
and infarct size significantly decreased in the brain tissue of rats that received mitochondria,
revealing that MT has protective effects on neurons after ischemia [22]. Mitochondria
delivery to the carotid system through the sonography-guided catheter and intravenous
injection are alternative ways to deliver mitochondria to the brain [12]. Two hours after
intravenous injection, mitochondria are found in multiple organs, including the brain,
resulting in increased ATP content and improved locomotor activity in MPTP-induced
Parkinson’s disease mice. Mitochondria can be delivered intravenously due to their small
size (~1 µm in diameter), are not incorporated into red blood cells, and do not interfere with
the transport of oxygen [23]. Recently, it has been demonstrated that mitochondrial release
from the nose to the brain is a feasible approach and is safer than brain injection [24].

Cellular mitochondria internalization was clearly confirmed after 1 h of incubation,
and significantly increased after 4 and 24 h. Exogenous mitochondria interact directly
with cells, and mechanisms of macropinocytosis (actin-dependent endocytosis) have been
involved in mitochondrial cell uptake [25]. Key parameters for the success of MT depend on
the source and quality of the isolated mitochondria, mitochondrial stability, an appropriate
delivery protocol, and cellular uptake. In clinical practice, the source of mitochondria is
the first important step. Skeletal muscles have been suggested as an appropriate source of
mitochondria. Specifically, the pectoralis major (in men), rectus abdominis, gastrocnemius,
and even neck-strap muscles are suitable sources of mitochondria (Figure 3A). Another
source of mitochondria could be spermatozoa [12] (Figure 3A). During isolation, it is
essential to meet the criteria of good manufacturing practices (GMP). The size, number,
purity, shape, viability, and function of the organelles must be subjected to quality control.
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Mitochondria extracted from the patient could be administered in the CNS by different
routes (Figure 3B). Intracerebral injection is appropriate for therapeutic interventions, but it
is an invasive approach. Intrathecal injection, the delivery of materials to the intrathecal
space surrounding the spinal cord, is an alternative fluid-phase delivery route to the CNS.
Intrathecal administration causes minimal pain to patients and affords a larger volume of
therapeutic materials than intracranial injection. Peripheral administration, systemic or
intra-carotid, is a less invasive and safer route, offering the advantages of larger injection
volumes and multiple dosages (Figure 3B). The principal obstacles for the intravenous
injection are represented by the presence of the blood–brain barrier (BBB), which prevents
most drugs from entering the brain, and the diffusion of the drug in total body. Finally,
intranasal administration is an alternative route for brain delivery, which bypasses the BBB;
however, factors such as limited dosing volume, small absorption surface, the presence
of degrading enzymes, and other variables attributed to patient congestion and mucus
limit the efficiently. Therefore, to improve the mitochondrial transfer to the brain by
a systemic route, biotechnology systems are needed to overcome the BBB or improve
intranasal absorption. For example, natural or artificial nanovesicles have been explored as
brain-drug delivery systems [26,27].

3. Mitochondrial Transfer Technology

MT has been reported as a “magical” cure [26], since healthy mitochondria, harvested
by healthy tissue, move to the injured cells after injection, and rescue energy production
(ATP) and mitochondrial function. However, MT still presents some weaknesses both
in vivo and in vitro. Mitochondria must survive the transition from an intracellular to an
inhospitable extracellular environment, and cross cell and body barriers [12,28]. Only a
small percentage (10%) of injected mitochondria reaches the cells [17] and the transfer is
often not specific to target cells. Therefore, biotechnological approaches are needed to
overcome the problems and improve mitochondrial transfer. To improve mitochondrial
transfer, conjugation with the carrier peptide Pep-1 (a cell-penetrating peptide that has been
employed to facilitate the cellular uptake of nanoparticles, DNA, and proteins) was recently
shown to be a valuable method [29]. In addition, a simple and quick protocol was recently
introduced for delivering mitochondria to cultured cells, only requiring mitochondria
centrifugation at 1500× g for 5 min, without additional incubation steps [30].
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New strategies have been also recently explored stabilizing mitochondria. The func-
tionalization of the mitochondria surface with hydrophilic biocompatible polymers posi-
tively affected transplantation efficiency in both in vitro than in vivo experimentations by
stabilizing the colloidal dispersion and reducing phagocytosis by mononuclear cells. In
particular, the polysaccharide dextran has been proposed to enhance stabilization without
affecting mitochondria activity [31]. In this context, recently, structures obtained from
synaptic terminations by physical processes (synaptosomes) have been proposed as vesi-
cles for mitochondrial transfer into neuronal cells [32]. Synaptosomes transport viable
mitochondria mainly in the cytoplasm of neuronal cells and restore mitochondrial function
in cells containing rotenone-damaged mitochondria [32].

4. The Hypothesis of Mitochondrial Transplantation and Multiple Sclerosis

Today, interest in the mitochondrion as a potential target in multiple sclerosis is
increasing significantly. Specifically, it is highlighted that an increase in the number and/or
activity of mitochondria in the demyelinated neuron can play a neuroprotective role against
axonal degeneration. In particular, this hypothesis wants to propose a new, potentially
applicable way to counteract axonal degeneration in multiple sclerosis constituted by
mitochondrial transplantation. Furthermore, given the critical issues raised, to date, on
mitochondrial transplantation, we propose the use and implementation of innovative
delivery systems that can allow the transport of mitochondria—protecting them from the
inhospitable extracellular environment—into neuronal target cells (Figure 4). In support
of this hypothesis Peruzzotti-Jamett and collaborators recently showed first evidence
that neural stem cells deliver functional mitochondria to target cells via extracellular
vesicles, restoring mitochondrial dysfunction in mice with experimental autoimmune
encephalomyelitis, a model of MS [33].
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5. Conclusions

To date, there is certainly important evidence on the involvement of mitochondria
in axonal degeneration in MS, and the evidence that an increase in the number of viable
mitochondria, or their activity, could have beneficial effects is beginning to gain strength.
An approach that would involve the use of mitochondrial transplantation, to slow down or
stop axonal degeneration, is beginning to appear in the scientific landscape, and in vitro
and in vivo studies are needed to reinforce this hypothesis.
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