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The effect of anabolic androgenic steroids on the cardiovascular system is poorly understood. Increased production of free radicals
is coupled to the pathophysiology of many alterations within the circulatory system. The only function of the enzyme family
NADPH oxidases (NOXs) is the generation of reactive oxygen species (ROS). Therefore, this study investigated the beneficial
role of grape seed proanthocyanidin extract (GSPE) in ameliorating cardiac toxicity induced by the anabolic steroid Boldenone
in male rats through NOX inhibition and reduction in the expression of NOX2 and NOX4. This study was conducted on forty
male rats which are divided into four groups (normal control, positive control or GSPE, Boldenone, and posttreatment
Boldenone with GSPE). A significant increase in relative body weight, relative heart weight, and hemodynamic parameters, as
well as serum concentrations of lactate dehydrogenase, creatine kinase, creatine kinase-muscle brain, myoglobin, cholesterol,
low-density lipoprotein cholesterol, risk factor 1/2, K+, and Cl−, in treated rats with Boldenone when compared with control.
We also noted a significant increase in the levels of cardiac malondialdehyde, H2O2 generation in heart tissues, mRNA
expression of NOX2 and NOX4, and immunoreactivity to proliferating cell nuclear antigen (PCNA). Posttreated rats with
Boldenone and GSPE ameliorated cardiac toxicity via inhibition of NOX and a reduction in alteration of the expression of
NOX2, NOX4, and PCNA induced by Boldenone. These novel insights into the antioxidative activity of GSPE should serve as a
basis for the development of improved chemopreventive or therapeutic strategies for cardiac toxicity.

1. Introduction

The performance-enhancing agents are commonly abused by
skilled athletes. Among these agents, many have no proven
merits and are linked to serious adverse effects [1]. Andro-
genic anabolic steroids (AASs), such as Boldenone, are
abused to enhance muscle mass, strength, and growth as well
as to enhance athletic performance. Many countries have for-
bidden the use of AAS due to their adverse effects [2].

The indiscriminate use of Boldenone for enhanced phys-
ical performance and muscular appearance in young people

is associated with several harmful side effects. Therefore,
Boldenone has been classified as “class 2A” (growth pro-
moter and steroid; probable human carcinogen with a high
carcinogenic index) by the International Agency for Research
on Cancer [3]. The anabolic steroids adverse effects in men
include enlarged breast, inhibition of endogenous testoster-
one, decreased production of sperms, and atrophy of testes
[4, 5]. However, a relatively small number of studies have
investigated the effects of anabolic steroids on the circulatory
system. Cardiovascular diseases are the leading cause of dis-
ability and death worldwide and impose a huge burden on
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affected individuals and society. In young athletes abusing
anabolic steroids, acute myocardial infarction may occur
without any past history of heart disease.

Heart pathophysiology is characterized by the alteration
in the redox signaling xanthine oxidase, cytochrome P-450,
or the mitochondrial electron transport chain as a byproduct,
or directly by the NADPH oxidase (NOX) family of enzymes
plays a role in the generation of reactive oxygen species
(ROS) [6].

NOX1–NOX5 and DUOX1/2 (NOX family) are
expressed differentially between tissues. These enzymes
participate inmany cellular procedures including the prolifer-
ation of cells, the release of calcium, and biosynthesis of
hormone; however, their overexpression is linked to the path-
ophysiology of several diseases [7]. Further, the role of NOXs
as generators of ROS is noteworthy as these are the only
enzymes in which ROS generation is the primary and only
known function. An increasing amount of data has demon-
strated clearly that the expression and activity of NOXs corre-
late with the development and progression of cardiovascular
diseases [8]. Antioxidant systems react with intracellular
ROS to produce less reactive compounds. Glutathione perox-
idase (GPx) and catalase are indulged in hydrogen peroxide
detoxification to produce water or in a glutathione- (GSH-)
dependent reaction. Superoxide dismutase (SOD) catalyzes
the transformation of superoxide to hydrogen peroxide [9].

Recently, several polyphenolic antioxidants derived
from grape seeds have been implicated in protection of
cell [10]. Extract of grape seed proanthocyanidin (GSPE)
is a rich source of proanthocyanidins. The latter are natural
antioxidants composed of various polyphenolic compounds
with protective effects against ROS-mediated myocardial
ischemia-reperfusion injury and apoptosis [11]. Therefore,
the biological activities of proanthocyanidins (antioxidant,
anti-inflammatory, and anticarcinogenic) and their protec-
tive effects (reduction of mitochondrial damage and apopto-
sis inhibition) [12] have garnered considerable interest.

The important goals of this work were (i) to demonstrate
the involvement of NOX2 and NOX4 in oxidative stress in
response to Boldenone administration; (ii) to elucidate the
role of NOX2 and NOX4 in mediating pathologic hypertro-
phy in response to Boldenone administration; and (iii) to
establish that GSPE exerts ameliorative effects on the endog-
enous NOX2 and NOX4 expression in the heart, with roles in
the regulation of the redox system.

2. Materials and Methods

2.1. Experimental Animals. This study followed the ethical
criteria approved by the Ethical Committee of the National
Research Center of Egypt. The Animal Ethics Committee of
the Faculty of Science, Tanta University (Tanta, Egypt),
provided an approval to the protocol of this study.

This study was conducted on 40 male albino Sprague–
Dawley rats (100–110 g; 7-8 weeks) obtained from Tanta
Alhelow Center, Tanta, Egypt. Animals were housed in an
environmentally controlled room with lighting (12 h light-
dark cycle) and temperature (22–25°C) and had free access
to food and water. Close monitoring of the animals was done

during the treatment period (8 weeks). The water intake,
food intake, and body weights were recorded every week
throughout the experimental period.

Rats were divided into four equal groups (10 each) after
2 weeks of acclimatization: normal control (administered
vehicle (sesame oil) injection); positive control or GSPE
(GSPE was administered via a stomach tube at 50mg/kg
body weight, twice a week) [11]; Boldenone (treated with
Boldenone undecylenate (5mg/kg/week, i.m.)) [13]; and
Boldenone then posttreatment with GSPE (treated at the
doses and routes mentioned above). Boldenone and vehicle
were injected in the hind limbs for 8 weeks.

Animals were decapitated at the end of the study period,
after 12 h of fasting. Trunk blood was collected immediately
and placed in nonheparinized glass tubes. The blood sam-
ples were centrifuged at 3000×g for 15 min. Serum was col-
lected and stored at −20°C in a clean, stoppered plastic vial
until analyses of serum parameters. The heart was removed,
cleaned carefully in cold physiologic (0.9%) saline, and
weighed. Calculation of the relative heart weight (RHW)
was done using the following equation:

RHW= heart weight × 100
body weight 1

The heart was cut immediately from the base to the apex to
make transverse slices of the ventricles. The halves of hearts
from each group were fixed in 10% neutral buffer formalin
for histology and immunohistochemical (IHC) examination,
and the remainders were stored at−80°C for analysis of oxida-
tive stress parameters.

2.2. Chemicals and Reagents. Boldenone undecylenate
(EQUI-GAN®) vials were obtained from Laboratorios Tornel
(Méx, Mexico). GSPE (USP-1298208) was purchased from
Sigma–Aldrich (Saint Louis, MO, USA).

2.3. Hemodynamic Studies. A miniature pressure trans-
ducer (Mikro-Tip®; Millar, Houston, TX, USA) was intro-
duced into the right carotid artery until reaching the left
ventricle after anesthetizing animals. Sodium pentobarbital
in a dose of 50mg/kg i.p was used. Aortic diastolic pres-
sure (ADP), aortic systolic pressure (ASP), left ventricular
end-diastolic pressure (LVEDP), and left ventricular peak
systolic pressure (LVPSP) were recorded on a personal
computer using the Axotape data-acquisition program. After
hemodynamic recordings, rats were killed and the hearts
removed for additional studies [14].

2.4. Measurement of Cardiac Biomarkers. Serum lactate dehy-
drogenase (LDH) activity was measured by a kinetic method
using kits (Vitro Scient, Cairo, Egypt) according to a method
described by Whitaker [15]. The level of creatine kinase
(CK) in serum was determined by an akinetic method using
kits (Vitro Scient) according to themethod described by Zilva
and Pannall [16]. Creatine kinase-muscle brain (CK-MB)
activity in serumwas determined using an assay kit (BioAssay
Systems, Hayward, CA, USA) based on the method of Bishop
et al. [17]. Themyoglobin concentration in serumwas assayed
using a kit (Reactivos Spinreact, Girona, Spain) according to
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the method of Müller et al. [18]. The cardiac troponin T level
in whole blood was measured using a Cobas® h 232 immuno-
assay analyzer (RocheDiagnostics,Mannheim,Germany) at a
detection range of 0.1–3 μg/L.

2.5. Measurement of the Biomarkers of Cardiac Oxidative
Stress. Heart tissues were weighed, and Potter–Elvehjem-
type homogenizer was used for homogenization by adding
potassium phosphate buffer (pH7.4) and ice-cold 1.15%
KCl-0.01mol/L sodium to the heart tissues. The supernatant
was obtained by centrifugation of homogenate at 10,000×g
for 20min at 4°C, and the resultant supernatant was used
for analysis.

Malondialdehyde (MDA) was detected by analyses of
thiobarbituric acid-reactive substances and measured as
reported by Buege and Aust [19]. The content of reduced
GSH in heart homogenates was measured using the method
of Ellman [20]. SOD activity in heart homogenates was
assayed according to the method of Misra et al. [21]. Catalase
catalyzes the conversion of H2O2 to water. Catalase activity in
tissue supernatants was detected using a spectrophotometer,
and the absorbance was recorded at 240nm by calculating
the rate of degradation of H2O2. Catalase activity was mea-
sured as unit/mg protein [22].

2.6. Measurement of H2O2 Generation. H2O2 generation in
the heart was measured by determining the production of a
fluorescent-oxidized product as described previously by
Fortunato et al. [23]. Fluorescence was determined at 30°C
using a microplate fluorescence reader at an emission wave-
length of 595 nm and an excitation wavelength of 530nm.
The variation between the activity in the presence and
absence of NADPH determines the activity of NOX. The
results were expressed as nanomoles of H2O2 per hour per
milligram of protein (nmol·h−1·mg−1). Bradford method
was used for determination of the protein concentration [24].

2.7. Measurement of Total Reduced Thiols. Reduced thiols
of heart tissues were analyzed using a spectrophotometer
(U-3300; Hitachi, Tokyo, Japan) with 5,5-dithionitrobenzoic
acid (DTNB) as described previously by Ellman [20]. The
results were obtained at 412nm and expressed as nmol of
reduced DTNB/mg protein [20].

2.8. Real-Time Polymerase Chain Reaction (PCR). RNeasy®
Fibrous Tissue Mini Kit (Qiagen, Valencia, CA, USA) was
used to extract the total RNA from heart tissues. Real-time
PCR was used after DNAse treatment and reverse transcrip-
tion, as described previously [25]. The internal control
used was glyceraldehyde 3-phosphate dehydrogenase. The
specific oligonucleotides were obtained from Applied Bio-
systems (Foster City, CA, USA). The pairs of primers used
for RT-PCR were as follows: NOX2: forward: AACTGG
CTGTACTGCTTG, reverse: CGAGTCACAGCCACATAC
AG; NOX4: forward: TCCATCAAGCCAAGATTCTGAG,
reverse: GGTTTCCAGTCATCCAGTAGAG; GAPDH: for-
ward: TGATTCTACCCACGGCAAGT, reverse: AGCATC
ACCCCATTTGATGT.

2.9. Measurement of Lipid Profiles. The serum concentration
of cholesterol was estimated using a reagent kit (Reactivos
Spinreact) according to the method described by Deeg and
Ziegenohrm [26]. The serum level of triglycerides was
determined using a reagent kit (Reactivos Spinreact) accord-
ing to the method described by Fossati and Prencipe [27].
The serum level of high-density lipoprotein cholesterol
(HDL-C) was analyzed according to the method reported
by Norbert [28]. Serum very-low-density lipoprotein choles-
terol (vLDL-C) and low-density lipoprotein cholesterol
(LDL-C) levels were calculated following the equation of
Friedewald et al. [29]:

LDL‐C = total cholesterol – triglycerides
5 –HDL‐C 2

2.10. Measurement of Electrolyte Levels. Serum levels of K+,
Na+, Ca2+, and Cl− were determined using kits (Sensa Core,
Mumbai, India).

2.11. Histopathology. Hearts from rats of all studied groups
were extracted, washed in physiologic saline, and fixed in
10% formalin. Tissues were dehydrated by using different
concentrations of alcohol then replacing the alcohol by
xylene. Tissueswere embedded inmolten paraffinwax. Rotary
microtomewas used to obtain sections (thickness, 7 μM). Sec-
tions were mounted on clean slides. Ehrlich’s hematoxylin
and eosin were used in staining of the sections [30].

2.12. Measurement of Proliferating Cell Nuclear Antigen
Immunoreactivity (PCNA-ir). PCNA-ir was studied accord-
ing to the method of Tousson et al. [31]. The distribution
of PCNA-stained nuclei was analyzed in deparaffinized sec-
tions (thickness, 5 μm) using an avidin–biotin–peroxidase
IHC method (Elite–ABC; Vector Laboratories, Burlingame,
CA, USA) with PCNAmonoclonal antibody (1 : 100 dilution;
DAKO, Tokyo, Japan).

2.13. Statistical Analyses. Data are represented as the
means± SD. Statistical analyses were undertaken using
one-way ANOVA to assess significant differences between
treatment groups. Differences were considered statistically
significant at p < 0 01. Statistical analyses were performed
using SPSS v21 (IBM, Armonk, NY, USA).

3. Results

3.1. Effect of Boldenone and GSPE onWeight and Diet Intake.
Table 1 shows that food intake, water intake, relative body
weight (RBW), and relative heart weight (RHW) in rats
injected with Boldenone showed a significant elevation com-
pared with those in the control group. Posttreated rats with
Boldenone and GSPE affected the changes in food intake,
water intake, RBW, and RHW (Table 1).

3.2. Effect of Boldenone and GSPE on Hemodynamics. A
significant increase in LVEDP and ADP in rats treated with
Boldenone relative to the control group was noted
(Figure 1). Further, a significant decrease in LVSP and ASP
in rats treated with Boldenone relative to the control group
was observed. Posttreated rats with Boldenone and GSPE
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modulated the observed changes in all hemodynamic data
(Figure 1).

3.3. Effect of Boldenone and GSPE on Biomarkers of Cardiac
Injury. A significant increase in serum levels of LDH, CK,
CK-MB, and myoglobin in rats treated with Boldenone com-
pared with those in the control group was noted (Table 2).
Insignificant change in the serum level of troponin-T in rats
treated with Boldenone alone or in combination with GSPE

when compared with the control group was observed
(Table 2). A significant decrease in serum levels of LDH,
CK, CK-MB, and myoglobin in posttreated rats with Bolde-
none and GSPE was recorded as compared to Boldenone
(Table 2).

3.4. Effect of Boldenone and GSPE on Oxidative Stress. A sig-
nificant increase in MDA levels in the hearts of rats treated
with Boldenone compared with those in the control group
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Figure 1: Ventricular and blood pressure in rats treated with GSPE, Boldenone, and Boldenone then GSPE. Value represents mean± SD of 10
rats. ∗Significant difference from the control group at p < 0 05. #Significant difference from the Boldenone group at p < 0 05.

Table 1: Changes in water intake, food intake, relative body weights (RBW), and relative heart weights (RHW) in different groups.

Items Control GSPE Boldenone Boldenone + GSPE

Water intake (mL/rat/day) 31.6± 2.44# 30.9± 1.98# 38.9± 2.81∗ 33.0± 1.60∗#

Food intake (g/rat/day) 13.1± 1.05# 13.2± 0.76# 18.3± 0.95∗ 13.5± 1.01#

RBW (g/100 g) 26.8± 1.35# 24.5± 1.22# 42.5± 3.09∗ 31.5± 2.15∗#

RHW (g/100 g) 0.51± 0.0#4 0.50± 0.03# 0.64± 0.02∗# 0.57± 0.04∗#

Value represents mean ± SD of 10 rats. ∗Significant difference from the control group at p < 0 05. #Significant difference from the Boldenone group at p < 0 05.
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was observed (Figure 2). A significant decrease in the activity
of catalase and SOD as well as levels of reduced thiol content
and reduced GSH in the cardiac tissues in rats treated with
Boldenone relative to the control group was documented.
Posttreated rats with Boldenone and GSPE modulated the
changes in all markers of oxidative stress (Figure 2).

3.5. Effect of Boldenone and GSPE on NOX Activity and
mRNA Levels. H2O2 production was significantly increased
in the myocardium of rats treated with Boldenone compared
with that in the control groups. A significant decrease in
H2O2 generation in the heart tissues of posttreated rats with
Boldenone and GSPE was recorded. To ascertain the source
of high generation of H2O2, the present study studied the
mRNA expression of NOX enzymes in the heart. mRNA
levels of NOX2 and NOX4 were higher in rat hearts treated
with Boldenone compared with those in the control groups.
Heart tissues in posttreated rats with Boldenone and GSPE
modulated expression of NOX2 mRNA and NOX4 mRNA
(Figure 3).

3.6. Effect of Boldenone and GSPE on Alterations in Lipid
Profiles. A nonsignificant change in serum total lipids, tri-
glycerides, and vLDL-C levels was observed in the Boldenone
group (Table 3). A significant increase in the serum levels of
cholesterol, LDL-C, risk factor I, and risk factor II in rats
treated with Boldenone relative to the control group was
observed (Table 3). A significant decrease in HDL-C levels
in rats treated with Boldenone relative to the control group
was recorded. Posttreatment of rats with GSPE modulated
these changes in lipid profiles (Table 3).

3.7. Effect of Boldenone and GSPE on Alterations in
Electrolyte Levels. Serum levels of K+ and Cl− in rats treated
with Boldenone were significantly increased compared with
those in the control group (Table 4). A significant decrease
in serum levels of Na+ in rats treated with Boldenone com-
pared with those in the control group was noted (Table 4).
A nonsignificant change in serum levels of Ca2+in various
groups was documented. Posttreatment of rats with GSPE
revealed a significant reduction in serum levels of K+ and
Cl− and a significant elevation in serum levels of Na+

(Table 4).

3.8. Effect of Boldenone and GSPE on Cardiac Tissues. Exam-
ination of heart sections under light microscopy in the
control and GSPE groups revealed normal myofibrillar

structure with striations (Figures 4(a) and 4(b)). Heart
sections in rats treated with Boldenone showed severe
myocardial lesions due to marked myocardial hypertrophy,
necrosis, marked interstitial fibrosis, misshapen nuclei,
moderate focal hemorrhage, and moderate infiltration of
leukocytes (Figure 4(c)). Heart sections in posttreated rats
with Boldenone and GSPE exhibited mild myocardial
improvement as moderate myocardial hypertrophy, inter-
stitial fibrosis, and leukocyte infiltration (Figure 4(d)).

3.9. Changes in PCNA expression. The measurement of
PCNA-ir in the heart tissues of various groups is shown in
Figures 5(a)–5(d). A faint positive reaction for PCNA-ir
was observed in the control and GSPE groups (Figures 5(a)
and 5(b)). A strong positive reaction for PCNA-ir was
detected in myocardium sections of rats treated with Bolde-
none (Figure 5(c)). PCNA reactivity was decreased signifi-
cantly (moderate positive reaction for PCNA-ir) following
treatment of rats with Boldenone and GSPE (Figure 5(d)).

4. Discussion

The anabolic steroid Boldenone is used to enhance the growth
of food-producing animals. Boldenone functions by stimulat-
ing receptor molecules in muscle cells resulting in the activa-
tion of specific genes, leading to protein production [32].

The present study revealed that intramuscular injection of
Boldenone in male rats induces a significant elevation in food
intake, fluid intake, RBW, and RHW. Tousson et al. [13]
demonstrated that the RBW of male rabbits increased signif-
icantly following Boldenone injection. Shabir et al. [33]
reported a significant increase in food intake, water intake,
and weight gain in male rats after Boldenone injection.

Among the various documented toxic and hormonal
effects of AASs, the cardiovascular effects of these drugs
require closer examination. AASs have two distinct effects:
anabolic (promotion of cell growth) and androgenic
(enhancement of masculine characteristics). The anabolic
effects of AASs lead to increased cellular protein synthesis,
resulting in a buildup of muscles. AASs exert their effects
on cardiomyocytes through androgen receptors, leading to
hypertrophy and dilation, as well as altered relaxation and
contraction of the left ventricle. Echocardiographic studies
revealed that supraphysiologic doses of AASs induce mor-
phologic and functional alterations in the heart, including a
tendency toward myocardial hypertrophy, increase in heart

Table 2: Changes in serum lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CK-MB), myoglobin, and troponin-T
levels in different groups.

Control GSPE Boldenone Boldenone + GSPE

LDH (U/L) 112.7± 8.2# 106.5± 9.1# 139.1± 7.8∗ 123.6± 10.5∗#

CK (U/L) 769.5± 11.6# 748.8± 15.5# 955.0± 16.5∗ 817.3± 20.8∗#

CK-MB (ng/mL) 0.202± 0.05# 0.211± 0.11# 0.370± 0.05∗ 0.315± 0.09∗#

Myoglobin (ng/mL) 13.8± 1.39# 13.2± 0.76# 16.6± 0.42∗ 15.1± 1.05∗#

Troponin T (pg/mL) 0.016± 0.06 0.016± 0.03 0.015± 0.03 0.016± 0.05
Value represents mean ± SEM of 10 rats. ∗Significant difference from the control group at p < 0 05. #Significant difference from the Boldenone group at p < 0 05.
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Figure 2: Malondialdehyde content, reduced glutathione content, reduced thiol content, catalase activity, and superoxide dismutase activity
in the heart of rats treated with GSPE, Boldenone, and Boldenone then GSPE. Value represents mean± SD of 10 rats. ∗Significant difference
from the control group at p < 0 05. #Significant difference from the Boldenone group at p < 0 05.
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chamber diameter, and alterations in ventricular relaxation
and diastolic function [34].

This study revealed that intramuscular injection of
Boldenone to male rats elicited a significant increase in the
serum levels of LDH, CK, CK-MB, and myoglobin, suggest-
ing muscle damage. Serum levels of CK-MB are used in the
discovery of myocardial disorders [35]. Handelsman [36]
reported that administration of testosterone and nandrolone
to adolescent rabbits induced increases in serum levels of
CK-MB. Further, Kerr and Congeni [37] reported that
nandrolone injections in rabbits induced increases in
serum levels of CK-MB. Lok et al. [38] noted an increase
in CK-MB levels in male rats after testosterone injection;
however, Tasgin et al. [39] reported no increase in CK-MB
levels in female rats. Razmaraii et al. [40] reported that
GSPE elicits myocardial protection and vasodilatation
in vivo and in vitro; this finding is in accordance with our
results, which showed that rats posttreated with GSPE

showed a significant decrease in the serum levels of LDH,
CK, CK-MB, and myoglobin.

ROS are generated by tissues all over the body. Continu-
ously, the antioxidant systems scavenge ROS in the cells and
convert them to less harmful compounds [10]. ROS attack
the biomolecules (DNA, proteins, and lipids) if the capacity
of antioxidant functions was reduced. This reaction changes
the structure of biomolecules and subsequently impairs the
function of cells and genesis of many diseases [41].

We investigated whether Boldenone, an anabolic steroid
commonly used by body builders and athletes, interferes with
the balance of the redox system in the myocytes. Intramuscu-
lar injection of Boldenone in male rats induced changes in
the levels of oxidative stress biomarkers and antioxidant
defense systems in cardiac muscles. Our results showed a sig-
nificant elevation in MDA level, as well as a significant
decrease in the activity of catalase, SOD, reduced thiol con-
tent, and GSH in cardiac muscles after Boldenone injection.
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Figure 3: NADPH oxidase activity and NADPH oxidase mRNA levels in the heart of rats treated with GSPE, Boldenone, and Boldenone then
GSPE. Value represents mean± SD of 10 rats. ∗Significant difference from the control group at p < 0 05. #Significant difference from the
Boldenone group at p < 0 05.
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Interestingly, ROS and MDA were linked with histopatho-
logical changes in all types of muscle injury, mainly in toxic
muscle damage caused by drugs. The results of the present
study are in agreement with those of El-Moghazy et al.
[42], who demonstrated that Boldenone induces oxidative
stress in liver and kidney tissues, and those of Ali et al. [43]
who found that Boldenone induces oxidative stress in the
smooth, cardiac, and skeletal muscles of rabbits.

NOX has received considerable attention as a major
cause of oxidative stress leading to vascular disease. More-
over, various NOX subunits play a part in the occurrence of
heart failure, stroke, cancer, lung fibrosis, and diabetes melli-
tus. NOX-derived ROS leads to disease in different ways: for
example, spatially confined levels of ROSmay interfere with a
particular signaling pathway, and high levels (local or sys-
temic) that are directly cytotoxic may cause apoptosis or dis-
rupt redox-sensitive signaling cascades. These systems are in
constant interaction with NOX subunits. Due to the complex
mechanisms involved in NOX activation, these enzymes
may be targeted at several different levels of their activity:
(i) decreased NOX expression has inhibitory effects on these
enzymes and (ii) NOX activation may be decreased by block-
ing the translocation of its cytosolic subunits (if present) to
the cell membrane [44].

The natural antioxidants including polyphenols have a
powerful effect on the inhibition of NOX. A diet rich in
polyphenols (green tea, vegetables, fruits, and whole-grain
foods) has a beneficial effect in the prevention of circulatory
diseases. Polyphenols scavenge superoxide radical and
reduce NOX activity in blood vessels and platelets [45].
Moreover, novel polyphenolic compounds that lack typical
superoxide-scavenging properties and inhibit NOX directly
are currently being investigated. Mansouri et al. [46] reported

that GSPE has a beneficial effect on ameliorating lipid metab-
olism and repairing antioxidant defense systems in the hearts
of diabetic rats. Accordingly, GSPE may scavenge free radi-
cals and elicit beneficial effects against Boldenone-induced
cardiac damage.

The observation that GSPE has beneficial effects through
NOX-inhibitory actions [4] reinforces the therapeutic poten-
tial of NOX inhibition for circulatory diseases. Babelova et al.
[47] demonstrated that the basal activity of NOX4 may be
protective in some clinical situations including cardiac
pressure overload and acute ischemia [47].

The present study showed that H2O2 production was sig-
nificantly increased in the myocardium of rats treated with
Boldenone compared with the control groups. Conversely, a
significant reduction in an H2O2 generation in the myocar-
dium of rats posttreated with GSPE was noted. To evaluate
the source of high generation of H2O2, this study measured
the mRNA expression of NOX enzymes in the heart. mRNA
levels of NOX2 and NOX4 were higher in rat hearts treated
with Boldenone than in those of the control groups. Post-
treatment of rat hearts with GSPE modulated the mRNA
expression of NOX2 and NOX4.

Gheshlaghi et al. [48] reported that AAS abuse affects
myocardial survival and heart function in humans, animal
models, and cell cultures [48]. Beutel et al. [49] were the first
to study the effects of anabolic steroids on cardiac output.
The present study revealed that intramuscular injection of
Boldenone in male rats elicited a significant increase in serum
levels of cholesterol and LDL-C, which is known to lead to an
increased risk of atherosclerotic heart disease and myocardial
hypertrophy [50]. In contrast, a significant decrease in the
serum level of HDL-C was detected after intramuscular injec-
tion with Boldenone compared with that in controls. Serum

Table 3: Serum lipid profile levels in different studied groups.

Control GSPE Boldenone Boldenone +GSPE

Total lipid (mg/dL) 265.5± 11.3 261± 12.5 264.2± 9.4 259.9± 10.5
Cholesterol (mg/dL) 103.5± 7.06# 101± 5.40# 136.2± 9.55∗ 119.9± 6.85∗#

Triglyceride (mg/dL) 98.2± 3.55 92.7± 3.95 96.8± 6.63 93.6± 5.98
HDL (mg/dL) 52.8± 3.71# 53.5± 2.35# 43.8± 1.66∗ 47.6± 1.88∗#

LDL (mg/dL) 31.1± 1.23# 29.7± 1.21# 73.1± 4.15∗ 53.6± 3.59∗#

vLDL (mg/dL) 19.6± 1.50 18.5± 1.35 19.4± 1.17 18.8± 0.93
Risk I 1.96± 0.22# 1.89± 0.14# 3.11± 0.21∗ 2.52± 0.19∗#

Risk II 0.59± 0.04 0.56± 0.04 1.67± 0.08∗ 1.13± 0.11∗#

Value represents mean ± SEM of 10 rats. ∗Significant difference from the control group at p < 0 05. #Significant difference from the Boldenone group at p < 0 05.

Table 4: Changes in serum electrolyte ion level in different groups under study.

Control GSPE Boldenone Boldenone +GSPE

Na+ (mEq/L) 135.8± 9.5# 136.5± 11.1# 126.1± 11.3∗ 133.5± 8.9#

K+ (mEq/L) 3.755± 0.34# 3.648± 0.66# 4.480± 0.69∗ 4.228± 0.95∗#

Ca++ (mmol/L) 1.222± 0.106 1.235± 0.08 1.219± 0.032 1.228± 0.097
Cl− (mmol/L) 100.7± 8.30# 101.5± 8.61# 118.5± 5.35∗ 116.5± 7.55∗

Value represents mean ± SD of 10 rats. ∗Significant difference from the control group at p < 0 05. #Significant difference from the Boldenone group at p < 0 05.
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levels of triglycerides and total lipids did not change between
the different groups.

One of the major findings of this study was the relation-
ship between steroid consumption and alteration in lipid
profiles. El-Ghareib and Ashry [51] showed that serum levels
of cholesterol increased significantly in calves treated with
Boldenone compared with those in controls, and our results
agreed with their data. However, El-Ghareib and Ashry
[51] also found that the levels of total lipid levels increased
significantly in calves treated with Boldenone compared with
those in controls, but an equivalent observation in rats was
not observed in our study. Urhausen et al. [52] noted that
HDL-C levels were distinctly lower in athletes who used
AASs. Hartgens et al. [50] recorded a decrease in the serum
levels of HDL-C, and significant time-based effects were
noted for HDL-C. Achar et al. [53] showed that AAS abusers
showed a significant increase in the levels of LDL-C and a sig-
nificant decrease in the levels of HDL-C than nonabusers.
Lough et al. [54] reported no effects on plasma concentra-
tions of triglycerides in lambs injected with AASs; these data
were in accordance with our results.

This study revealed that administration of Boldenone to
male rats induced a significant increase in serum levels of
K+ and Cl−, a significant depletion of Na+, but no change in
Ca2+. In contrast, GSPE treatment improved this alteration
in electrolyte levels. A. Demiryurek and S. Demiryurek [55]
reported that toxic cardiac concentration of steroids induces

inhibition of Na+/K+-ATPase and its signaling pathways,
subsequently sustained to elevate the intracellular level of
Ca2+ and Na+, resulting in cardiac arrhythmias. However,
our results are not in accordance with those of Barakat
et al. [4], who reported that the intramuscular injection of
Boldenone elevated the levels of Na+ and Ca2+ and decreased
those of K+ and that propolis modulated these electrolyte
changes. The results of the present study are in agreement
with those of Yang et al. [11], who revealed that Boldenone
induced alterations in electrolyte levels.

Cardiovascular cells express various NOX subtypes.
NOX1 is distributed mainly in vascular smooth muscles
while NOX2 is distributed in the myocardium. NOX4 is
found in vascular smooth muscles, endothelium, and myo-
cardium. In general, NOXs are stimulated by signaling path-
ways downstream of G protein-coupled receptors like tumor
necrosis factor-alpha, angiotensin II, and endothelin 1. Inter-
estingly, NOX activity remains high in NOX2−/− mice after
aortic banding, which has been referred to elevated NOX4
expression, indicating that NOX4 may also have a role in
pressure-overload left ventricular hypertrophy [56].

Several studies have suggested that NOX activation
induces alteration of contractility of hypertrophy myocar-
dium and in heart failure. In animals with LVH, altered cor-
onary endothelial function and impairment of ventricular
function were induced by increased myocardial NOX activity
[57]. Cheng et al. [58] demonstrated that activation of NOX

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Figure 4: Photomicrographs of rat heart sections stained by HE. (a, b) Heart sections in control (G1) and GSPE (G2) groups revealed normal
myofibrillar structure with striations. (c) Heart sections in rats treated with Boldenone (G3) showed severe myocardial lesions due to marked
myocardial hypertrophy (white arrows), necrosis, marked interstitial fibrosis (black arrows), misshapen nuclei, moderate focal hemorrhage,
and moderate infiltration of leukocytes. (d) Heart sections in posttreated rats with Boldenone and GSPE (G4) exhibited moderate myocardial
hypertrophy (white arrows) and interstitial fibrosis (black arrows).
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contributes to increased diastolic stiffness in hypertensive
heart failure rats. Antioxidant treatment improves contractile
dysfunction of the heart in wild-type animals, suggesting a
direct effect of elevated levels of ROS on contractile function
[59]. ROS alter the function of the sarcoplasmic reticulum
(SR), ryanodine receptor, sarcolemmal ion channels, the SR
calcium pump, and contractile proteins. It has also been
demonstrated that ROS may alter calmodulin-dependent
protein kinase II, possibly via NOX [59].

Overdoses of anabolic steroids cause cardiovascular disor-
ders such as LVH, hypertension, dysrhythmia, coagulation of
the blood, altered coronary blood flow,myocardial inflamma-
tion, acute coronary inefficiency, cardiac infarction, arterio-
sclerosis, and cardiac arrest [60]. In our study, histology and
IHC results confirmed these biochemical effects. Boldenone
administration induced various histologic cardiac lesions in
young male rats: marked myocardial hypertrophy, necrosis,
marked interstitial fibrosis, misshapen nuclei, moderate focal
hemorrhage, moderate infiltration of leukocytes, and increase
in PCNA expression were observed.

Boldenone reduces the endogenous biosynthesis (antian-
drogenic) and induces steroid biotransformation (estrogenic).
These side effects of Boldenone may be attributable to geno-
mic or nongenomic activities (myotrophic). The results of
the present study are in agreement with those of Tousson
[61], who revealed that Boldenone caused ventricular hyper-
trophy and fibrosis in the cardiac muscles of male rabbits,

and of McCarthy et al. [62], who demonstrated that muscle
hypertrophy in skeletal and cardiac muscles in humans was
induced by the anabolic steroid. GSPE induced improve-
ment in the ischemic myocardium during reperfusion in
rat hearts [63].

5. Conclusions

Here, we demonstrated that Boldenone administration
disrupts cellular redox balance through NOX activation.
Treatment of rats with GSPE ameliorates expression of
endogenous NOX2 and NOX4 in the heart and regulated
the redox system. These new insights into the antioxidative
activity of GSPE should serve as a basis for the development
of improved chemopreventive or therapeutic strategies for
cardiac toxicity induced by Boldenone.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

There is no conflict of interest.

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Figure 5: Photomicrographs of heart sections stained with PCNA-ir in the different groups. (a, b) Faint positive reaction (arrows) for PCNA-
ir in control (G1) and GSPE (G2) groups. (c) A strong positive reaction (arrows) for PCNA-ir in heart sections of rats treated with
Boldenone (G3). (d) PCNA reactivity was decreased significantly (moderate positive reaction for PCNA-ir in treated rats with Boldenone
and GSPE) (G4).
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