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Simple Summary: Cyclin-dependent kinases are involved in the regulation of cancer-initiating pro-
cesses like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these
enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression.
Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the
right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and
signaling molecule activities are considered as potential biomarkers. We therefore summarized
relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and
further discuss molecular mechanisms of resistance and other open questions.

Abstract: Genetically altered stem or progenitor cells feature gross chromosomal abnormalities,
inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases
(CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in
hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic
regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity
and different clinical presentation is challenging for selecting the right target and defining the ideal
combination to mediate long-term disease control. Preclinical and early clinical data suggest that
specific CDKIs have activity in selected patients, dependent on the existing rearrangements and
mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is
a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to
leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally
warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical
and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6
inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide
an overview on molecular mechanisms of response vs. resistance and discuss open questions.

Keywords: CDK4/6 inhibitors; predictive biomarker; mechanisms of resistance; pharmacological
inhibition; combination strategies

1. Introduction

Despite the clinical implementation of novel treatments like kinase inhibitors, hy-
pomethylating agents or pathway modulators during the last decades, several hematologi-
cal malignancies still face a poor prognosis. Relapsed or refractory courses are particularly
difficult to manage, often exhibiting multiple drug resistances and intimidating survival
rates [1–4]. The FDA approval of the cyclin dependent kinase (CDK) 4/6 inhibitors (CD-
KIs) palbociclib, ribociclib, and abemaciclib for hormone receptor positive and human
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epidermal growth factor receptor 2 negative locally advanced or metastatic breast can-
cer treatment led to numerous promising clinical studies investigating CDKIs in solid
neoplasms. This provides a rationale for the emerging intensive testing in hematological
malignancies, raising hopes for improving patients’ prognoses. Given their wide spectrum
of cellular modulation including cell cycle control, transcription, DNA repair, epigenetic
regulation, proliferation, and apoptosis, CDKs represent promising molecular targets for
leukemia and lymphoma treatment [5].

Cell cycle regulation is a key mechanism to prevent malignant cell proliferation and
uncontrolled cell division. Aleem and Arceci reviewed the roles of CDKs in controlling
cell cycle and development of hematological malignancies in detail [6]. Here, we focus
on present and future therapeutic approaches to overcome CDK-influenced cell cycle
control malfunction (Table S1) and will thus only offer a short introduction on CDK path-
ways and their role on leukemogenesis. In brief, cell cycle control is mainly mediated
by serine/threonine CDKs acting as catalytic subunit when activated by their respective
cyclins. CDK activity is further modulated by physiological CDKIs and posttranslational
modification, resulting in transcriptional regulation, DNA damage repair mechanisms,
metabolism, or epigenetic processes. In addition to the “classical” CDKs directly influenc-
ing the cell cycle, further kinases act as indirect modulators to regulate transcription or
epigenetic signaling [6].

Hematopoietic stem cells are relatively quiescent to prevent stem cell exhaustion [7–9].
Once these stem cells initiate cell cycle induction, the cells proliferate extensively to provide
hematopoiesis [10]. Therefore, the cell cycle of hematopoietic stem cells must be controlled
thoroughly. Dysregulation of CDKs and associated cyclins is frequently observed in
hematological malignancies. CDK6 is predominantly expressed in hematopoietic cell types
and loss of CDK6 results in impaired generation of several blood cell types. In contrast,
overexpression and chromosomal translocation of CDK6 is observed in acute lymphoblastic
leukemia (ALL) and lymphoma. CDK4/6 inhibition is achieved by physiological CDKI
p16INK4A, the most frequently deleted locus in human cancer. Translocations of the MLL
gene locus are common in acute myeloid leukemia (AML) and account for most infant ALL
cases. CDK6 is a direct target of MLL fusion proteins and thus activated. Finally, CDK6 can
be activated by FLT3-ITD-mediated down-regulation of cyclins D2 and D3. Besides CDK6,
other CDKs are also involved in leukemogenesis. For example, the AML driver mutation
FLT3-ITD is an activator of CDK1. Further, mutations and deletions of the cyclin C and
CDK19 locus on 6q21 result in altered Notch1 regulation especially in T-ALL [6].

2. CDK4/6 Inhibitors

While the pan CDKI flavopiridol was the first CDK inhibitor applied clinically [11],
recent CDKIs are more specific, with most drugs targeting only a subset of CDKs. CDK6
has a central role in hematopoiesis and CDK6-deficient mice show reduced production of
erythrocytes, granulocytes, macrophages, neutrophils, and thrombocytes, as well as thymic
atrophy [6]. Neutropenia is therefore the most common and dose-limiting adverse event in
the clinical use of CDK6 inhibitors [12]. CDK6 is also a direct target of MLL fusion proteins
which are common in AML and ALL [13,14]. This results in transcriptional activation
of CDK6 and subsequent initiation of leukemic processes [14–16]. Further, CDK6 can be
activated via FLT3-ITD-mediated upregulation of cyclins D2 and D3 [17]. In mantle cell
lymphoma, the characteristic t(11;14) translocation induces ectopic cyclin D1 expression,
also resulting in CDK6 and CDK4 upregulation [18]. In pediatric B-ALL, p16INK4A deletions,
especially occurring during relapse, are a key feature of dysfunctional CDK4/6 control and
an associated dismal prognosis [19].

2.1. Palbociclib

The CDK4/6 inhibitor palbociclib was widely evaluated in solid tumors and is now
also analyzed in a variety of hematopoietic malignancies. It demonstrated significant
pre-clinical in vitro and in vivo efficacy in AML cells with FLT3-ITD [17,20] and TKD
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mutations [21], RUNX1/ETO translocation [22] and MLL rearrangement [15,23]. In a recent
study investigating de novo transformation of granulocyte/macrophage progenitor cells
to AML, Chen et al. demonstrated that transient palbociclib application is capable of
halting progenitor cell proliferation and preferentially abrogated the most proliferative
progenitor cell subsets. Palbociclib further reduced the progenitor cell transformation
in vivo, resulting in reduced AML burden and prolonged survival. This suggests that cell
cycle inhibition decreases the likelihood of malignant transformation in vivo [24].

In T-ALL cells as well as B-ALL cells featuring MLL or BCR-ABL1 rearrangements,
palbociclib controlled cell growth via G1 arrest and Rb dephosphorylation both in vitro
and in vivo [14,25–28]. A phase I clinical trial investigating palbociclib in relapsed ALL
children is currently underway.

Similar promising antitumoral effects were observed in multiple myeloma, anaplastic
large-cell lymphoma, and mantle cell lymphoma, where palbociclib was also capable of
overcoming ibrutinib resistance [29–34]. In a study with 17 relapsed mantle cell lymphoma
patients, palbociclib achieved one complete remission (CR) and two partial responses
(PR), five patients had a progression-free survival of at least one year with reduced tumor
metabolism and proliferation [35]. A phase I study in non-Hodgkin lymphoma showed
stable disease (SD) in one third of the participants and two out of 68 patients had PR [36].

Palbociclib was then evaluated in several combinations both preclinically and clinically.
The combination with proteasome inhibitor bortezomib was effective in an immunocom-
petent myeloma mouse model. Inhibition of CDK4/6 by palbociclib induced G1 arrest
and enhanced bortezomib susceptibility via increased mitochondrial depolarization [30].
This combination was also evaluated in a clinical phase I/II trial in refractory/relapsed
(R/R) myeloma together with dexamethasone, demonstrating an overall response rate of
20% and SD in 44% of the participants [37]. A phase I trial in R/R mantle cell lymphoma
with palbociclib and bortezomib achieved CR in one out of 19 patients [38]. Combined
palbociclib and ibrutinib treatment has been evaluated in R/R mantle cell lymphoma. From
27 patients in this phase I study, 67% responded and 37% had CR [39].

Further combination partners are evaluated preclinically in vitro and in vivo. In AML,
the cytarabine dose could be reduced after palbociclib priming (Figure 1) [40]. Besides
cell cycle regulation, CDK6 also controls gene expression of oncogenic kinases by directly
binding promoter sites. These include, among others, AURORA and AKT, both of which
are known mediators of drug resistance. FLT3 mutations can further contribute to pathway
activation in AML. Combined palbociclib and pan-AURORA kinase inhibitor danusertib or
AKT inhibitor MK-2206 treatment resulted in synergistic anti-leukemic effects in FLT3-ITD
and TKD mutated AML cells [21].

Although there is a clear connection between BCR-ABL1 fusion and cell cycle regu-
lation, only very limited data is available for the evaluation of CDKIs in chronic myeloid
leukemia (CML). Rangatia and Bonnet have shown that lack of BCR-ABL1 leads to G1
phase arrest and a decrease in cyclin D1. Physiological CDKIs p21 and p27 subsequently
exhibited increased gene expression [41]. Schneeweiss-Gleixner et al. recently reported that
palbociclib synergizes with tyrosine kinase inhibitor ponatinib in BCR-ABL1T315I mutated
CML, via reducing proliferation and inducing G1 arrest. This is of importance because
tyrosine kinase inhibitor resistance is frequently observed in this CML subtype, leading to
challenging clinical problems [42]. In ALL, palbociclib synergizes with fibroblast growth
factor receptor 1 inhibitor PD-173074 and imatinib (Gleevec) [43,44]. Increased apoptosis
rates compared to palbociclib mono application were achieved with PI3Kδ inhibitor GS-
1101 and BET protein bromodomain antagonist JQ1 in mantle cell lymphoma [45,46]. In
myeloma and diffuse large B-cell lymphoma, synergism was achieved with dexamethasone
and Bruton’s tyrosine kinase inhibitor tirabrutinib [29,47].

To demonstrate their anti-leukemic potential, CDK4/6 inhibitors rely on expression
of downstream signaling protein Rb. Intrinsic or acquired lack of Rb function results in
resistance towards therapeutic CDK4/6 targeting [12]. Additionally, palbociclib treatment
can lead to p27 downregulation, thus reactivating CDK2 and cell cycle progression. Tran-
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scription factor FOXO3A can additionally control p27 gene expression. However, it was
not influenced in palbociclib-resistant cells; ruling out the possibility of FOXO3A directly
induced p27 downregulation. Palbociclib-sensitive cell lines exhibited a similar drop in p27
gene expression, while protein abundance remained stable. Hence, the p27-downregulating
effect is rather due to posttranslational modification than reduced p27 gene expression
(Figure 2) [17].

2.2. Ribociclib

Ribociclib (LEE011) is another CDK4/6 inhibitor that demonstrated significant anti-
proliferative and apoptosis-inducing effects in AML and B-ALL cell lines and primary
samples, probably mediated via G1 arrest and senescence [48]. A recent study on pediatric
B-ALL evaluated ribociclib in combination with dexamethasone. They found significant
basal overexpression of CDK6 in B-ALL cells. Subsequent inhibition of CDK4/6 using
ribociclib resulted in G1 phase arrest, reduced cell proliferation, and apoptosis induction
accompanied by Rb dephosphorylation. Adding dexamethasone synergistically improved
anti-neoplastic effects in B-ALL cell lines as well as primary samples [49].

Figure 1. Re-sensitization of drug-resistant cells by CDK inhibitors. The scheme illustrates how CDKIs can conquer resistance
of leukemic blasts towards targeted agents. Leukemic cells show frequent overexpression or constitutive activation of
oncogenic kinases like AURORA and AKT. While these kinases mediate drug resistance via apoptosis inhibition or increased
tumor cell proliferation, blocking specific CDKIs may help to make cells more vulnerable to certain approved drugs,
including cytarabine, imatinib, and ibrutinib. This effect is likely mediated by cell cycle checkpoint blockade, resulting in
impaired cell division and proliferation. Additionally, blocking CDKs induces CD25 abundance on ALL cells and this may
act as a biomarker for response. Vice versa, lack of CD25 expression indicates resistance. FGFR1I, fibroblast growth factor
receptor 1 inhibitor; PI3KI, phosphatidyl inositol 3 kinase inhibitor; MCL, mantle cell lymphoma; MM, multiple myeloma;
DLBCL, diffuse large B-cell lymphoma. Created with BioRender.
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Figure 2. Intrinsic and acquired resistance mechanisms towards CDKIs. Intrinsic resistance is driven by lack of functional Rb
protein, leading to DNA replication stress, high-level expression of endogenous CDK4/6 inhibitor p16INK4A, and inactivation
of E2F-regulated genes. Another resistance mechanism is based on Cyclin E amplification and overexpression driving cell
cycle progression. Quite in line, TP53 mutations are generally associated with low response to CDK inhibition. Acquired
resistance mechanisms include Rb loss, CDK2 reactivation upon p27 downregulation, a truncated BCL-2 protein lacking the
phosphorylation loop domain, as well as prolonged MCL-1 stability along with RNA polymerase II phosphorylation and
CDK9 kinase domain up-regulation. All these mechanisms may ultimately contribute to cell cycle progression and thus
CDKI resistance. HDAC, histone deacetylase; E2F, E2F transcription factor family; RNA Pol II, RNA polymerase II. Created
with BioRender.

Pikman et al. investigated ribociclib in NOTCH1-mutant and wildtype T-ALL and
found both subtypes sensitive to the inhibitor. The combination with glucocorticoid
dexamethasone and mTOR inhibitor everolimus acted synergistically in vitro and in vivo.
In contrast, antagonistic effects were observed with several drugs used in T-ALL standard
chemotherapy including methotrexate, mercaptopurine, asparaginase, or doxorubicin [50].

In T-ALL, CDK6 is required for AKT- or Notch1-induced leukemia initiation. Jena
et al. demonstrated increased CD25 and RUNX1 expression upon CDK6 inhibition and
that CD25 ablation results in T-ALL leukemogenesis. They further showed that CD25
mediates the therapeutic response to ribociclib, suggesting CD25 deletion as a potential
mechanism of resistance to CDK6 inhibitors as well as predictive marker for ribociclib
response (Figure 1) [51]. A clinical phase I study examined ribociclib in solid neoplasms
and lymphoma and found SD in ten out of 70 patients [52].

2.3. Abemaciclib

While ribociclib was mainly analyzed in acute leukemias, abemaciclib (LY2835219)
has been more widely evaluated in lymphoma. Here, inhibited proliferation and induced
apoptosis was reported in germinal center-derived B-cell lymphoma cell lines, but not in
activated B-cell like diffuse large B-cell lymphoma cell lines [53]. In a clinical trial, 71% of
the participating R/R mantle cell lymphoma patients achieved SD and 36% had PR [54].
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A subsequent phase II study with 28 patients reached CR in two patients and an overall
response rate of 36% with an overall survival of 16 months [55]. Another clinical trial is
currently evaluating abemaciclib with fulvestrant in advanced or metastatic solid tumors
and lymphomas.

Further preclinical studies found abemaciclib effective in MLL-rearranged AML cell
lines and xenografts [56] as well as myeloma cell lines [57]. Nakatani et al. recently
identified that t(8;21) rearranged AML cell lines are more vulnerable to palbociclib and
abemaciclib than non-t(8;21) AML cells [58]. Molecularly, this is due to higher cyclin D2
levels, a common response marker towards abemaciclib. In t(8;21) rearranged AML cells,
abemaciclib induced the expected G1 arrest, leading to impaired cell proliferation and
decreased MAPK and AKT pathway signaling. Another interesting finding of this study
was autophagosome formation which significantly increased apoptosis induction upon
combined application of abemaciclib and autophagy inhibitors [58].

2.4. Lerociclib

The novel CDK4/6 inhibitor lerociclib (G1T38) was capable of decreasing Rb phos-
phorylation and induced G1 cell cycle arrest in leukemia and lymphoma cell lines in vitro.
Of note, lerociclib demonstrated a superior efficacy compared to palbociclib and did not
induce severe neutropenia in an estrogen receptor positive breast cancer dog animal model,
which is a common side effect of CDK4/6 inhibitors. Using mouse xenograft models,
the authors further demonstrated that lerociclib accumulated within the tumor but not
in plasma, implying less severe effects on myeloid progenitor cells compared to palboci-
clib therapy. Indeed, plasma concentrations after palbociclib treatment were significantly
higher than the concentration needed to inhibit cell proliferation in several cell lines. In
contrast, after lerociclib treatment, plasma concentrations dropped faster. The authors thus
claim that palbociclib-induced neutropenia is a product of CDK4/6 inhibition in the bone
marrow, preventing proliferation of healthy bone marrow cells [59].

CDK4/6 inhibitors including the novel promising molecule lerociclib are without
doubt the most intensively researched group of CDKIs in both, solid and hematological ma-
lignancies. While palbociclib, ribociclib, and abemaciclib already obtained FDA approval
for breast cancer, current preclinical and clinical studies for leukemia and lymphoma also
focus on inhibitors targeting other CDKs.

3. CDK7/8/9 Inhibitors

CDKs 7, 8, and 9 are novel emerging targets in preclinical research. Indeed, recent data
reveal anti-leukemic activity upon inhibition of these transcriptional regulators. CDK9 is a
global transcriptional regulator and part of the super elongation complex controlling RNA
polymerase II phosphorylation and elongation. AFF family members, which are frequently
fused to MLL in acute leukemias, are also part of the super elongation complex, thus
mis-localizing CDK9 to HOX gene promoters and inducing abnormal CDK9 expression,
cell growth, and proliferation [60]. Another role for CDK9 is transcriptional regulation of
MCL-1, it may thus influence intrinsic apoptosis induction (Figure 3) [61].

3.1. AZD4573

So far, AZD4573 is the only selective CDK9 inhibitor invested clinically in hemato-
logical malignancies. A preclinical study on different hematological neoplasms proved
significant induction of apoptosis via MCL-1 suppression in vitro and in vivo [62]. The
same study also evaluated the BCL-2 inhibitor venetoclax as combination partner to over-
come treatment failure or leukemic progress after AZD4573 cessation. Both, MCL-1 and
BCL-2 are anti-apoptotic members of the intrinsic apoptosis initiation cascade. Combined
therapy with AZD4573 and venetoclax induced long-term inhibition of leukemic cell prolif-
eration in all animals, even in models intrinsically resistant to either monotherapy (diffuse
large B-cell lymphoma SU-DHL-4; AML model OCI-AML3) [62].
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Figure 3. Schematic overview of apoptosis induction. The extrinsic pathway via Fas/FasL interaction is shown on the left
side, and the intrinsic pathway via members of the BCL-2 family such as BAX/BAK on the right side. The highlighted
boxes indicate the active form of the molecule. The gray boxes list therapeutic substances and how they influence apoptosis.
FAS, Fas cell surface death receptor; FASL, FAS ligand; Casp, caspase, PARP, Poly(ADP ribose) Polymerase; FLT3, FMS
related receptor tyrosine kinase 3; PI3K, phosphatidyl inositol 3 kinase; AKT, AKT serine/threonine kinase; ROS, reactive
oxygen species; BCL-2, BCL2 apoptosis regulator; BIM, BCL2 like 11; MCL-1, MCL1 apoptosis regulator; BAK, BCL2
antagonist/killer 1; BAX, BCL2 associated X, apoptosis regulator; GSK-3β, glycogen synthase kinase 3-beta; p53, tumor
protein 53; Apaf-1, Apoptotic peptidase activating factor 1. Created with BioRender.

3.2. CDKI-73

The non-selective CDK9 inhibitor CDKI-73 proved anti-proliferative and pro-apoptotic
capacity in chronic lymphoblastic leukemia (CLL) [63], diffuse large B-cell lymphoma [64],
ALL and AML [65] cells, as well as in animal models. Walsby et al. evaluated the anti-
neoplastic potential of CDKI-73 together with fludarabine in CLL and found decreased
MCL1 gene expression after CDK9 inhibition while fludarabine had the opposite effect.
Combined application of CDKI-73 and fludarabine downregulated RNA polymerase II
mediated genes MCL1, XIAP, CCND1, and CCND2. Of note, synergistic effects were also
observed under CD40L-expressing pro-survival co-culture conditions with initial fludara-
bine resistance [63]. In diffuse large B-cell lymphoma, CDK9 inhibitors including CDKI-73
frequently induce histone 3 lysine 27 trimethylation, which is associated with tumor pro-
gression. A recent study therefore evaluated CDKI-73 with histone methyltransferase
EZH2 inhibitors EPZ6438 and GSK126 and found synergistic anti-proliferative effects. The
authors also identified drastically increased apoptosis and DNA damage in response to
combined treatment [64]. The same group previously evaluated combinatorial effects
of CDKI-73 with venetoclax in ALL and AML and elucidated synergistic induction of
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apoptosis via PARP and caspase 3 cleavage as well as XIAP downregulation [65]. Many
more CDK9 inhibitors have been preclinically evaluated in a broad range of hematological
malignancies [66–71].

3.3. CDK8 Inhibitors

CDK8 regulates transcription as part of the mediator complex or by phosphorylation of
transcription factors [72]. In primary AML and ALL samples with BCR-ABL1 translocation,
Menzl et al. found that mTOR signaling is usually deregulated in CDK8-deficient cells.
They subsequently developed the small molecule YKL-06-101, targeting both CDK8 and
mTOR, which had significant anti-leukemic potential in vitro and in vivo [73]. Another
selective CDK8 inhibitor, SEM120, is effective in AML in vitro and in vivo and currently
evaluated in a phase Ib clinical trial in AML and myelodysplastic syndrome [74].

3.4. CDK7 Inhibitors

First CDK7 inhibitors are also arising and are being tested in AML cell lines. The
CDK7/12/13 inhibitor THZ1 showed anti-proliferative effects and induced apoptosis in a
RUNX1/ETO rearranged cell line [75]. A preclinical study investigating the effect of THZ1
in myeloma revealed decreased cell proliferation and survival as well as RNA polymerase
II, CDK 1, 2, and 9, MCL-1, BCL-XL, and c-MYC downregulation in vitro and in vivo.
Addition of venetoclax or carfilzomib significantly increased the antitumor efficacy [76].

SY-1365, which is under clinical investigation for solid tumors, decreased MCL-1
protein levels and induced transcriptional changes mainly of oncogenic transcription
factor genes and members of cell cycle and DNA damage repair related pathways. Of
note, this inhibitor was more effective in cells with low BCL-XL expression. When com-
bined with BCL-2 inhibitor venetoclax, antitumor effects were synergistically increased
in vitro and in vivo [77]. Finally, BS-181 inhibited CDK7 and induced apoptosis in Jurkat
T-ALL cells [78].

Collectively, CDK7/8/9 inhibitors hold promise for being implemented in trials
because of their unique ability to modify transcriptional processes and regulate apoptosis.
Other approaches featuring down-regulation of these kinases are less specific, resulting in
a broader spectrum of mechanistic actions to be dealt with.

4. Pan CDK Inhibitors
4.1. Flavopiridol

Flavopiridol (alvocidib) is a first generation pan CDK inhibitor, targeting CDKs 1, 2,
4, 6, 7, and 9. It induces cell cycle arrest in ALL and AML cell lines as well as leukemia
and lymphoma animal models [79,80]. Preclinical studies of flavopiridol in combina-
tion with BCL-2 inhibitor venetoclax or pan BH3 mimetic obatoclax revealed synergis-
tic anti-apoptotic effects in vitro and in vivo, probably mediated via MCL-1, BIM, and
NOXA regulation [81,82]. Flavopiridol has also been tested in CML and acted synergisti-
cally with pro-apoptotic pyrrolo-1,5-benzoxazepine compounds in imatinib-resistant cells.
The observed induction of apoptosis was likely due to deactivation of the CDK1/cyclin
B1 complex [83].

Clinical efficacy was observed in hematological neoplasms including CLL and AML,
especially in AML as part of the FLAM regimen (flavopiridol followed by cytarabine and
mitoxanthrone) [6,84]. Clinical investigation in CLL with early trials using flavopiridol
achieved PR in almost half of the patients [85]. Further, a clinical trial is currently evaluating
the potential of flavopiridol and decitabine in myelodysplastic syndrome. However, the use
of flavopiridol proved difficult in the clinical setting, offering a complex pharmacokinetic
profile, a wide range of side effects and an unclear mechanism of action [12].

Several mechanisms of resistance have been described for flavopiridol (Figure 2).
Mahoney et al. identified endoplasmatic reticulum stress-mediated death of CLL cells as a
novel mode of action for flavopiridol. However, induction of autophagy decreased cyto-
toxic effects while autophagy inhibition supported stress-mediated anti-leukemic effects,
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highlighting autophagy as a potential mechanism of flavopiridol resistance [86]. Besides,
members of the BCL-2/MCL-1 apoptosis signaling cascade are involved in flavopiridol
resistance. Data by Yeh et al. indicated that prolonged MCL-1 stability, in line with RNA
polymerase II phosphorylation and CDK9 kinase domain upregulation, contributes to resis-
tance in B-ALL cell line 697. MCL-1 upregulation was probably mediated via MAPK/ERK
signaling. Knockdown of MCL-1 restored flavopiridol sensitivity and induced cytotoxic-
ity [87]. Besides MCL-1, BCL-2 is another anti-apoptotic signaling molecule involved in
flavopiridol metabolism. Decker et al. demonstrated that a truncated BCL-2 protein lacking
the phosphorylation loop domain results in flavopiridol resistance in U937 AML cells [88].

4.2. Dinaciclib

Dinaciclib (SCH727965) is now widely evaluated in hematological malignancies. By
inhibiting CDKs 1, 2, 5, and 9, dinaciclib reduces cell viability, induces apoptosis and cell
cycle arrest in ALL and AML cell lines, also with MLL rearrangement, primary patient cells,
and in vivo models [89–92]. A phase II study found reduced numbers of circulating blasts
but no bone marrow remission in AML and ALL patients [91].

In CLL, dinaciclib downregulates MCL-1 gene and protein expression and potently
induces apoptosis in patient-derived cells [93]. Interestingly, this effect was also present
when the cells were cultured with cytokines produced by microenvironment cells but
not with direct stromal cell contact. This lack of therapeutic efficacy was overcome by
addition of PI3Kα inhibitor PIK-75 but not inhibitors of other PI3K isoforms [93]. Chen et al.
subsequently characterized dinaciclib-induced effects on signaling pathways, elucidating
caspase 8 and 9-mediated apoptosis induction with MCL-1 and BCL-XL suppression.
They further detected inhibition of oncogenic pathways including STAT3, NFkB, p38,
PI3K/AKT, and MAPK [94]. In addition, dinaciclib enhanced ibrutinib and venetoclax
sensitivity. When combined with SYK inhibitor entospletinib, no synergistic effect was
seen. Two phase I clinical trials evaluated the effect of dinaciclib in R/R CLL; combined
with rituximab, four out of five patients had SD and one achieved CR [95]. In combination
with ofatumumab, a median progression-free survival of 322 days was observed [96].

In mantle cell lymphoma, Höring et al. pursued a combined MCL-1 inhibiting and
NOXA stabilizing approach using dinaciclib and fatty acid synthase inhibitor orlistat. They
observed synergistically-induced NOXA-dependent apoptosis in mantle cell lymphoma cell
lines and primary samples along with tumor growth inhibition in vivo [97]. In advanced
non-Hodgkin lymphoma, B-CLL, and myeloma, no PR, CR, or SD was observed in a
clinical phase I study with dinaciclib alone [98]. A different study reported SD in eight out
of 61 advanced non-Hodgkin lymphoma or myeloma patients treated with dinaciclib in
combination with aprepitant, ondansetron, and dexamethasone [99].

Further preclinical evaluation detected increased doxorubicin response rates in
myeloma cell lines after low dose dinaciclib treatment, boosting growth inhibition and pro-
moting senescence [100]. Interestingly, and in contrast to several other studies of dinaciclib
in hematological neoplasms, this work did not observe apoptosis induction but acceler-
ated senescence via increased p16 signaling. Additionally, dinaciclib may have reduced
doxorubicin-induced ATM/Chk2/p53/p21 senescence-modulating signaling. Further
investigation in myeloma was conducted by Alagpulinsa et al. who combined dinaciclib
with PARP inhibitor ABT-888, based on the idea of impaired homologous recombination
during PARP-mediated DNA double strand break repair after dinaciclib [101]. Dinaciclib-
treated myeloma cells had increased DNA damage and reduced repair gene expression.
Cotreatment with PARP inhibitor ABT-888 synergistically reduced tumor cell proliferation
in vitro as well as in vivo using myeloma xenograft models. A subsequent phase I/II study
found an overall response rate of 11% in myeloma patients receiving dinaciclib alone [102].
A combinatory approach with bortezomib is currently being evaluated in a phase I plasma
cell myeloma study.
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4.3. Other Pan CDK Inhibitors Investigated in Clinical Trials

Further pan CDK inhibitors are now also tested in the clinical setting. Besides the
CDKs targeted by dinaciclib (CDK1, 2, 5, 9), AT7519M also inhibits CDK4, still inducing
apoptosis in vitro and in vivo and reducing proliferation in myeloma and CLL [103,104].
Two clinical trials investigating AT7519M in non-Hodgkin lymphoma as well as R/R CLL
and mantle cell lymphoma observed SD in at least half of the patients enrolled and PR in
three out of 12 R/R mantle cell lymphoma cases [105,106].

Voruciclib (P1446A), a CDK1/2/4/5/6/8/9 inhibitor, was evaluated in a phase I
study recruiting follicular lymphoma, mantle cell lymphoma, marginal zone lymphoma,
small lymphocytic lymphoma, CLL, diffuse large B-cell lymphoma, and AML patients after
demonstrating significant potential in preclinical studies [61,107]. Combined application
of voruciclib and BCL-2 inhibitor venetoclax was synergistic in preclinical AML models.
Notably, venetoclax-mediated MCL-1 and c-Myc downregulation was only reached in an in-
termittent drug administration schedule that should be considered in clinical practice [108].

The CDK1/4/9 inhibitor P276-00 showed promising in vitro and in vivo results in
AML [109], myeloma [110], and mantle cell lymphoma [111] but only achieved SD in two
out of 13 R/R mantle cell lymphoma patients in a phase II clinical trial [112].

Roniciclib (BAY1000394) targets the same CDKs as flavopiridol (1, 2, 4, 6, 7, and 9) and
achieved SD in three out of seven patients with lymphoid neoplasms [113]. Of note, this is
the only clinical trial so far investigating CDKIs in classical Hodgkin lymphoma. Earlier
studies suggested that there is a relation between apoptosis-induction, DNA fragmentation,
survival, and expression of cell cycle regulators p27 and p21 [114], providing a rationale
for CDK targeting in Hodgkin lymphoma. Sánchez-Aguilera et al. further identified CDK
regulator p18INK4C as a potential tumor suppressor gene in Hodgkin lymphoma [115].
Finally, loss of p16INK4A expression has been observed in Reed–Sternberg cells of Hodgkin
lymphoma cases [116].

Due to its variety in mechanistic pathways, pan CDK inhibition offers a broad range
of possibilities to target virtually every hematological subtype. Most progress has been
made for dinaciclib, which is already investigated in clinical trials; however, results are
ambiguous. Chemical modifications or combinatorial schedules might be beneficial to
increase the therapeutic outcome.

5. Dual Kinase Inhibitors and Novel Approaches

Developing resistance to CDKI monotherapy is frequently seen in both preclinical
and clinical studies. Hence, novel approaches are being evaluated, including dual kinase
inhibitors. In the AML setting, most inhibitors target one or more CDKs and FLT3. AMG925
and FN-1501 inhibit FLT3 in combination with CDK4 and CDK2/4/6, respectively. Both
drugs significantly induced apoptosis and anti-leukemic effects as well as ERK/AKT/Rb
dephosphorylation in vitro and in vivo [117,118].

TG02, a pan CDK and FLT3 inhibitor, further targets JAK2. This inhibition promoted
G1 arrest, apoptosis, and tumor regression in AML cell lines, in vivo models, and primary
samples [119–121]. TG02 is also effective in myeloma cell lines as single agent under
protective bone marrow niche conditions and in xenografts. TG02 further demonstrated
synergistic potential with approved anti-myeloma agents dexamethasone, melphalan,
bortezomib, and lenalidomide, possibly via ERK5 blockade, intrinsic and extrinsic apopto-
sis induction, and cell cycle blockade [122].

Additionally in myeloma, pan CDK/JAK/Src/AMPK/GSK3β inhibitor RGB-286638
achieved cytotoxicity in vitro and prolonged animal survival [123]. Besides CDK4 and
CDK6, ON123300 and ON108110 inhibit PI3Kδ and CK2, respectively, and induced Rb
dephosphorylation, G1 arrest, and apoptosis in mantle cell lymphoma [124,125].

Structural similarity of CDK ATP binding sites is a major challenge in the design
and development of selective inhibitors. Proteolysis-targeting chimeras (PROTACs) are
a novel approach of CDK elimination. These synthetic molecules comprise a ligand for
the protein of interest, for example, CDK6, and another ligand which recruits E3 ligases.
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E3 ligases then induce ubiquitination and proteasomal degradation of the target structure.
In a recent study of De Dominici et al. investigating BCR-ABL1-positive ALL, PROTAC
YX-2-107 was designed to bind CDK4/6, reducing CDK6 enzymatic activity and inducing
degradation in vitro. Further, S phase transition was suppressed and Rb and FOXM1
dephosphorylation was observed. In vivo, PROTAC YX-2-107 achieved a comparable or
better reduced leukemia burden in PDX mice compared to palbociclib [126]. Another
PROTAC, ARV-771, targets BET and acts synergistically with palbociclib in ibrutinib-
resistant mantle cell lymphoma cells [127]. PROTACs have also been designed to inhibit
other CDKs. Qiu et al. designed a series of PROTACs based on CDK9 inhibitor atuveciclib
(BAY-1143572) and showed anti-leukemic effects at low nanomolar concentrations, also
in vivo [128].

Novel and innovative strategies like dual kinase inhibition or PROTAC design are
important steps towards an improved targeted therapy. Further preclinical studies in
syngeneic and xenograft models are needed to identify candidates with a high likelihood
of proving beneficial in a clinical setting.

6. The Interaction of CDKIs with the Tumor Microenvironment

A major challenge for receiving long-term disease free-survival in hematological
diseases is successful targeting of the malignant niche in the bone marrow. The latter is
a complex microenvironment in which hematopoietic stem cells interact with multiple
non-hematopoietic cell types. Just like normal stem cells, leukemia stem cells, hosted
in the stem cell niche, undergo self-renewal, can efflux drugs, and have a quiescent cell
cycle status, which makes them difficult to target. Especially CDK6 plays a critical role in
hematopoietic stem cell differentiation [129]. A comparable role in leukemia stem cells can
be expected.

Ischemia-like conditions are the driving force of leukemia stem cell refractoriness to
classical drugs as well as targeted agents, such as imatinib mesylate [130]. Though exper-
imental evidence for the interaction of CDKIs with hypoxic niches of the bone marrow
is still pending, experiences from solid tumor models described successful reversal of
hypoxia-mediated therapy resistance via CDK1 and CDK2 interaction with hypoxia in-
ducible factor-1 [131]. The mechanism was due to Rb hypophosphorylation by palbociclib,
which favors cell cycle arrest and senescence. A recent case report identified rebound lym-
phocytosis in a CLL patient after terminating palbociclib treatment for synchronic breast
cancer [132]. This report impressively demonstrates the interaction of CDK4/6 inhibitors
with the tumor microenvironment via induction of a cell cycle arrest. Still, follow-up
studies should focus on the stem cell niche to judge the efficacy of CDKIs and ultimately
prevent relapse.

7. Conclusions

The field of hematological neoplasms is very heterogeneous with each entity featuring
individual characteristics and challenges. However, most of them are still difficult to
treat, indicated by high relapse rates, intimidating prognoses, and lack of durable curative
therapies. CDKs and their regulating cyclins are of major importance for the tumori-
genic potential of developing leukemia or lymphoma cells and frequently dysregulated in
those malignancies. Modulation of CDK expression and activity thus represents a promis-
ing strategy to target aberrant cell cycle progression and proliferation in hematological
tumor cells.

The results of extensive preclinical evaluations are promising, with several clinical
studies currently testing CDKIs in most hematological malignancies. CDK4/6Is palbociclib,
abemaciclib, and ribociclib are already FDA-approved for solid neoplasms, raising hopes
for a subsequent clinical implementation in hematological malignancies in the near future.
Interestingly, clinical trials have mainly been finished for lymphoma (especially mantle cell
lymphoma) and CLL patients while data on acute leukemias are lagging behind. Published
results indicate that combined therapy with other small molecule inhibitors like ibrutinib
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or bortezomib as well as inhibitors of anti-apoptotic proteins may have the capacity to
circumvent CDKI resistance development. Importantly, most clinical studies so far have
been conducted in heavily pretreated relapsed/refractory patient cohorts, highlighting the
potential of CDK targeting for hematological malignancy management.

Another open question that must be addressed in future studies is why inhibitors of
the same class result in highly variable response rates in the same entity. This underlines
the importance of further investigation on biomarkers, resistance mechanisms, and exact
modes of action.

This is an exciting period potentially improving the therapeutic outcome of leukemia
and lymphoma patients; however, there are still unanswered questions and several issues
to be addressed. Clinical data on acute leukemias are still missing while results in other
entities are ambiguous or obtained from rather small cohorts. Appropriate combination
partners need to be identified, ideal application sequences and dosages are to be evaluated,
and biomarkers are necessary to offer a useful and potent CDKI-based therapy for the
special needs of every molecular subgroup in a variety of hematological entities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13102497/s1, Table S1: Overview on recent preclinical and clinical application of
CDK inhibitors in hematological malignancies as well as potential combination partners showing
boosted effects.
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