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Abstract: The emerging edge computing paradigm has given rise to a new promising mobile
network architecture, which can address a number of challenges that the operators are facing while
trying to support growing end user’s needs by shifting the computation from the base station to the
edge cloud computing facilities. With such powerfully computational power, traditional unpractical
resource allocation algorithms could be feasible. However, even with near optimal algorithms, the
allocation result could still be far from optimal due to the inaccurate modeling of interference among
sensor nodes. Such a dilemma calls for a measurement data-driven resource allocation to improve
the total capacity. Meanwhile, the measurement process of inter-nodes’ interference could be tedious,
time-consuming and have low accuracy, which further compromise the benefits brought by the
edge computing paradigm. To this end, we propose a measurement-based estimation solution to
obtain the interference efficiently and intelligently by dynamically controlling the measurement
and estimation through an accuracy-driven model. Basically, the measurement cost is reduced
through the link similarity model and the channel derivation model. Compared to the exhausting
measurement method, it can significantly reduce the time cost to the linear order of the network
size with guaranteed accuracy through measurement scheduling and the accuracy control process,
which could also balance the tradeoff between accuracy and measurement overhead. Extensive
experiments based on real data traces are conducted to show the efficiency of the proposed solutions.

Keywords: cloud-RAN; edge computing; resource allocation; interference measurement; modeling

1. Introduction

Driven by the need to support ever-increasing mobile traffic and fully utilize the limited spectrum,
the wireless network, especially the emerging new generation of technology, has become continuously
denser to the increase in the capacity and accommodating more users. The most prominent way is
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either adding more cells or creating a complex structure of heterogeneous networks [1]. Apart from
such the benefits brought by dense deployment and small cells, however, this results in growing
inter-cell interference levels and high costs, which hinder the massive deployment of this paradigm.

Fortunately, cloud computing has been constantly evolving to provide a certain level of
centralized computation and to assist the mobile network and sensor networks (mobile cloud and edge
computing) [2]. Furthermore, the major portion of cloud computing facilities is owned by the ISPs
and mobile communication provider, e.g., China Mobile Communication, AT&T, etc. Thus, a novel
mobile network architecture Cloud Radio Access Network (Cloud-RAN) is proposed, which has the
potential to answer the above-mentioned challenges faced by the mobile service provider. Cloud-RAN
is seen as a typical realization of mobile network supporting soft and green technologies in the fifth
generation (5G) mobile network in the year 2020 horizon [3]. In Cloud-RAN, baseband processing is
centralized and shared among sites. This make it possible to adapt to non-uniform traffic and utilizes
the resources’, i.e., base stations’, spectrum more efficiently. The powerful clouds behind the RAN
could make previous computationally heavy resource allocation algorithms more practical and thus
fully explore the potential of the capacity brought by denser deployment and small cells.

The most challenging part of this kind of method is how to model the complex interference
between communications in Cloud-RAN, so that the optimization method could be leveraged to
achieve good results. Two interference models are mainly proposed, which are the conflict graph
model and the SINR (Signal-to-Interference plus Noise Ratio) model, respectively. No matter the
conflict graph model or the SINR model, they are all based on the interference levels, which are
benchmarked by RSS (Receiving Signal Strength). Most state-of-the-art work [4–6] mainly focused
on the optimization problem on the non-convex objective function introduced by the SINR model,
by assuming the RSS follows the rule-of-thumb parameter-induced signal propagation models (e.g.,
the path loss model [6]). However, such propagation models and the corresponding rule-of-thumb
parameters cannot characterize the complex, time-varying channel conditions accurately, which in
turn compromises the optimization results [7,8].

A natural question then arises: How does one measure these RSS values efficiently and accurately?
An intuitive solution is using a measurement-assisted method to enhance the accuracy of the
interference model for spectrum optimization.

The Cloud-RAN is featured with powerful computation capacity and massive data storage. Such
an architecture is envisioned to perform a data-driven resource allocation and interference mitigation.
However, to obtain accurate RSS values, exhausting measurement on all wireless links will incur an
unacceptable time cost, which mainly consists of the following aspects.

• First, the optimization process in C-RAN requires the measurements of interference in every
potential communication link (almost every pair of nodes) in the network, so the number of
measurements grows quadratically with the network size.

• Second, due to the shadow fading and background noise, the measured interference will be
dynamic over time. Therefore, it requires multiple measurements to ensure the accuracy of
measurements in every link.

• Third, the signals fade differently in different channels. Thus, measurements in all channels are
also required.

In summary, it takes O(N2MC) measurements to finish the exhausting measurement, where N,
M and C are the network size, the number of channels and the number of measurements taken to
achieve a certain accuracy, respectively.

This challenge could only be resolved with powerful centralized control and inspection capacity,
which fortunately are the advantages of Cloud-RAN. By taking into account these features of
Cloud-RAN, we follow the concept of “measure a few, predict many” and propose an efficient solution
with accurate control for RSS estimation called the model-based solution.
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Basically, the model-based solution derives the RSS values by extending the path loss model with
partial measurements. It includes three steps: overhead reduction, accuracy control and measurement
scheduling. The overhead reduction is based on the link similarity in propagation: with the path
loss model, the Path Loss Exponent (PLE) is almost the same for a set of links in the network. Hence,
only a small portion of links of such a set need to be measured, while the rest can be derived from
the path loss model. Further, the measurement results of one channel can be used to compute the
value of another channel. Thus, only one channel needs to be measured for each link, which reduces
the measurement cost dramatically. The accuracy control is introduced for the tradeoff between the
estimation accuracy and the measurement cost. The measurement scheduling is targeted at improving
the time efficiency by finding the optimal schedule to assign the required measurements into different
time slots and channels. With the three steps, the proposed model-based solution enables efficient
interference estimation with time cost O(N), which achieves the linear order of the network size.

The contributions of this paper are summarized as follows.

• We reveal the important problem of accurate RSS estimation for data-driven resource allocation
and optimization in Cloud-RAN and show the performance gap between theoretical and practical
values via trace-driven experiments.

• By taking advantage of the feature of Cloud-RAN, we propose a model-based solution for efficient
RSS estimation. It reduces the time cost to the level of O(N/M), where N is the number of nodes
and M is the number of channels.

• We provide an accuracy control method for our solution, which achieves the required accuracy by
controlling the number of measuring links. This method could help us to balance the tradeoff
between the accuracy and the cost.

• We conduct extensive experiments using real communication traces collected from a wireless
network testbed, which shows the efficiency of the proposed solutions.

2. Related Work

2.1. Cloud-RAN

The basic idea of Cloud-RAN was first given with the concept of the Wireless Network Cloud
(WNC) by IBM [9]. It has then been further developed into today’s concept by China Mobile Research
Institute [10]. According to Checko et al. [11], the major research challenges in Cloud-RAN include:
high bandwidth, a strict latency network, base-station cooperation and a virtualization technique.
For the first challenge, the research community mainly has focused on physical layer technology [12]
and compression technology [13]. The community has also devoted research effort toward developing
high-end base stations and related technology to synchronize them [14]. Compared to the two previous
research challenges, virtualization technology, which is indispensable in realizing Cloud-RAN, has
attracted the most research efforts. In Sigcomm 2013, Yang et al. [15] proposed a soft-defined RAN
architecture via virtualization. The researchers from Stanford University also proposed SoftRAN [16]
to apply the SDN and virtualization technology. Recently, Zhou et al. [17] proposed a hyper-cellular
architecture for Cloud-RAN-like applications.

2.2. Wireless Network Optimization

The SINR model has been applied widely to characterize the interference for resource allocation
in wireless networks. Although regarded as a better model, there are still many drawbacks in
carrying out optimization with such a model due to the computational complexity it introduces.
As a result, many state-of-the-art efforts on network optimization were based on single-hop networks,
e.g., [4,18]. For multi-hop networks, most of the existing studies focused on cross-layer optimization
problems. For example, in [5], Bhatia and Kodialam optimized power control and routing under the
assumption that some frequency hopping mechanisms are in place for scheduling, which simplified
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scheduling hardness. For cross-layer optimization based on the SINR model, almost all existing efforts
(e.g., [19–21]) followed the layer-decoupled approach for analysis. With this approach, the solution
was obtained by determining an algorithm/mechanism for one layer at a time and then piecing them
together without the need of solving a joint optimization problem. Due to decoupling in the solution
procedure, these approaches are heuristic and cannot offer performance guarantee.

2.3. RSS Estimation

In [22], the authors applied the dynamic programming concept with storing the path loss for
future use. They proposed an interpolation algorithm to estimate the path loss between sensors. In [23],
the authors proposed a PLE estimator-based algorithm to facilitate a fast handover algorithm. Based
on these works, probability scheduling based on a distance estimator was discussed in [24,25], which
assumed that the distance between two neighboring nodes is known. Our previous work [7] focused
on using the path loss model to improve SINR-based optimization in wireless networks, where the
path loss model is using the rule-of-thumb parameters.

All the aforementioned works endeavored to craft interference models that simplify the problem
complexity. However, none of them focused on making a swarm measurement on all potential links
and all channels, which could lead to a better solution for the throughput optimization in wireless
networks. Our work is inspired by these research works and work on the topic of the interference
measurements and estimation to assist the resource allocation and optimizations in Cloud-RAN.

3. Problem Formulation

We consider a synchronized, time-slotted wireless network consisting of N nodes denoted by N .
A set of channels, denoted byM, is available for each node in N . We denote P as the transmitting
power of each node operating over any channel and pm

ij as the RSS of a signal from node i ∈ N over
channel m ∈ M received at node j ∈ N .

Our main task is to obtain all the RSS values over each pair of nodes and each channel, i.e.,

{pm
ij |i, j ∈ N , i 6= j, m ∈ M}. (1)

With such information, we can calculate all the RSS values over any link (i, j) ∈ N ×N and any
channel m ∈ M under any arbitrary channel assignment configuration. More precisely, let Nm be the
set of nodes operating over channel m. Then, the SINR value over link (i, j) and channel m, denoted by
SINRm

ij , could be determined by:

SINRm
ij =


pm

ij
N0+∑k∈Nm ,k 6=i pm

kj
if i ∈ Nm

0 otherwise,
(2)

where N0 is the ambient normalized Gaussian noise density, and it can be further used to determine the
network performance (e.g., aggregate throughput, fairness, etc.) via the well-known Shannon capacity
formula [26,27]. Therefore, the network performance could be optimized by choosing a proper channel
assignment configuration.

Our goal is to measure the pij with a certain accuracy. However, how to benchmark such accuracy
still needs further study. In our paper, we mainly benchmark our measurement scheme via the
following metrics:

• Time cost: the number of time slots t to finish all the measurements;
• Measurement overhead: the quantity of the measurements conducted. Note that the

measurements could be performed simultaneously, and the measurement overhead should be
larger or equal to the time cost;
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• Accuracy: the accuracy metric in our algorithm could be divided into link-wise accuracy and
network-wide accuracy, respectively. The link-wise accuracy implies that the measurements {pm

ij }
should be controlled within the confidence 1− α/2. The network-wide accuracy implies that the
β portion of the measurements is accurate with a certain confidence.

The accuracy is ensured by an adequate number of measurements, while the overhead and time
cost metric require as few measurement as possible. Thus, our target is to design the solution that
achieves good tradeoffs among these metrics.

4. Solution

In this section, we introduce our solution, which could measure the RSS values efficiently and
accurately. As previously mentioned, our basic idea is to follow the concept of “measure a few,
predict many”. This idea is mainly enabled by exploiting the inherent correlations between the RSS
values of different links and channels to reduce the measurement overhead. Our solution is performed
both on the base-station side and the cloud side. The model-based solution mainly consists of the
following steps:

• Firstly, we reduce the total measurement overhead by reducing the number of links and channels
that conduct measurements.

• Secondly, we derive the relationship between the number of measurements and the accuracy we
could achieve. The accuracy control could help us to balance the tradeoff between the accuracy
and measurement overhead.

• Then, based on the results of the previous two steps, we manage to reduce the time cost by
distributing the non-conflict measurements into time slots and channels.

With these three steps, we manage to achieve the targets that obtain the SINR in all potential links
and channels accurately and efficiently. We now present our solution in detail for all three steps.

4.1. Overhead Reduction

We manage to achieve low measurement overhead in two dimensions:

• Measurements in links: First, we reveal that a set of links in the network shares the same (or very
close) propagation property via the path loss model, e.g., close path loss exponent. Thus, we only
need to perform the measurement over small portion of links for this set. For the whole network,
we could select a small portion of links called representative links for measurement, thus reducing
the measurement overhead.

• Measurements in channels: Second, the measurement overhead could be further degraded by
only measuring a single channel in each link, as the propagation characteristics in other channels
could be derived from the measured channel.

4.1.1. Reduction in Measurement of Links

As previously mentioned, the basic idea behind this is that several coexisting links may share the
same propagation property. Now, we show the correlation of propagation properties between different
links. This is modeled with the Log-distance path loss model, which is defined as [28]:

pm
ij = P + PL0 + 10γ log dij, (3)

where dij is the distance between node i and node j; Pis the transmitting power of a wireless device;
and γ is the Path Loss Exponent (PLE). PL0 is the path loss in the reference distance. We apply the
path loss model here without any a priori knowledge of γ, but determine it through measurement.
Thus, the measurements of pm

ij could be transformed into estimating the γ. Note that, in this solution,
we have an additional assumption of a priori knowledge of nodes’ positions.
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Generally speaking, certain links may share the same or similar γ. Thus, we can group all the links
in the network into multiple clusters and pick two or three links from every cluster as representative
links. The clustering method is given below.

1. Take a small number of measurements in the form of the sequential broadcast of the measurement
packet in each node. This number of measurements should be much smaller than the number
required to achieve the accuracy requirement, as given in the next subsection;

2. Estimate the PLE γ for each link via linear regression;
3. Apply the k-means algorithm to cluster these links into k groups by using the PLEs as the metric,

where k is the number of representative links.
4. Select the representative links for each group.

Here, k is a tunable parameter for balancing the measurement overhead and accuracy. Once
the representative links have been identified, they will be measured in a more accurate manner via
the accuracy control mechanism shown in the next subsection. Note that we choose more than one
representative link for each set, and this will result in more accurate estimation of γ for this set.

To make a better presentation of the path loss model, we introduce a coefficient θ to replace
P + PL0 and rewrite Equation (3) as:

pij = 10γ log dij + θ. (4)

Equation (4) shows that the RSS value is a linear function of the Log-distance between a pair
of nodes. For a set of links in the same cluster, they have the same coefficients γ and θ. Thus, if the
coefficients are known, we can make a good estimation of RSS values of all links in a cluster. Note that
there are two coefficients in the model. Then, we must pick more than two representative links for
one cluster.

To derive γ and θ, we can simply choose a few representative links in the cluster and make several
measurements on such links (the number of measurements is decided by the accuracy control method
introduced in a later section). With the measured value, we can fit them into Equation (4) and use
linear regression to obtain the values of γ and θ. Therefore, the RSS values of the other unmeasured
links in the same cluster can be estimated using Equation (4) efficiently.

4.1.2. Reduction of the Measurements in Channels

Now, we introduce how to reduce the number of channels with which to conduct the
measurements. This is mainly enabled by introducing a model that drives the RSS in the channels
from the measurements in other channels over the same link. This model is a frequency-related signal
propagation model [28] and is formalized as:

pm
ij = 10 log10 f 2

m + 10γ log10 dij − φ0(in dB), (5)

where fm is the frequency of channel m and φ0 is the additional loss, which is constant.
Suppose p f1 is the RSS at n2 when the transmission uses the carrier frequency f1, while p f2 uses

f2. With (5), we can obtain the following equation:

p f1 − p f2 = 20 log(
f2

f1
). (6)

Suppose that f1 < f2, then with this equation, either p f1 or p f2 is known, and the other can
be inferred.
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4.2. Accuracy Model and Control Mechanism

In this subsection, we introduce how to achieve link-wise accuracy by controlling the number of
samples in each selected channel of representative links.

Generally, we take several samples in the representative links, then we use the average of the
samples as the value of the RSS in the corresponding link. Given several of representative links, we can
control the overall accuracy in the following steps. Firstly, we derive the required number of samples
mij for the measurement accuracy corresponding to the representative link (i, j). Then, we compute
the sample size nij that is required to ensure the estimation accuracy of the link pairs that are clustered
with (i, j). Finally, we decide the overall sample size by max{mij, nij}, which is elaborated to ensure the
required measurement accuracy and estimation accuracy.

Regarding the measurement accuracy, we have the following lemma.

Lemma 1. To ensure that the accuracy of the measured value p̄ij is within (1− β) of the true value in the
confidence level of (1− α), the minimum required samples mij for the measurement accuracy corresponding to

the representative link (i, j) are
z2

1−α/2σ2

p̄2
ij β

2 .

Proof. Suppose that measurement error is within the β portion of the mean at the 1− α confidence
level for one link (i, j) and the mean value of the measured RSS is p̄ij. Then, with a set of mij samples
on link (i, j), the 1− α confidence interval for the mean RSS could be derived with:

p̄ij ∓ z1−α/2
σ√mij

, (7)

where z1−α/2 is the (1− α/2)-quantile of the standard normal variate and σ is the standard deviation
of samples. To satisfy the required accuracy, it requires:

z1−α/2
σ√mij
≤ p̄ijβ. (8)

Solving this inequality, we have:

mij ≥
z2

1−α/2σ2

p̄2
ijβ

2
. (9)

Therefore,
z2

1−α/2σ2

p̄2
ij β

2 samples of packet transmission status are enough to ensure the required

accuracy of (1− β) for the link (i, j).

Note that, here, σ and p̄ij can be calculated from the samples collected in the process of determining
the representative links.

Regarding the estimation accuracy, the minimum required nij is obtained as follows. Let C denote
the cluster containing the representative (i, j). To ensure the accuracy of the estimated RSS value p′lh,
which is calculated with the linear regression of Equation (4), for other links (l, h) ∈ C with an accuracy
of (1− ϕ) at the confidence level of (1− α), we have the following lemma.

Lemma 2. To ensure that the estimated RSS value p′lh, with an accuracy of (1− ϕ) at the confidence level of
(1− α), the minimum required sample size in link (i, j) is:

d
s2

e z2
1−α/2

p′2lh ϕ2
[1 +

(log dlh − 〈log d〉)2

〈log2 d〉 − 〈log d〉2
]e. (10)
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where 〈log d〉 = ∑
nC
i=0 log di

nC
. Here, di denotes the length of the representative link where pi was measured.

The notation dlh stands for the length of link (l, h) and se =

√
∑

nC
i=1(pi−10γ log dij−θ)2

nC−2 .

Proof. Given nC measurements in total {pi; i = 1...nC } on the representative links of C, we can drive
the PLE γ for C with linear regression on the model in Equation (4). Because there are two regression
parameters, the degree of freedom is nC − 2. Hence, the corresponding standard deviation of errors for

this linear model is se =

√
∑

nC
i=1(pi−10γ log dij−θ)2

nC−2 .

For each unmeasured link (l, h) ∈ C, the estimated RSS p′lh could be derived with Equation (4).
According to [29] (Section 14.6), the standard deviation of p′lh is:

sp′lh
= se[

1
nC

+
(log dlh − 〈log d〉)2

∑nC
i=0 log2 di − nC〈log d〉2

]1/2, (11)

where 〈log d〉 = ∑
nC
i=0 log di

nC
. Here, di denotes the length of the representative link where pi was measured

and dlh stands for the length of link (l, h). In our implementation, we set the same sample size for all
the representative links of C. Hence, no matter how large nC is, the 〈log d〉 is always equal to the the
average log-length of the representative links of C. Then, 〈log d〉 can be determined without knowledge
of nC . Similarly, we can transform ∑nC

i=0 log2 di into nC〈log2 d〉. Then, we transform Equation (11) into:

sp′lh
=

se√
nC

[1 +
(log dlh − 〈log d〉)2

〈log2 d〉 − 〈log d〉2
]1/2. (12)

Regarding the accuracy constraint, we have the 1 − α confidence level for p′lh is p′lh ∓
sp′lh

t[1−α/2,nC−2]. Here, t[1−α/2,nC−2] is the (1 − α/2)-quantile of a t-variate with nC − 2 degrees of
freedom. Assuming that the estimation error requirement is within ϕ of the mean value at the 1− α

confidence level, the following inequality will hold:

sp′lh
t[1−α/2,nC−2] ≤ p′lh ϕ. (13)

Combing (12) and (13), we have the following result on nC :

nC ≥
s2

e t2
[1−α/2,nC−2]

p′2lh ϕ2
[1 +

(log dlh − 〈log d〉)2

〈log2 d〉 − 〈log d〉2
]. (14)

Let ndlh
equal the right part of (14), which varies with different dlh. Thus, the required sample size

nC for C should be larger than max(l,h)∈C ndlh
. Note that in ndlh

, the t-variate is still related to nC . To
eliminate this, we estimate t[1−α/2,nC−2] by z1−α/2, since t[1−α/2,nC−2] is very close to z1−α/2 for larger
nC (e.g., nC ≥ 20). Then, we set the sample size for each representative link (i, j) as the average of total
required measurements, nij = dnC/be, where b is the number of representative links for C.

With Lemmas 1 and 2, we can easily derive the following theorem.

Theorem 1. The required sample size to guarantee the accuracy of both measured and estimated RSS within
(1− β) and (1− ϕ) at the confidence level of (1− α) for (i, j) is max{nij, mij}.

Theorem 1 endows us with the ability to control the accuracy with minimum costs. The accuracy
control process should be conducted before the measurement.
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4.3. Time Efficiency

The time efficiency is achieved through measurement scheduling, which arranges the
measurement into different slots and channels to perform non-conflicting simultaneous measurements
in the least time slots. This conflict-free scheduling can achieve time efficiency and in the meantime
can help to identify the signal source when the SNR is too small to decode the signal.

Since different sampling sizes are derived for different representative links, we need to take this
into account for measurement scheduling. We use a matrix {cij} (cij ∈ I) to represent the calculated
sample size in link (i, j), and cij = 0 if (i, j) is not selected as the representative link.

We now formally define this problem as:

Definition 1. Minimum time, accuracy constraint measurement problem: Given a network N with N nodes
and M channelsM, find the schedule with earliest end time T subject to the measuring requirement defined
in {cij}.

Assume xm
i,t ∈ {0, 1} is a binary indicator, where xm

i,t = 1 denotes that node i performs a broadcast
in channel m at time slot t. The problem can be formulated as:

Min T
s.t. ∑

m∈M,t≤T
(xm

i,t − xm
i,tx

m
j,t) ≥ cij, ∀i, j ∈ N (15)

∑
m∈M

xm
i,t = 1, ∀i ∈ N , t ≤ T (16)

Here, the successful measurement is when node i is measuring in channel m while other nodes,
say j, do not. Thus, Equation (15) implies that the cost of the total measurements is equal to the
calculated sample size in link (i, j). Equation (16) implies that we only need to select one channel in one
link to perform the measurement; while the others could be derived by the cross channel measurement
method in Section 4.1.

However, the problem formulated above is an integer non-convex optimization problem with n
uncertain number of variables. Generally, it is NP-hard and unable to obtain the result in polynomial
time. To get the approximate result efficiently, we divide the scheduling process into two steps.

• First, since only representative links are obliged to be measured, we derive the number of
broadcasting nodes to cover all the representative links in the node-wise schedule.

• Second, we study how to distribute the measurements into different channels, such that the whole
measurement process will end in the earliest time.

Regarding how many nodes are enough to cover all the representative links, we mainly transform
the problem into a minimum dominating set problem. Let Lr denote the set of representative links.
We construct a graph GLr with nodes being the union of nodes whose links are in Lr, and the edges
are the links in Lr. Hence, trivially, the minimum required nodes to cover all the representative links
are the minimum dominating set of GLr . This is a classic NP-hard problem [30]. However, there are
many fast approximation algorithms proposed. Here, we adopt the algorithm in [31], which achieves
constant-time complexity. The output node set is denoted as Nr.

Then, with Nr, we study how to distribute their corresponding measurements into M channels
to achieve time efficiency. We prove it to be a balanced partition problem [30]. The problem can be
formally defined as follows. Given |Nr| nodes and their corresponding sample size {ci|i ∈ Nr, ci =

max
j∈N

cij}, we want to divide {c1, c2, ..., c|Nr |} into M sets, say {S1, S2, ..., SM}, such that max
i≤M
‖ Si ‖l1 is

minimized. Here, ‖ Si ‖l1 is the sum of all elements in Si. In this formulation, this problem is precisely a
balanced partition problem, which is extensively studied and proven to be NP-complete [30]. This kind
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of partition modeling of the measurement scheduling problem is illustrated in Figure 1. The partition
problem is often referred to as “the easiest NP-complete problem” [30]. Many efficient approximate
solutions have been proposed. We apply the recent proposed heuristic algorithm: LRM [32], which
achieves O(N log N) time complexity and produces better results in the scenario of large node size.

Channel 1

Channel 2

Channel M

slot 1 slot  2 slot 3 slot T

n
ij

n
lk

 link (i,j)

 link (l,k)

Figure 1. Illustration of the balanced partition modeling for measurement scheduling.

With the above partition result, we can generate the measurement schedule in the following way:
we first determine the channel of measurement for the nodes inNr according to their group number m.
The time sequence of measurement in one channel could be random. Then, we set xm

i,t = 1 if node i is
scheduled to broadcast with channel m in time slot t.

We now derive the time efficiency we could achieve, which is summarized as the
following theorem.

Theorem 2. The measurement scheduling algorithms described above could ensure the time efficiency at the
level of O(N), and this is upper-bounded by d |Nr |C

M e.

Proof. Since there are |Nr| broadcasting nodes and each node needs to take ci (i = 1, · · · , |Nr|)
samples, the total number of required measurements is ∑

|Nr |
i=1 ci. The measurements can be distributed

in M channels simultaneously, so the measurements can be finished in ∑
|Nr |
i=1 ci
M time slots with

our scheduling algorithm. Let C = max{c1, c2, · · · , c|Nr |}, and the above number of time slots is

upper-bounded by d |Nr |C
M e. In most wireless networks, the number of channels M is a fixed constant.

The sample size C is a controllable value, which is independent of the network size, and can be
considered as a constant once the required accuracy is given. Thus the time efficiency is O(|Nr|).
Since Nr is a subset chosen from N , we have |Nr| < N. In conclusion, the time efficiency of the
proposed algorithm is O(N), which is linear to the network size.

5. Evaluation

In this section, we analyze the performance of the proposed solutions via experiments. We first
present the experimental methodology and simulation settings; then, we discuss the numerical results.
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5.1. Experiment Targets

We designed the experiments to examine the modeling-based efficient RSS measurement in the
following aspects:

• The primary target is to evaluate how our solutions impact the SINR-based throughput
optimization algorithms.

• We also want to quantify the measurement overhead and time cost.
• The link-wise accuracy should be examined.

5.2. Experimental Settings

Our experiments’ methodology is basically a real dataset-driven simulation. Thus, in this section,
we mainly introduce the detail of the datasets, the processing of the data and the simulation settings.

We pick two representative dataset for the outdoor scenario and the indoor scenario.

• SWIMdataset: The first one is our data collection from the SWIM platform [33], which mainly
consists of 10 wireless nodes running in 802.11a/b/g mode. We collected the RSSI of the
broadcasting beacons from each AP. Each node will be activated to broadcast the beacon and
tuned to 11 different channels sequentially. Then, a laptop will move to 25 different locations
(including the locations of 10 APs) and collect more than 50 beacons in two minutes from one
AP in each channel. We also collect the AP ID and channel ID at the same time. This dataset is a
representative indoor dataset, while the redundant collected data are very useful to mitigate the
interference from the other WiFi access point in the building. A more detailed floor plan and the
deployment can be found in [33].

• MetroFidataset: The other is the MetroFi dataset [34], which covers 30,991 measurement locations
from 70 APs with known locations and generates more than 200,000 samples. This dataset
is basically an outdoor collected dataset. This dataset is collected from a municipal wireless
mesh network in Portland, Oregon. The deployers collect signal strength measurements using a
battery-powered embedded computer with an external 7-dBi omnidirectional antenna and a GPS
device. The collector roams around network to different locations. This dataset can be found in
the crawdad database.

In order to simulate the Cloud-RAN scenario to examine the effectiveness, we use the real collected
data to generate several experimental scenarios from these datasets. Note that the SWIM dataset is
from an indoor deployment, and MetroFi is from an outdoor deployment. Thus, we combine both
datasets to generate our experimental scenario. The experimental scenarios consist of 5, 10, 15 and
20 different nodes. The operating spectrum is 2.4 GHz, with 11 channels of a bandwidth of 20 MHz.
The locations are mapped into a 2-km square area, with several indoor and outdoor deployed APs.
The RSS between the indoor and the outdoor APs are computed from the model in [28] with the
parameters computed from both scenarios. More than 200 scenarios were generated to perform a
statistical performance evaluation. In addition, the throughput of the Cloud-RAN network in the
given area is computed with the algorithm in [27].

The basic benchmark to evaluate our and the comparison solution is the optimized throughput
using the estimated RSS values. The accuracy is quantified using the MPE (Mean Percentage Error),

which is formally defined as: 1
N

(
p′ij−pij

pij

)
. Here, p′ij is the estimated RSS for (i, j).

We also evaluated the parameter performance. There are mainly two parameters in our solution.
The first one is k, standing for the number of representative links. According to our solution, it has a
linear relation with the total links. Aiming at a fair comparison for the solution applied to different
scenarios with different link numbers, this parameter is altered to k′ = k/N. The second parameter
is u, denoting the number of channels selected to perform measurement in every representative link.
Finally, regarding the accuracy requirement, in our experiments, it is uniformly set to a 5% error rate
within a 95% confidence level.
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All the simulations and data processing were conducted in MATLAB 2012b on a server equipped
with a CPU of Intel i7 4790 and 16 GB DDR3 RAM. As the channel condition and the network
optimization in our algorithm were protocol independent, we choose to examine the algorithm
performance rather than the protocol level performance. Consequently, we used MATLAB to simulate
the experiments. This included the distributed measurement collection, measurement scheduling and
the result of the estimated RSS, upon which the throughput optimization algorithm was conducted.

5.3. Experiments Results

5.3.1. Performance of Overall Solution

We evaluate the performance of our solution in two dimensions. The first dimension is the
performance improvement of the throughput optimization algorithms brought by the estimated RSS
from our solution. This improvement is mainly quantified by the algorithm in [27] under different RSS
estimation methods on all the generated scenarios. The comparison result is shown in Figure 2. In this
graph, the line “AveragePower” is the result using the RSS of averaging the collected real-power data
without estimation. Thus, this line could serve as the baseline result. The line named “Uniform-PLE”
is the throughput under the RSS estimated with merely the path loss model with the rule-of-the-thumb
PLE value throughout the network. Then, the line named “Hetro-PLE” is the one with the path-loss
model using a distinct PLE parameter from link to link. Because this type of setting will lead to a larger
variable space but cost much more than the Uniform-PLE, this line could serve as the optimal result
achieved by the path loss model. The result of our solution is the line named “Ensemble”, which is
performed under the parameter of k′ = 1/4, u = 1. Overall, our solution is very close to the optimal
result “Hetro-PLE”. Specifically, the numerical results show that our solution could achieve 94% of
that under “Hetro-PLE” on average. In addition, we can also see from the figure that our solution
performed much better than the traditional path loss model using the rule-of-the-thumb parameter.

In fact, to improve the throughput of the wireless network or RAN, another set of representative
works is on the conflict graph [8,35]. The conflict graph-based solution features fast resolving time.
However, our solution is optimization algorithm independent. Thus, we only examine the effects on
how the solution impacts the optimization results. We choose the solution in [8], where the practical
conflict graph is proposed. The PCG(Practical Conflict Graph)features very flexible signal strength
estimation and uses only the conflict graph to encounter the accumulative interference effect. To
make an even comparison to our solution, we conduct the PCG with the graph coloring algorithm
in the same set of scenarios of our former experiment. The results are also shown in Figure 2, from
which we can see that the line “PCG” is just below the line of “Uniform-PLE”. This result shows
that the “PCG” indeed provides a better result in estimation of the interference in the network. This
result is also a little bit of surprise, as the PCG only represents the conflict in binary, which is a coarse
result. However, the optimization result is better than the rule-of-the-thumb driven model-based
optimization. This result provides an insight of how much the optimization results rely on the accuracy
of the interference estimation. We can also see that our solution is much better than PCG. This is
mainly due to our solution being a much finer-grained estimation of the RSS with larger representation
accuracy. Secondly, the coloring algorithm in PCG is only an approximate algorithm, which also
compromises the results in PCG.
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Figure 2. The CDF of throughput using different RSS estimation algorithms. PLE, Path Loss Exponent.

We also evaluate the time cost of our solution in different scenarios. Specifically, we conduct our
algorithm, including representative link selection, accuracy control, measurement scheduling in more
than 120 scenarios, with 30 each for network sizes of 10, 15, 20 and 40 nodes. All the algorithms are
conducted sequentially in different scenarios, and we use the time counter in MATLAB to get the time
costs. The parameter setting of this experiment is that k’ = 1/4 and u = 3. The results are displayed in
Figure 3. From this figure, we can see that the time cost grows with the network size. This is mainly
due to two reasons. Firstly, the representative links grow linearly with the network size. Secondly, the
measurement scheduling is conducted in the cluster with different representative links. The most time
cost is contributed by the measurement scheduling algorithm.
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Figure 3. The time cost to conduct our algorithms in scenarios with different network sizes.



Sensors 2018, 18, 3000 14 of 19

Regarding the performance of our algorithm in outdoor and indoor scenarios separately,
we conducted statistical experiments. The experiments were conducted in 30 scenarios each for
the SWIM dataset and MetroFi dataset. Same as the overall experiments, we used the throughput
optimized result as the benchmark to quantize the performance of our algorithm. The results are shown
in Figure 4, from which we can see that in the smaller sized network, our algorithm performed almost
the same between indoor and outdoor scenarios. Meanwhile, when the network size grew (indicated
by the increase of network throughput), our algorithm performed much better in the scenario of the
outdoor environment. This is mainly due to that the core of our solution being the PLE-based model,
which is more accurate in outdoor environments [28]. Moreover, in the indoor environment, the signal
propagation is much more complex. The signal propagation model cannot capture the interference
from the unknown signal source, which is much denser in the indoor environment.Version August 30, 2018 submitted to Sensors 14 of 19
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5.3.1. Performance of Overall Solution375

We evaluate the performance of our solution in two dimensions. The first dimension is the the376

performance improvement of the throughput optimization algorithms brought by the estimated RSS377

Figure 4. The CDF of throughput under different scenarios for indoors (SWIM) and outdoors (MetroFi).

5.3.2. Performance of the Overhead Reduction

As previously mentioned, we also studied how the parameters k′ and u affected our solution
and tried to find the proper settings for them. Same as the the overall evaluation, we also used the
throughput to quantify the parameters, and the results are respectively shown in Figure 5 (with u = 1)
and Figure 6 (with k′ = 1/5). Trivially, both parameters are linearly related to the measurement cost.
The estimation MSE (Minimum Square Error) under different k′ is shown in Figure 7. We used the MSE
to quantify the error mainly due to the regression method being used to estimate the RSS of the other
links. From the figure, we can tell that a small number of k′ = 1/4 is enough to control the error to an
acceptable degree. In addition, we can also see that with the increasing of k′ and u, the performance
of our solution would also increase. Meanwhile, the link with k′ = 1/4 and u = 1 was close enough
to the optimal solution. Such settings could be regarded as reference configuration parameters for
our solution.
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Figure 5. The CDF of throughput under different k′, where k′ stands for the ratio of representative
links to the total number of links.
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Figure 6. The CDF of throughput under different u, where u denotes the number of channels selected
to perform the measurement in every representative link.
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Figure 7. The CDF of estimated MPE under different numbers of representative links.

5.3.3. Performance of Accuracy Control

As part of our solution and the main contribution, we also examine the performance of the
accuracy control. Figure 8 illustrates the CDF of the average measurement error. We can tell from
the figure that the cost to control the error to an acceptable level is small. For instance, to control the
average error to less than 9% only requires a sample size of 10. Furthermore, we can also tell from
the figure that with the increase of the number of samples collected, the measurement error further
decreases. Specifically, with only 20 samples, the error rate is usually smaller than 5%. In summary,
the proposed accuracy control method can save significant sampling overhead since it only takes a
very small number of measurements in general.
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Figure 8. The CDF of the estimated error rate for different numbers of measurement.



Sensors 2018, 18, 3000 17 of 19

5.3.4. Performance of Measurement Scheduling

The proposed measurement scheduling algorithm in our solution was designed to reduce the time
cost. We examined this algorithm in scenarios of 5, 10, 15 and 20 nodes respectively and performed
statistical results analysis, which are shown in Figure 9. Here, the Y-axis is the normalized time cost
reduction ratio. This figure mainly illustrates that the rate of cost reduction scales with the network
size. Specifically, the measurement time cost could decrease as much as 90% when the network size is
20 nodes.
Version August 30, 2018 submitted to Sensors 16 of 19
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Figure 9. The cost reduction by measurement scheduling under different network size.
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From the above analysis, we conclude that the our solution is effective and could significantly
reduce the time cost in a controllable manner.

6. Conclusions

Cloud-RAN is envisioned to solve the challenges arising from the increasing transmission demand
of wireless communication networks in a cost-effective way. It also has the potential to perform a
data-driven resource allocation among cells such that the communication capacity could be maximized
with controlled inter-cell interference, which is a major issue in today’s denser deployment. However,
such a data-driven optimization paradigm requires unacceptable measurement cost to get the accuracy.
In this paper, we mainly answer the following question: How does one get the interference accurately
with rather low overhead? An efficient solution is proposed to tackle this. The solution reduces the
measurement overhead and time cost through model-based derivation and scheduling. This solution
could achieve both the reduction of measurement overhead and time cost. Moreover, this solution
also provides the tool to control the tradeoff between accuracy and overhead. The experiments based
on real testbed collected data traces are conducted to examine the performance of our solution. The
results prove the efficiency of our solution and also give a hint about configuring the parameters in
the algorithm.

Author Contributions: Y.Z., W.L. and J.W. conceived the original ideas. Y.Z. prepare the orignal draft and
designed the experiments. Y.Z. conducted the experiments and drafted the manuscript. W.L. and J.W. review and



Sensors 2018, 18, 3000 18 of 19

polished the paper. All the authors contributed to the discussion and analysis of the experimental data and results.
S.L. provided the Resources and the Supervision to the project.

Funding: This work is supported in part by the National Science Foundation of China under Grant Nos. 61602238,
61672278, 61672283, 61373128, the Defense Industrial Technology Development Program under Grant No.
JCKY2016605B006, the key project of Jiangsu Research Program Grant (BK20160805) and the China Postdoctoral
Science Foundation (No. 2016M590451,2018T110497). It is also supported by CNS 1757533, CNS 1629746, CNS
1564128, CNS 1449860, CNS 1461932, CNS 1460971, and IIP 1439672. Funds of Key Laboratory of Safety-Critical
Software(Nanjing University of Aeronautics and Astronautics) Ministry of Industry and Information (Grant no.
XCA17007-02).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Langar, R.; Secci, S.; Boutaba, R.; Pujolle, G. An Operations Research Game Approach for Resource and Power
Allocation in Cooperative Femtocell Networks. IEEE Trans. Mob. Comput. 2015, 14, 675–687. [CrossRef]

2. Li, W.; Zhao, Y.; Lu, S.; Chen, D. Mechanisms and challenges on mobility-augmented service provisioning
for mobile cloud computing. IEEE Commun. Mag. 2015, 53, 89–97. [CrossRef]

3. Chih-Lin, I.; Rowell, C.; Han, S.; Xu, Z.; Li, G.; Pan, Z. Toward green and soft: A 5G perspective.
IEEE Commun. Mag. 2014, 52, 66–73.

4. Goussevskaia, O.; Oswald, Y.A.; Wattenhofer, R. Complexity in geometric SINR. In Proceedings of the ACM
MobiHoc, Montreal, QC, Canada, 9–14 September 2007; pp. 100–109.

5. Bhatia, R.; Kodialam, M. On Power Efficient Communication over Multi-hop Wireless Networks: Joint
Routing, Scheduling and Power Control. In Proceedings of the IEEE INFOCOM, Hong Kong, China,
7–11 March 2004.

6. Shi, Y.; Hou, Y.; Kompella, S.; Sherali, H.D. Maximizing capacity in multihop cognitive radio networks
under the SINR model. IEEE Trans. Mob. Comput. 2011, 10, 954–967. [CrossRef]

7. Zhao, Y.; Wu, J.; Lu, S. Efficient SINR Estimating with Accuracy Control in Large Scale Cognitive Radio
Networks. In Proceedings of the 2011 IEEE 17th International Conference on Parallel and Distributed
Systems (ICPADS), Tainan, Taiwan, 7–9 December 2011; pp. 549–556.

8. Zhou, X.; Zhang, Z.; Wang, G.; Yu, X.; Zhao, B.Y.; Zheng, H. Practical conflict graphs for dynamic spectrum
distribution. In Proceedings of the ACM SIGMETRICS, Pittsburgh, PA, USA, 17–21 June 2013; pp. 5–16.

9. Lin, Y.; Shao, L.; Zhu, Z.; Wang, Q.; Sabhikhi, R.K. Wireless network cloud: Architecture and system
requirements. IBM J. Res. Dev. 2010, 54, 4:1–4:12. [CrossRef]

10. Mobile, C. C-RAN: The Road Towards Green RAN; China Mobile Research Institute: Beijing, China, 2011;
Volume 2.

11. Checko, A.; Christiansen, H.L.; Yan, Y.; Scolari, L.; Kardaras, G.; Berger, M.S.; Dittmann, L. Cloud RAN for
mobile networks—A technology overview. IEEE Commun. Surv. Tutor. 2015, 17, 405–426. [CrossRef]

12. Ponzini, F.; Giorgi, L.; Bianchi, A.; Sabella, R. Centralized radio access networks over wavelength-division
multiplexing: A plug-and-play implementation. IEEE Commun. Mag. 2013, 9, 94–99. [CrossRef]

13. Grieger, M.; Boob, S.; Fettweis, G. Large scale field trial results on frequency domain compression for uplink
joint detection. In Proceedings of the 2012 IEEE Globecom Workshops, Anaheim, CA, USA, 3–7 December
2012; pp. 1128–1133.

14. Flanagan, T. Creating cloud Base Stations with TI’s KeyStone Multicore Architecture; Texas Instruments White
Paper; Texas Instruments: Dallas, TX, USA, 2011.

15. Yang, M.; Li, Y.; Jin, D.; Su, L.; Ma, S.; Zeng, L. OpenRAN: A software-defined ran architecture via
virtualization. In Proceedings of the ACM SIGCOMM Computer Communication Review, Hong Kong,
China, 12–16 August 2013; Volume 43, pp. 549–550.

16. Gudipati, A.; Perry, D.; Li, L.E.; Katti, S. SoftRAN: Software defined radio access network. In Proceedings of
the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China,
16 August 2013; pp. 25–30.

17. Zhou, S.; Zhao, T.; Niu, Z.; Zhou, S. Software-defined hyper-cellular architecture for green and elastic
wireless access. IEEE Commun. Mag. 2016, 54, 12–19. [CrossRef]

18. Semasinghe, P.; Hossain, E.; Zhu, K. An evolutionary game for distributed resource allocation in
self-organizing small cells. IEEE Trans. Mob. Comput. 2015, 14, 274–287. [CrossRef]

http://dx.doi.org/10.1109/TMC.2014.2329835
http://dx.doi.org/10.1109/MCOM.2015.7060487
http://dx.doi.org/10.1109/TMC.2010.204
http://dx.doi.org/10.1147/JRD.2009.2037680
http://dx.doi.org/10.1109/COMST.2014.2355255
http://dx.doi.org/10.1109/MCOM.2013.6588656
http://dx.doi.org/10.1109/MCOM.2016.7378420
http://dx.doi.org/10.1109/TMC.2014.2318700


Sensors 2018, 18, 3000 19 of 19

19. Chen, C.; Lee, D. A joint design of distributed QoS scheduling and power control for wireless networks.
In Proceedings of the IEEE INFOCOM, Barcelona, Spain, 23–29 April 2006.

20. Zhu, K.; Hossain, E.; Niyato, D. Pricing, spectrum sharing, and service selection in two-tier small cell
networks: A hierarchical dynamic game approach. IEEE Trans. Mob. Comput. 2014, 13, 1843–1856. [CrossRef]

21. Liu, W.; Luo, X.; Liu, Y.; Liu, J.; Liu, M.; Shi, Y.Q. Localization Algorithm of Indoor Wi-Fi Access Points Based
on Signal Strength Relative Relationship and Region Division. Comput. Mater. Contin. 2018, 55, 71.

22. Zhao, X.; Razoumov, L.; Greenstein, L.J. Path Loss Estimation Algorithms and Results for RF Sensor
Networks. In Proceedings of the IEEE Vehicular Technology Conference (VTC), Los Angeles, CA, USA,
26–29 September 2004.

23. Benvenuto, N.; Santucci, F. A Least Squares Path-Loss Estimation Approach to Handover Algorithms.
IEEE Trans. Veh. Technol. 1999, 48, 437–447. [CrossRef]

24. Mao, G.; Anderson, B.D.O.; Fidan, B. Path Loss Exponent Estimation for Wireless Sensor Network
Localization. Comput. Netw. 2007, 51, 2467–2483. [CrossRef]

25. Nie, Q.; Weng, J.; Xu, X.; Feng, B. Defining Embedding Distortion for Intra Prediction Mode-based Video
Steganography. Comput. Mater. Contin. 2018, 55, 59–70.

26. Andrews, M.; Dinitz, M. Maximizing capacity in arbitrary wireless networks in the SINR model: Complexity
and game theory. In Proceedings of the IEEE INFOCOM, Rio de Janeiro, Brazil, 19–25 April 2009; pp.
1332–1340.

27. Zhao, Y.; Wu, J.; Lu, S. Throughput Maximization in Cognitive Radio Based Wireless Mesh Networks.
In Proceedings of the Military Communications Conference (Milcom), Baltimore, MD, USA, 7–10 November
2011; pp. 260–265.

28. Propagation Data and Prediction Methods for the Planning of Indoor Radiocomm. Systems and Radio Local Area
Networks in the Frequency Range 900 MHz to 100 GHz; Rec. ITU-R P.1238-9; ITU-R Recommendations: Geneva,
Switzerland, 2012.

29. Jain, R. The Art of Computer Systems Performance Analysis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991.
30. Garey, M.; Johnson, D. Computers and Intractability: A Guide to the Theory of NP-completeness; W.H. Freeman

and Company: New York, NY, USA, 1979.
31. Kuhn, F.; Wattenhofer, R. Constant-time distributed dominating set approximation. Distrib. Comput. 2005,

17, 303–310. [CrossRef]
32. Zhang, J.; Mouratidis, K.; Pang, H. Heuristic algorithms for balanced multi-way number partitioning.

In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 16–22
July 2011.

33. SWIM Platform. Available online: http://cs.nju.edu.cn/lwz/swim/SWIM.html (accessed on 26 April 2011).
34. Phillips, C.; Senior, R.; Sicker, D.; Grunwald, D. Robust Coverage and Performance Testing for Large Area

Networks. In International Conference on Access Networks; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 457–469.

35. Zhao, Y.; Li, W.; Wu, J.; Lu, S. Quantized conflict graphs for wireless network optimization. In Proceedings
of the IEEE INFOCOM. Hong Kong, China, 26 April–1 May 2015; pp. 2218–2226.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMC.2013.96
http://dx.doi.org/10.1109/25.752567
http://dx.doi.org/10.1016/j.comnet.2006.11.007
http://dx.doi.org/10.1007/s00446-004-0112-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Cloud-RAN
	Wireless Network Optimization
	RSS Estimation

	Problem Formulation
	Solution
	Overhead Reduction
	Reduction in Measurement of Links
	Reduction of the Measurements in Channels

	Accuracy Model and Control Mechanism
	Time Efficiency

	Evaluation
	Experiment Targets
	Experimental Settings
	Experiments Results
	Performance of Overall Solution
	Performance of the Overhead Reduction
	Performance of Accuracy Control
	Performance of Measurement Scheduling


	Conclusions
	References

