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Realizing Tao-Thouless-like state in 
fractional quantum spin Hall effect
Chen-Rong Liu1,*, Yao-Wu Guo1,*, Zhuo-Jun Li2,3, Wei Li2,3 & Yan Chen1,4

The quest for exotic quantum states of matter has become one of the most challenging tasks in 
modern condensed matter communications. Interplay between topology and strong electron-electron 
interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall 
effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum 
spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground 
degeneracies, states evolutions, entanglement spectra, and static structure factor calculations 
demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized 
in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of 
spin-orbit coupling. Furthermore, the experimental realization of the Tao-Thouless-like state as well as 
its evolution in optical lattices are also proposed. The importance of this prediction provides significant 
insight into the realization of exotic topological quantum states in optical lattice, and also opens a route 
for exploring the exotic quantum states in condensed matters in future.

Since the discovery of spin-Hall effect in 20041,2, the study of spin-orbit coupling effects on quantum physics has been 
triggered great research interests both in condensed matter community and material science in this decade, especially 
fueled by the realization of the time reversal invariant topological insulators3,4 and Weyl semimetals5,6, leading to the 
most challenging task of the search for exotic quantum states and their realizations in modern condensed matter phys-
ics. Learned from the physics of fractional quantum Hall effects7, interplay between topology and strong 
electron-electron interactions displays lots of fascinating effects. The prominent fractional quantum Hall states occur-
ring at certain unique values of the filling factor ν =

+k
1

2 1
, k integer, have been explained by Laughlin as an “incom-

pressible quantum fluid state”8. Subsequently, Tao and Thouless9 proposed an alternative ground state with a gap to 
excitations, which has a charge-density-wave (CDW)-like structure and can be connected to the Laughlin’s state by an 
adiabatic change of the aspect ratio γ =

N

N
y

x

10–14 without undergoing a quantum phase transition. Namely, Tao-Thouless 
state is the exact ground state once Nx →  O(1). In addition, the stripe formation of conventional CDW state in a frac-
tional quantum Hall system has also been argued for systems with even denominator filling factors15–18. It is crucial to 
point out that the main difference between conventional CDW and Tao-Thouless states is that the latter state associates 
non-vanished fractional quantum Hall conductance, while the former one does not. Importantly, these studies show the 
richness of quasiparticle phases in the fractional quantum Hall systems.

In recent years, the fractional quantum (spin) Hall effects19,20 have been realized theoretically in the fractional 
Chern insulators21–24 without an external magnetic field, where strongly interacting particles partially fill up the 
topological flat-band with nonzero Chern number21,25,26. The stability of the edge states in fractional quantum spin 
Hall systems against interactions and disorders was analyzed by Levin and Stern20: A criterion σsH/e* (σsH the spin 
Hall conductance and e* the Abelian quasi-particles of charge), is proposed to determine whether the system is a 
non-trivial fractional topological insulator or not. Neupert et al.27 studied the stability of fermionic fractional 
topological insulating phase with the filling factor ν = 2

3
 and pointed out that the system favors a fractional quan-

tum spin Hall state for two decoupled spin species, but it should lead to an unstable fractional topological insulat-
ing phase according to Levin and Stern’s criterion. In fact, the fractional quantum spin Hall effect can possess 
fractionalized excitations in the bulk irrespective of the existence of gapless edge modes28. Moreover, by tuning the 
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inter-spin interaction, the fractional quantum spin Hall state evolves into a conventional CDW stripe phase27–30 
through a phase transition signalled by the closing of energy and quasi-spin excitation gaps30. Furthermore, 
Bosonic analogues of those fractional topological insulators have also been extensively studied by Repellin et al.31, 
and were found to be robust to perturbations in the bulk by introducing a spin-orbit coupling.

In this Letter, we propose a theoretical realization of fractionalized topological Tao-Thouless-like quantum 
state in a fractional quantum spin Hall system with a thin torus geometric structure by tuning the strength 
of Rashba-type spin-orbit coupling based on the framework of finite size exact diagonalization method. The 
obtained Tao-Thouless-like state has the property of time reversal symmetry, which is a counterpart of 
Tao-Thouless state in fractional quantum Hall systems9 or in fractional Chern insulators32 with time reversal 
symmetry breaking. Additionally, we also present a discussion of the possible experimental realization and detec-
tion of the Tao-Thouless-like topological quantum state as well as its evolution in optical lattices.

Results
The dispersion of single-particle bands. The single-particle band dispersion of the Hamiltonian 
+ˆ ˆH Hsoc0  (see model Hamiltonian in Methods) on the system with torus and cylinder structures are shown in 

Fig. 1(b,c), which have a large bulk energy gap with the amplitude of 2t1 well separating the two spin-mixed flat-
bands and conduction bands. Introducing the spin-orbit coupling the system still keeps the time reversal invari-
ance but the inversion symmetry is broken, the two spin degenerate flat-bands will be split [see Fig. 1(d)] except 
at the time reversal invariant points. It is interesting to point out that there are some helical edge states emerging 
inside the bulk energy gap and crossing each other at the Γ (kx =  0) point forming the Dirac-like dispersion rela-
tion protected by time reversal symmetry, similar to the band structure of a topological band insulator33. As the 
bulk energy gap is much larger than the energy scale of the interactions, we can safely project Hamiltonian 
+ˆ ˆH Hsoc0  onto the states in the lowest two spin-mixed flat-bands in the exact diagonalization using a torus 

geometric structure. The repulsive interaction defined in Hamiltonian (1) (see model Hamiltonian in Methods) 
include a NN term which is parameterized by the coupling V and the dimensionless number λ. Previous stud-
ies27–30 have pointed out that the system favors a fractional quantum spin Hall and a conventional CDW stripe 
phases at small and large values λ of interspin interaction.

The ground state properties of many-body Hamiltonian. The ground state spectra of the effect of 
the Rashba spin-orbit coupling αR (see model Hamiltonian in Methods) on a fractional quantum spin Hall state 
are displayed in the top row of Fig. 2, where the parameters are chosen as αR =  0 and αR =  0.08 for (a1) and (b1), 
respectively, and shown that the ground state manifold is defined as a set of lowest states [nine-fold degeneracies 
in (a1) and three-fold degeneracies in (b1)] well separated from other excited states by a clear energy gap. Here it 
should be pointed out that the results [Fig. 2(a1,a2)] have been reported in our previous studies (see refs 29 and 30),  
we still present here to facilitate the following discussion concerned to the state evolution by applying the effect of 
spin-orbit coupling on the fractional quantum spin Hall state. From Fig. 2(a1,b1), we also notice that the energy 
gap is always significantly larger than the energy splitting of the ground states for various system sizes. Although 
these states are not exactly degenerate on a finite system, their energy difference should fall off exponentially as 
the system size increases. In addition, it is interesting to find that for those states with three-fold or nine-fold 
degeneracy, if (kx, ky) is the momentum sector for one of the states in the ground states manifold, then the other 
state should be obtained in the sector (kx +  Ne, ky +  Ne) [modulo (Nx, Ny)], similar to that in fractional Chern 
insulators22. The relationship of the quantum numbers of the ground states manifold steams from the topological 
nontrivial characteristics27,30, which can be confirmed by the calculations of spectral flow [see the supplementary 
information (SI) for details].

Entanglement spectra of ground states. We turn to reveal the nature of these states shown in the top 
row of Fig. 2 by using a powerful tool of particle entanglement spectra (PES)23,34–37, which provides an independ-
ent signature of the excitation structure of system as a fingerprint and remaining their characteristics in the ther-
modynamic limit. The entanglement energy levels ξ can then be displayed in groups labeled by the total 
momentum (kx, ky) for the NA particles, and shown in Fig. 2(a2,a3,b2,b3). When the entanglement spectrum is 
gapped, the number of states below the gap is a signature of a given topological phase, which is tightly related to 
the number of quasi-hole excitations, a hallmark of the fractional phase23,31,38. In our previous study29, we have 
demonstrated the nature of fractional quantum spin Hall state in Fig. 2(a2), which follows the counting rule of 
fractional quantum spin Hall state30,31. However, in Fig. 2(b2), the number of states below the gap of PES equalling 
to 168 deviates from the counting rule of fractional quantum spin Hall state, but precisely matches the conven-

tional CDW counting32,39: =
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N
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A . Therefore, this result suggests that such state is a con-

ventional CDW or CDW-like state.
To further well-understood the behaviors of the state shown in Fig. 2(b1), we adopt the aspect ratio dependent 

calculation of the PES. By tuning the aspect ratio γ =
N

N
y

x
 in a fixed system size from a thin torus γ = 6

2
 to a more 

two dimensional one γ = 3
4

, the calculated PES are shown in Fig. 2(a3,b3). As a reference, we compare with 
Fig. 2(a2,a3), and notice that the PES for the fractional quantum spin Hall state in both cases clearly display the 
similar gapped structure as well as sharing the same counting numbers below the gap of PES, as expected from 
our intuition. Moreover, comparing with Fig. 2(b2,b3) as well as (a3), it is surprised that since changing the aspect 
ratio to a more two dimensional torus γ = 3

4
 the structure of PES in Fig. 2(b3) is similar to that in Fig. 2(a3) rather 

than that in Fig. 2(b2), and the states below the gap of PES in Fig. 2(b3) is no long matching the conventional 
CDW counting instead by the one for fractional quantum spin Hall state. Therefore, it suggests that such 
CDW-like phase obtained in a thin torus geometric structure is indeed the Tao-Thouless-like state signalled by 
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connecting to fractional quantum spin Hall state through an adiabatic change of the aspect ratio [see Fig. 2(b2,b3)] 
and evolved from fractional quantum spin Hall state without undergoing a quantum phase transition (see SI for 
details).

Static structure factor. In addition, we also present the static structure factor (SSF) calculations to further 
solidify our findings, and shown in Fig. 3(a). It is clearly shown that the Tao-Thouless-like state has a typical fea-
ture of CDW stripe order displaying the double unidirectional Bragg peaks aligned along the x-direction 
appeared at momenta q =  Q1 [= (0, 2)] and Q2[= (0, 4)] in the SSF Sq calculation with the Rashba-type spin-orbit 
coupling strength αR =  0.08 in the thin torus geometric structure with γ = 6

2
. Furthermore, by tuning the aspect 

ratio γ to a more two dimensional torus geometric structure γ = 3
4
, shown in Fig. 3(b), the double unidirectional 

peaks in SSF Sq calculation of the Tao-Thouless-like state is disappeared and instead by a featureless characteristic. 
By comparison with the featureless in SSF Sq calculation of the fractional quantum spin Hall state29, it suggests the 
phase, which is sensitive to the shape of lattice geometric structure, is indeed a Tao-Thouless-like state. All these 
obtained results are consistent with expected from the PES calculations and further solidify our findings.

Figure 1. Lattice structure and electronic behaviours of single-particle Hamiltonian. (a) The checkerboard 
lattice structure of the flat-bands model, with arrows and (solid and dashed) lines representing the NN and 
NNN hoppings, respectively. The direction of the arrow shows the sign of the phase in the NN hopping terms. 
Two of the NNN hoppings are shown as the dashed curve. By putting the system on a torus and a cylinder, the 
single-particle energy dispersion with the strength of Rashba spin-orbit coupling αR =  0.08 are shown in (b,c), 
respectively. In (c), the helical edge states (green lines) protected by time reversal symmetry are observed.  
(d) The density of states (DOS) on a torus structure with Rashba spin-orbit coupling αR =  0.0 and αR =  0.08.
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Experimental realizations
We propose an experimental realization of state of Tao-Thouless-like in future. Interestingly, it might be to 
study the spin-orbit coupling effect on the fractional quantum spin Hall state and obtain the state evolution. 
Very recently, a scheme of direct experimental realization of Rashba-type spin-orbit coupling40 and topological 
Haldane model41 in optical lattices was proposed, which might be helpful to establish the spin-orbit coupling 
effects on the flat-bands model with time reversal symmetry or equivalent bilayer flat-bands model in exper-
iments42. Considering the interaction strength can be easily tuned in cold atom setups, our work will provide 

Figure 2. Ground state degeneracies and entanglement spectra of many-body Hamiltonian. (Top row) 
Ground state degeneracies for a system size Ns =  2 ×  Nx(= 2) ×  Ny(= 6), and the PES probing the NA =  3 
quasihole excitations for the Ne =  8 particles for a system size, (second row) Ns =  2 ×  Nx(= 2) ×  Ny(= 6), and 
(bottom row) Ns =  2 ×  Nx(= 4) ×  Ny(= 3). The Rashba-type spin-orbit coupling parameter αR =  0 for ninefold 
state on the left column (a), and αR =  0.08 for threefold state on the right column (b). In (a2,a3,b3), the states 
below the PES gap match the fractional quantum spin Hall state counting rule, while the one in (b2) matches 
the counting rule for a conventional CDW state.

Figure 3. Static structure factor of ground state of many-body Hamiltonian. The SSF calculations Sq with 
various Rashba-type spin-orbit coupling parameter αR for a system size (a) Ns =  2 ×  Nx(= 2) ×  Ny(= 6) and  
(b) Ns =  2 ×  Nx(= 4) ×  Ny(= 3).
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guidance for the experimental realization of the Tao-Thouless-like state and its evolution as well as exciting 
many-body fractional topological phases.

Methods
Model Hamiltonian. We start with a theoretical model Hamiltonian of electrons on a checkerboard lattice29,30  
shown in Fig. 1(a):

∑ λ= + + 
 + + + 

↑ ↑ ↓ ↓ ↑ ↓ ↓ ↑
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆH H H V n n n n n n n n( ) ,

(1)
soc

i j
i j i j i j i j0

,
, , , , , , , ,

where Ĥ0 consists of two copies of π-flux phase with flat-bands as in ref. 26, and σn̂i ,  is the density operator on the 
site i with spin σ(= ↑ , ↓ ). In the single-particle part Hamiltonian Ĥ0, we denote α σˆ†ck, ,  as the creation operator for 
an electron with lattice momentum k and spin σ in the sublattice α =  A, B, and we introduce a spinor 
ψ =σ σ σˆ ˆ† † †c c( , )A Bk k k, , , , , . Then, the second quantized single-particle Hamiltonian Ĥ0 reads

∑ ψ
τ
ψ ψ

τ
ψ=
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⋅ 
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where the three vectors Bk are respectively defined as

=B t k k4 cos cos , (3)x yk0, 3
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/4
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x y

= −B t k k2 (cos cos ), (5)x yk3, 2

the identity and the triplet Pauli matrices τ =  (τ0, τ1, τ2, τ3) act on the sublattice index. The parameters t1, t2, and t3 
represent the nearest neighbor (NN) hopping, next-nearest-neighboring (NNN) hopping, and next-next nearest 
neighbor (third-NN) hopping amplitudes, respectively. In addition, the second term in Hamiltonian (1) describes 
the Rashba-type spin-orbit coupling and has the form43,44:

∑α σ σ= − + . .
σ σ

σσ
δ δ σ σ

σσ
δ δ σ σ

′

′
+ − ′

′
+ + ′

ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H i c c c c h c( ) ,
(6)

soc R y i i x i i
,

, , , ,x y x y

where αR represents the strength of the Rashba-type spin-orbit coupling, δx and δy are the unit vectors along the x̂ 
and ŷ directions shown in Fig. 1(a).

Many-body exact diagonalization. We exactly diagonalize the many-body Hamiltonian (1) projected to 
the lowest two flat-bands for a finite system with Nx ×  Ny unit cell (total number of sites Ns =  2 ×  Nx ×  Ny) shown 
in Fig. 1(a). We denote the number of fermions as Ne, and filling factor as ν = N

N N2
e

x y
. Because of the periodic 

boundary condition implementing translational symmetries, we diagonalize the system Hamiltonian in each total 
momentum π π=







q 2 , 2k

N

k

N
x

x

y

y
 sector with (kx, ky) as integer quantum numbers. Without loss of generality, we set 

the t1 as an energy unit and the interaction V =  1, λ =  0, and the filling factor ν = 1
3
 throughout this paper. Similar 

results for ν = 1
5

-filling states can also be easily obtained when the NNN repulsion is included (see the SI for 
details).

Entanglement spectra. We partition the system in the way as described in ref. 23 and divide the Ne parti-
cles into two subsystems of NA and NB particles, and trace out the degrees of freedom carried by the NB particles. 
The eigenvalues e−ξ of the resulting reduced density matrix ρA =  TrBρ, where ρ = ∑ Ψ Ψ=i

d
i i

1
2 1  is defined in a 

d-fold [nine-fold in Fig. 2(a1) and three-fold in Fig. 2(b1)] degenerate state |Ψ i〉 .

Static structure factor. The static structure factor is defined30,45–47 as

∑= Ψ Ψ − Ψ Ψ Ψ Ψ
′

− ⋅→
′ ′

′
   S

N
e n n n n1 ( ),

(7)s j j

i r
j j j jq

q
2

,

jj

the 
nj indicates the density at site j projected onto the lowest two flat-bands of single-particle Hamiltonian, and 

the wave function |Ψ 〉  is incoherent summation over the degenerate ground states.
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