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Basin stability measure of different 
steady states in coupled oscillators
Sarbendu Rakshit1, Bidesh K. Bera1, Soumen Majhi1, Chittaranjan Hens2 & Dibakar Ghosh1

In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where 
individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally 
different types of suppressed states, namely amplitude death and oscillation death. The stabilization 
of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all 
the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to 
multistability features of oscillation death states, linear stability theory fails to analyze the stability 
of such states analytically, so we quantify all the states by basin stability measurement which is an 
universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also 
observe multi-clustered oscillation death states in a random network and measure them using basin 
stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and 
Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability 
for different steady states depends on mean-field density and coupling strength. We also analytically 
derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

Different types of collective behavior emerge when two or more dynamical units interact with each other and 
suppression of oscillation is one of the most interesting phenomena among them. Oscillation quenched states 
are categorized in two processes named as amplitude death (AD)1 and oscillation death (OD)2. AD state is a 
result of stable homogeneous steady state (HSS), where all the oscillators merge or converge in one common 
steady state. In the case of OD state, oscillators populate to different stable steady states which are coupling 
dependent fixed points termed as stable inhomogeneous steady states (IHSS) and these states are the results of 
symmetry-breaking bifurcations in coupled oscillators. Also network of coupled oscillators exhibit multi-cluster 
oscillation death (MCOD) in nonlocally coupled oscillators3. MCOD pattern refers to the stabilization of various 
coupling dependent steady states to which the oscillators converge. Depending upon the initial conditions of each 
oscillator, the positions of the stable steady states for MCOD state may vary. AD state has a great importance to 
suppress unwanted oscillations. Such oscillations are responsible for obstructing certain process in some biologi-
cal systems4 and laser experiments5. Due to ushering of inhomogeneity in homogeneous systems, OD state is very 
complicated phenomena and closely related to many biological processes such as cellular differentiation6, also in 
neural networks7 and synthetic genetic oscillators8,9. Recently, the transition from AD to OD state via Turing type 
bifurcations has been articulated10. Later many researchers have explored such transition using different types of 
coupling strategies such as mean-field11, presence of direct and indirect coupling12, mean repulsive interaction13. 
Also cyclic type of interaction14 can induce AD-OD transition in mismatched coupled systems. Beside IHSS (i.e. 
OD) state, there are many stable steady states which are also coupling dependent states known as non-trivial 
homogeneous steady states (NHSS). In ref. 15, the authors discussed about the suppression of mixed mode oscil-
lations state in coupled oscillators. As AD state is a result of stabilization of HSS so it may be easy to derive the 
analytical condition for stability but in case of coupling dependent stable steady states (OD and NHSS), it is not 
always possible to obtain the stability condition analytically since OD states are multi-stable by nature. Most of 
the previous results on OD states are characterized by only bifurcation analysis and there is no clear discussion 
about the basin of multi stable OD states. So it is interesting to study the variations of such multi stable steady 
states with respect to the basins of attractions because multi stable steady states are omnipresent in many coupled 
dynamical systems.

Up to now, the stability of such collective steady states (AD or OD) in coupled network are characterized by 
the sign of real parts of eigenvalues of the corresponding Jacobian matrix. This linear stability analysis is valid only 
for infinitesimal perturbation near the steady states. So, the linear stability analysis is necessary for the stability of 
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steady state but not sufficient against some significant perturbations. Since non-small perturbation is ubiquitous 
in nature and many man-made systems, so we need a global measure to characterize the stability. In this context 
a pioneer work16, they have developed a universal measure in complex systems as basin stability (BS) which is 
related to the volume of basin of attraction. The concept of BS has a lot of applications in real-world systems such 
as power grids17, arrays of coupled lasers18 etc. and effectively applied in many field of science19–21 that interplays 
with the systems which exhibit multi-stability. In practical situation such as human brain22,23, cell regulatory 
network24 and many other natural phenomena25–27 show the multi-stable behavior28 and also in the economics 
and social sciences29–32, the path dependence processes are suitably described by multistability. To quantify the 
stability of such multistable states in dynamical systems, the BS measure is successfully applied in finite16,33,34 as 
well as infinite dimensional systems35. The BS approach is well studied in various types of emergent and collec-
tive behavior in network of dynamical systems such as synchronizability36 of static and time varying complex 
network37 and many others but BS measure in quantification of different multi-stable steady states in coupled 
systems has not been explored yet, to the best of our knowledge. Therefore, systematic studies on such unnoticed 
phenomena deserve special attention.

In this work, we are dealing with finite dimensional systems and trying to give BS measure for oscillation 
suppression states (such as AD, OD, NHSS and MCOD) in a network of coupled dynamical systems. Oscillation 
cessations are significantly applied in many biological and physical processes where unwanted oscillations may 
arise so we need to suppress the oscillations to some desired stable steady states. We consider a network of glob-
ally and randomly connected oscillators through mean-field coupling. This mean field coupling is a natural cou-
pling scheme which is extensively studied for different consequence in physics38, ecology39, biology4,40, chemistry, 
electrical circuits1,2. Also this type of interaction arises in metapopulation ecology where by proper tuning of 
mean-field density parameter, two-patch ecosystems are evolving from an open patchy ecosystems to closed 
patchy ecosystems39. The role of mean-field density is also discussed in ref. 8 and 40 in the context of intercell 
communication of synthetic gene oscillators via a small autoinducer molecule. In general, the mean-field cou-
pling is applied in a network of dynamical systems where each oscillator is having equal chance of uniform inter-
action from all the oscillators. On the other hand, there are various types of stable steady states, which may not be 
possible to detect analytically from linear stability analysis due to their multistable behavior. AD state can never 
be produced in identical coupled systems using simple diffusive interaction but OD states may generate by proper 
choice of initial conditions and linear stability analysis fails to characterize such OD states due to multi stability. 
For such limitations, it is not possible to get any information about the stability of OD state against any non-small 
random perturbation from the state. Again, there exists Lyapunov function based approach41,42 as a process in 
determining the stability of different steady states locally as well as globally but unfortunately there is no system-
atic way to construct Lyapunov functions for high dimensional systems and it depends on the exact form of the 
governing system. So in order to do the present work we avoid such limitation and concentrating on this intrigu-
ing BS approach. Thus it is significant to quantify all the multi stable steady states by BS measure. The value of BS 
lies in [0, 1] and quantifies what amount stable a state is in probabilistic sense against the basin volume. With the 
help of this measurement all coupling dependent steady states (OD, NHSS) as well as coupling independent state 
(i.e. AD state) can be quantified. The effect of coupling strength on the variation of different stable states is quan-
tified in BS framework. In BS measure, we integrate the whole network with a large population of initial states 
and give some probabilistic measure with respect to those initial points in the state space. We obtain analytical 
conditions of stabilization of various steady states that show excellent matching with our numerical simulations. 
Using rigorous bifurcation analysis we verify the results obtained analytically and appraise them by BS approach. 
For our investigation, we take coupled paradigmatic Duffing-Holmes and chaotic Lorenz oscillator to check the 
validation of our BS approach for global and random networks.

Results
We start with a network of coupled oscillators with the isolated dynamics of each node of the network is given by 

=X F X( ), where X is a m-dimensional vector of the dynamical variables and F(X) is the vector field. The general 
framework of coupled network is given by the following equation:

∑ε= + = ...
=

=
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(1)
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j N
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where N is the total number of nodes in the network, ε is the coupling strength, Cij are the elements of connectiv-
ity matrix and H(Xi, Xj) is the coupling function between i-th and j-th node.

Duffing-Holmes oscillator. We first consider a two-dimensional physical example, namely Duffing-Holmes 
(DH) oscillator43:

+ − + = .̈x bx x x 0 (2)3

The oscillator has three steady states, namely two symmetrical stable steady states (± 1, 0) (which are spiral 
or node depending on the damping coefficient b >  0) and a saddle point at (0, 0) irrespective of the values of the 
parameter b. For b <  0 each individual DH oscillator exhibit oscillatory state. Recently, Tamaševičiūtė et al.44 
discussed the stabilization of saddle fixed points of an uncoupled DH oscillator using modified unstable filter45 
method. The proposed technique is applicable only for b >  0 where the DH oscillator is either stable node or spi-
ral. But they did not discuss the stabilization of saddle point in coupled oscillators. Here we study the stabilization 
of saddle point of coupled systems by taking all values of damping parameter b. In this context, detection and 
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controlling both saddle and nonsaddle types of unstable steady states in high-dimensional nonlinear dynamical 
systems based on fast-slow manifold separation and Markov chain theory is articulated in ref. 46.

We consider the coupled network through mean-field in the following form:
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for i =  1, … , N. Here ε is the mean-field coupling strength, d(i) is the degree of the i-th node and ≤ <Q Q(0 1) is 
the mean-field density parameter. This mean-field density parameter Q gives an additional free parameter that 
control the mean-field dynamics while Q →  0 represents self-feedback case and Q →  1 indicates the maximum 
mean-field density. The elements of the connectivity matrix Aij =  1 if i-th and j-th nodes are connected and zero 
otherwise. At first we consider a minimal network of two (N =  2) coupled Duffing-Holmes oscillators with mean 
field coupling and identify the parameter region for stabilized saddle point at origin. The coupled DH oscillator has 
a trivial steady state E0 =  (0,0,0,0) which is the HSS solution of the system and the other four coupling dependent 
steady states: non-trivial homogeneous steady state (NHSS) α β α β= ± ± ± ±E ( , , , ),1,2  and inhomogeneous 
steady state (IHSS) γ δ γ δ= ± ±  E ( , , , )3,4  where β ε α= − Q(1 ) , α ε ε= − − − −b Q Q1 (1 ) (1 )2 2 , 
δ  =   εγ , γ = − ε + ε .b1 ( )  The characteristic equation corresponding to the fixed point E0 is 
λ ε λ ε λ ε ε λ ε ε ε+ + + − + + − + + − − = .b b Q Q Qb[( ) ( ) 1][( ) ( 2 )( ) 2 1] 02 2 2 2  U s i n g  R o u t h 

Hurwitz(RH) criterion the saddle point E0 is stable if ε > − + +
−

b b
Q

4
2(1 )

2
 and that stabilization of saddle point 

occurred through inverse pitchfork bifurcation. By performing the stability analysis we analytically obtain the 
inverse pitchfork bifurcation (IPB) point at the coupling strength ε = − + +

−IPB
b b

Q
4

2(1 )

2
. From linear stability analysis 

we also analytically derive the Hopf bifurcation (HB) point at ε = −
−HB
b

Q2(1 )
 where up to this critical value of the 

coupling strength, coupled systems exhibit oscillatory states (Fig. 1(a)). Further increment of the coupling strength 
leads to co-existence of IHSS and NHSS up to a certain threshold of interaction strength 

ε = − + + + + − + +

+ −PB
b Q b Q Q Q

Q Q
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2(2 2 )

2 2 2

2  and after εPB, IHSS are completely eliminated and only NHSS sus-
tained up to εIPB. So, using linear stability analysis and combining the above results, structurally different dynami-
cal states occur: AD exist for ε ε> IPB, IHSS and NHSS (OD) coexist for ε ε ε< <HB PB and only NHSS exist for 
ε ε ε< <PB IPB.

For numerical simulation, we choose the damping coefficient b =  − 0.01 for which an isolated oscillator exhib-
its oscillatory dynamics. At lower value of coupling strength ε, four coupling dependent fixed points (i.e. NHSS 
and IHSS) that arise through Hopf bifurcation at ε =  εHB, are stable. But as ε increases, two of these stable steady 
states E3,4 become unstable at εPB and E12 remains stable for the value of ε upto εIPB. At εIPB, saddle point (0,0,0,0) 
turns stable through IPB and remains stable for ε >  εIPB. The corresponding bifurcation diagram (using 
XPPAUT47) is shown in Fig. 1(a). Figure 1(b) shows the bifurcation diagram with respect to coupling strength ε 
when b =  0.5, for which an isolated oscillator approaches either to the steady state (1, 0) or to (− 1, 0) where for 
negative values of b different coupling dependent stable steady states appear through oscillatory states as shown 
in Fig. 1(a). Here again, due to the introduction of coupling ε, above mentioned four fixed points E1,2 and E3,4 
become stable but E3,4 remain stable only upto εPB. Further increment in the value of ε makes the saddle point (0, 
0, 0, 0) stable through an inverse pitchfork bifurcation at εIPB. Figure 1(c) shows how the BS of the steady states 
E1,2 and E3,4 change for different values of ε. As can be seen, initially after the occurrence of Hopf bifurcation at 
ε ε= HB, all the fixed points (E1,2,3,4) are equally probable although the probabilistic dominance of E3,4 are shrink-
ing gradually whereas E1,2 acquire more and more space in the basin volume. Such changes on BS measure of E3,4 
gives a hint of the annihilation of E3,4 which finally occurs at ε ε= PB where E1 and E2 share the basin with equal 
probability. But at ε ε= IPB, BS of these steady states abruptly decrease to zero without any presage and further 
increase of ε, the basin volume is fully covered by this HSS shown by cyan color with maximum BS i.e., 1. From 
this figure, we conclude that the BS for multi stable states (i.e. OD and NHSS) change with the variation of 
mean-field coupling strength ε while the BS for monostable state i.e. AD state remains unchanged with the varia-
tion of ε. Therefore, the trend in the changes of the percentage of the basin volume gives us a clear idea how the 
different steady states are evolving in a coupled system and which states will dominate the system and which will 
disappear early. We also obtain similar results on stabilization of saddle point in two coupled DH oscillators when 
they are coupled through cross mean-field type configuration (see Supplementary Information section I). 
Figure 1(d) represents the parameter region in ε − Q plane where green, red, blue and cyan regions respectively 
resemble the oscillatory state, coexistence of stable IHSS (OD) and NHSS, stable NHSS state and AD state for 
b =  − 0.01. For increasing values of ε firstly the coupling dependent fixed points get stabilized for almost all the 
values of Q below the Hopf bifurcation curve ε = −

−
b

Q2(1 )
. Then the saddle point E0 becomes stable resulting in 

AD below the inverse pitchfork bifurcation curve ε = − + +
−

b b
Q

4
2(1 )

2
.

We know that the presence of noise is common in real systems. To study the impact of noise in the steady 
states we use additive Gaussian noise in the system and find that systems still evolve around the steady states with 
small fluctuations which further implies that BS of each fluctuated steady states does not alter or vanish in the 
presence of noise. For detailed numerical observations see the Supplementary Information section II.
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Global network of Duffing-Holmes oscillators. Next we check the stabilization of saddle point in a 
network of equation (3) for higher values of N >  2 where Aij = 1, and Aii = 0, for all i,j = 1,2, ...,N. At first we  
start with a complete graph of size N. Fixed points of N coupled oscillators are = ...E (0, 0, , 0)0 , 

α β α β α β= ± ± ± ± ... ± ±E ( , , , , , , )1,2 ,  and γ δ γ δ γ δ γ δ= ± ± ... ± ±   E ( , , , , , , , , )3,4  
(for even number oscillators) where α β γ, ,  and δ are same as above. The fixed points E1,2 are same for any choice 
of N whereas E3,4 are same only for even number of N. Characteristic equation at E0 is

λ ε λ ε λ ε ε λ ε ε ε+ + + − + + − + + − − = .
−

b b Q Q Qb[( ) ( ) 1] [( ) ( 2 )( ) 2 1] 0 (4)
N2 1 2 2 2

The distinct eigenvalues and critical bifurcation points of globally connected network (3) are same as for two 
coupled oscillators.

First, we consider N =  4 i.e. four globally coupled DH oscillators via mean-field coupling and the results are shown 
in Fig. 2. Analytically it is not easy to calculate all the coupling dependent fixed points (i.e. IHSS and NHSS), using 
bifurcation diagram (performed in XPPAUT47) we identify all the fixed points and by BS measurement we measure the 
amount of their stability for different values of coupling strength. In Fig. 2(a), bifurcation diagram for the variables xi 
with respect to the coupling strength ε is plotted. For small values of ε, through Hopf bifurcation at ε = −

−HB
b

Q2(1 )
, eight 

coupling dependent fixed points are stable. But as ε is increased, firstly six of these stable fixed points lose their stability, 
among them two lose their stability through PB at ε = − + + + + − + +

+ −PB
b Q b Q Q Q

Q Q

(2 ) (2 ) 8( 2 2)

2(2 2 )

2 2 2

2  and remaining four 
lose their stability at earlier of ∈PB and only two retain their stability. Even more increment in ε makes the two fixed 

Figure 1. Two coupled Duffing-Holmes oscillators: bifurcation diagram with respect to coupling strength ε for 
(a) b =  − 0.01, (b) b =  0.5 where extreme values of x1 and x2 are plotted with coupling strength for Q =  0.5. Red 
lines correspond for stable steady states, black dotted points are unstable steady states and green circle for 
oscillation state. PB: pitchfork bifurcation, OD: oscillation death, AD: amplitude death, IPB: inverse pitchfork 
bifurcation. (c) Variation of BS for different values of coupling strength ε. The color green stands for BS of 
oscillatory state, red and yellow for BS of stable IHSS states E3,4, blue and magenta for BS of stable NHSS states 
E1,2 and color cyan correspond to BS of the HSS state E0. Other parameters: b =  − 0.01, Q =  0.5. (d) Two 
parameter bifurcation diagram in the ε − Q plane where green, red, blue and cyan regions correspond to 
oscillatory state, coexistence of stable IHSS (OD) and NHSS, stable NHSS state and AD state respectively for 
b =  − 0.01
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points unstable and the saddle point (i.e., the origin) becomes stable through IPB. The process of stabilization and dest-
abilization of all the coupling dependent fixed points are clarified in terms of their BS which validates the whole mech-
anism in global scale. Figure 2(b) shows the variation of BS for different steady states by varying the mean-field coupling 
strength ε. As mentioned earlier, the blue and magenta color in Fig. 2(b) belong to class NHSS and they acquire more 
and more space in the basin if we increase the coupling strength continuously. On the other hand, the other cluster 
belonging to IHSS (six states in three symmetric groups) losing their stability and finally all of them vanish at ε ε= PB 
point. Further changes in ε makes those two fixed points (NHSS) equally probable in the basin i.e. each of them acquires 
half of the whole basin and they become unstable at the point ε ε= IPB. Then the saddle point (i.e. the origin) becomes 
stable for all points in the basin of attraction i.e. the basin volume is fully covered by this HSS.

Next we will verify numerically whether the stabilization of saddle and all the coupling dependent steady 
states using the proposed coupling scheme is working in a large network. For our case, we choose N =  1000 glob-
ally coupled DH oscillators via mean-field and the analyzed results are illustrated in Fig. 3. Figure 3(a) shows time 
series of x-components of all the 1000 oscillators with ε =  0.3 that depicts the stabilization of the IHSS resulting 
in OD. For larger value of ε (ε =  2.2), all the oscillators populate to a single steady state, that is, the saddle point 
(the origin) gets stabilized, time series are shown in Fig. 3(b). The corresponding space-time plots are shown in 
Fig. 3(c) and (d) respectively. The parameter space in ε − Q plane for global network is same as in Fig. 1(d) for 
two coupled DH oscillators, as the distinct eigenvalues of the characteristic equation (4) are identical with two 
coupled case but with different multiplicity.

Random network of Duffing-Holmes oscillators. In this section we investigate the stabilization of sad-
dle point in Erdös-Rényi random networks of DH oscillators and the results are shown in Fig. 4 where the prob-
ability of existence of an edge between any two vertices of the random network is taken as p =  0.01. Figure 4(a) 
shows the time series of the −x components of all the N =  1000 oscillators characterizing MCOD state for ε =  0.3. 
The inset figures (right panel) show the magnified time-series plots for better visibility of the MCOD state. The 
space-time plots corresponding to these time-series are given in the insets (left panel) of Fig.  4(a). 
Figure 4(b) and (c) show the space-time plot and the corresponding time series represent stabilization of the 
saddle point (the origin) resembling AD state for ε =  3.0. Figure 4(d) depicts the variation of the BS of the MCOD 
and NHSS states for the random network. Due to failure of calculation of all the MCOD states analytically in a 
random network, we consider all the states as MCOD state and represented by blue color in Fig. 4(d). After the 
Hopf bifurcation, MCOD state dominates over the NHSS state where relative acceptance of MCOD in BS measure 
is almost unity and the probability of occurrence of NHSS is almost nil. With increasing the values of the coupling 
strength ε, the probability of getting NHSS state increases and MCOD state decreases. Then the BS of NHSS starts 
increasing gradually and vanishing of BS of the MCOD state is observed for ε . 1 24. NHSS remains stable fur-
ther upto ε . 2 05 from where the saddle point becomes stable through IPB with BS unity.

Figure 2. Four coupled Duffing-Holmes oscillators: (a) bifurcation diagram with respect to coupling strength ε 
for b =  − 0.01 and Q =  0.5, where extreme values of =x i( 1, 2, 3, 4)i  are plotted with coupling strength. Red 
lines correspond to stable steady states, black dotted points are unstable steady states and green circle for 
oscillation state. (b) Variation of BS for different values of coupling strength ε. The color green is for BS of 
oscillatory state, blue and magenta for BS of stable NHSS states, deep green for BS of stable saddle point E0 (AD 
state) and other colors correspond to BS of different stable IHSS states.
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Lorenz oscillators. For quantifying the different stable steady states using BS measure, we extend our 
investigation on coupled paradigmatic chaotic Lorenz oscillator48. We consider N Lorenz oscillators interacting 
through mean-field diffusive coupling. The mathematical equations of the coupled systems are described as:
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for i =  1, 2, 3, … , N. In absence of coupling term, each oscillators oscillate chaotically for σ = =r10, 28 and 
=b 8

3
 and the individual systems have a saddle fixed point at origin and two unstable fixed point at 

± − ± − −b r b r r( ( 1) , ( 1) , 1). Here ε and Q are the coupling strength and mean-field density parameter 
respectively.

For N =  2, the fixed points are α β γ α β γ= = ± ± ± ±⁎ ⁎ ⁎ ⁎ ⁎ ⁎E E(0, 0, 0, 0, 0, 0), ( , , , , , )0 1,2 , where 
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The trivial fixed point E0 is stable through inverse pitchfork bifurcation at ε = .σ σ σ− + + + −
−IPB

r
Q

(1 ) 4 ( 1)
2(1 )

2

For fixed values of the above system parameters, from eigenvalue analysis the NHSS points E1,2 becomes stable 
for ε< < σ σ σ.

−
− + + + −

−Q
r

Q
0 2791
1

(1 ) 4 ( 1)
2(1 )

2
. The results are shown in Fig. 5. Figures 5(a) and (b) show bifurcation 

diagrams with respect to ε for N =  2 and N =  4 respectively with Q =  0.5 fixed. As in Fig. 5(a), due to the presence 

Figure 3. Globally coupled Duffing-Holmes oscillators for N =  1000: (a) time series of xi, (i =  1, 2, … , 1000)  
show the IHSS state for ε =  0.3. (b) Time series of stabilized saddle point E0 for ε =  2.2. (c) and (d) corresponding 
space-time plot of (a) and (b) respectively showing stable IHSS and HSS states. Other parameters are: Q =  0.5, 
b =  − 0.01.
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of coupling, two stable fixed points E1,2 develop together with six unstable fixed points through Hopf bifurcation 
at ε = .

−HB Q
0 2791
1

 and E1,2 remain stable for ε upto ε = σ σ σ− + + + −
−IPB

r
Q

(1 ) 4 ( 1)
2(1 )

2
. The saddle point E0 becomes stable 

through an inverse pitchfork bifurcation at εIPB, and persists for any higher values of ε as well. For N =  4, Fig. 5(b) 
shows that immediately after the occurrence of Hopf bifurcation at ε = .

−HB Q
0 2791
1

, six coupling dependent stable 
fixed points (comprising of both IHSS and NHSS states) emerge together with six unstable fixed points. But 
among them, the fixed points except the NHSS E1,2 lose their stability soon and only E1,2 remain stable for higher 
values of ε. Similarly as before, through IPB at ε ε= IPB, E1 and E2 collides and E0 turns stable. Figure 5(c) shows 
the bifurcation diagram against ε for a network of N =  4 randomly connected nodes where the appearance of six 
coupling dependent stable fixed points along with many other unstable fixed points can be seen. Similarly as in 
the previous cases, here also E1,2 retain their stability for higher values of ε than the others and lose it stability at 
εIPB and further higher coupling strength promotes the entire systems to the AD state. Figures 5(d) and (e) meas-
ure all the stable steady states that appear for N =  2 and N =  4 respectively in terms of their BS. Figure 5(d) shows 
that the BS of both E1 and E2 are non-zero and more or less the same for all values of ε upto εIPB. As ε increases 
further, BS of E1 and E2 turns into zero and BS of E0 becomes unity. On the other hand, soon after the Hopf bifur-
cation all the six coupling dependent stable fixed points get non-zero BS but E1 and E2 have larger BS than the 
others, as in Fig. 5(e) (left part). Increasing ε, BS of the other fixed points become zero and E1 and E2 shares almost 
the same BS value upto ε ε= IPB. After that BS of both E1,2 becomes zero and that of E0 appears to be 1 (right part 
in Fig. 5(e)).

Finally, Fig. 5(f) depicts the parameter region in ε − Q plane for globally coupled N =  4 oscillators. Here blue, 
yellow, cyan and red regions signify oscillatory state, co-existence of OD and NHSS states, stable NHSS state and 
AD state (i.e., the stabilization of saddle E0) respectively. The oscillatory state (blue region) and coexistence of OD 
and NHSS (yellow region) or stable NHSS (cyan region) are separated by the Hopf bifurcation curve ε = .

− Q
0 2791
1

. 
From this curve it is clear that the oscillatory state persists for higher values of coupling strength ε. The stability 
of OD or NHSS loses when the value of ε passes through the inverse pitchfork bifurcation curve 

ε = σ σ σ− + + + −
−

r
Q

(1 ) 4 ( 1)
2(1 )

2
.

Figure 4. Randomly coupled Duffing-Holmes oscillators (N =  1000): (a) time series of xi, (i =  1, 2, … , 1000) 
show the MCOD state for ε =  0.3. Right and left inset figures in (a) show the time series of coupling dependent 
different steady stables and corresponding spatio-temporal plots respectively. (b) Space-time plot and (c) 
corresponding time series of stabilized saddle point E0 for ε =  3.0. (d) BS of MCOD, NHSS and AD states 
against the coupling strength ε. The oscillatory state, MCOD, NHSS and AD states are represented by yellow, 
blue, red/green and magenta colors respectively. Other parameters are: Q =  0.5, b =  − 0.01.
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Networks of Lorenz oscillators. Next we will explore the proposed coupling scheme is applicable for large 
number of chaotic oscillators. To quantify the stability of different steady states using BS measure in global and 
random network. The characteristic equation at E0 of network (5) is

λ λ ε σ λ ε ε σ ε ε σ

λ ε σ λ ε σ ε σ

+ + − + + + + − + − −

× + + + + + + − = .
−

b Q Q Q r

r

( ) [ {2 (1 ) (1 )} (1 )( ) ]

[ (2 1 ) (1 )( ) ] 0 (7)

N

N

2

2 1

Taking a network of N =  1000 globally coupled Lorenz oscillators with Q =  0.5, the numerical results are 
shown in Fig. 6. Figure 6(a) shows time evolution of the −x components of all the 1000 oscillators with ε =  5.5 that 
represents the stabilization of IHSS resembling OD. Whereas for ε =  30, the saddle point (origin) appears to be 
stable, time series shown in Fig. 6(b). Figure 6(c) and (d) depict the corresponding space-time plots respectively.

Results regarding MCOD state and saddle stabilization in Erdös-Rényi random networks of coupled Lorenz 
systems are given in Fig. 7. Time series of the −x components of all the N =  1000 oscillators revealing MCOD state 
for ε =  6.0 and Q =  0.5 are shown in Fig. 7(a). In Fig. 7(b) stable AD state ensuing after a concise transient window 
and Fig. 7(c) shows the corresponding space-time plots representing stabilization of the saddle point (the origin) 
reflecting AD for ε = .30 0 and = .Q 0 5. The dependence of the BS of the MCOD and NHSS states on coupling 
strength ε for the random network of Lorenz systems is characterized in Fig. 7(d). Here, after the Hopf bifurcation 
at ε . 0 9, the MCOD state retains BS almost 1 and the BS of NHSS is very small upto ε . 4 3. In fact, for 

ε. < < .4 3 13 5 the states MCOD and NHSS co-exist but then BS of NHSS develops with tantamount and that of 
the MCOD state vanishes at ε . 13 5 and NHSS remains stable further upto ε . 23 7 from where the saddle 
point becomes stable abruptly without any pre-warning and carries BS unity further.

Discussion
In this work we have studied basin stability (BS) measure to quantify the stability of different stable steady states 
of coupled dynamical systems interacting through mean-field coupling. BS is an universal concept to quantify the 
stability of governing dynamical systems under a non-uniform distribution of perturbations. Using mean-field 
coupling configuration, we have obtained a homogeneous stable steady state (i.e. AD state) which is inherently 
saddle equilibrium point of the individual oscillator and also showed that the transition from inhomogeneous 
steady states (resembling OD) to homogeneous steady state (i.e. AD state) via stabilization of NHSS state. We 
identify the underlying mechanism to stabilize the saddle fixed points in a network of coupled oscillatory sys-
tems. The transition routes between different states of coupled systems are discussed through rigorous bifurcation 
analysis and confirmed with the obtained analytical results. We also map the different steady states in the wide 

Figure 5. Coupled Lorenz oscillators: Bifurcation diagrams by changing the coupling strength ε for (a) N =  2 
and (b) N =  4 globally coupled oscillators. (c) Bifurcation diagram for randomly coupled N =  4 oscillators, (d) 
For N =  2 and (e) N =  4 globally coupled oscillators, the variation of BS with respect to coupling strength ε 
Other parameter Q =  0.5. (f) Parameter region in ε − Q plane for N =  4 globally coupled network.
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parameter space by varying the mean-field coupling strength ε and mean-field density parameter Q. All the 
steady states are quantified by the value of BS. In contrast to this, we found that the BS of OD states gradually 
decreases as coupling strength increases. After annihilation of the BS of multi-stable OD states, the BS of NHSS 
states become prevalent with almost equal ratio. But further increasing of coupling strength NHSS states become 
unstable without any presage and immediately AD state is stabilized. In the context of oscillations suppression 
studies, all the previous works have been done by considering the specific initial conditions in the phase space 
and no one examined the whole basin volume therefore ignoring the multistability nature of the steady states. As 
multistable character is ubiquitous in natural systems so we clearly elucidate a global stability measure by means 
of basin stability. To validate the BS measure, we have considered a large number of initial states following16. All 
these phenomena and measures are performed using smaller size of networks (for N =  2 and N =  4) as well as 
network of bigger size (N =  1000). We test our proposition and statistical measure not only in complete graph but 
also in random network. For both cases, our analytical and numerical simulations give proper insight to track the 
multistablity features present in the systems. The models considered here cover the characteristics of limit cycle 
(Duffing-Holmes oscillator) or chaotic attractor (Lorenz system) having hyperbolic fixed points. There are many 
real systems such as laser49 and geomagnetic50 which are modeled like Lorenz systems or mimic of Lorenz systems 
after some transformations and the results of our approach can be easily implemented.

Our considered mean-field coupling is one of the most natural coupling scheme which is previously exten-
sively applied to different branches of science and engineering. This strongly means that our approach is not 
limited to a particular situation or for some particular systems, rather this mechanism is applicable in wide range 
of systems throughout all these disciplines. Also multistable feature is omnipresent in nature and widespread 
phenomenon in dynamical systems that appears in diverse fields ranging from physics, chemistry, biology to 
social systems51. There are numerous systems in which multistability originates that include the human brain, 
semiconductor materials, chemical reactions, metabolic system, arrays of coupled lasers, hydrodynamical sys-
tems, various ecological systems, artificial and living neural systems etc. We believe that this study will broaden 
our understanding of stabilization of saddle points in multistable dynamical networks where units are connected 
via mean-field. Further we have shown that the critical mean-field coupling strength is independent of the size 
of the network but only depends on the largest real part of the eigenvalue of individual oscillator (refers to Linear 
Stability Theorem in Method Section).

Figure 6. Global network of Lorenz oscillators: (a) and (b) show the time series of IHSS and HSS states for 
coupling strength ε =  5.5 and ε =  30 and (c), (d) represents the corresponding space-time plot of (a) and (b) 
respectively. Here N =  1000 and Q =  0.5.
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Methods
Basin Stability Measure. Let I be the set of initial values for a given coupled system of N oscillators which 
is a bounded subset of RN . Suppose ∈X Ik  is an asymptotically stable equilibrium point of the given system. Now 
let ⊂B I  be the basin of attraction of the stable state Xk (i.e, the solution of the system starting from any ∈z B 
asymptotically converges to Xk as t →  ∞ ).

We numerically integrate the given system for V points which are drawn uniformly at random (sufficiently 
large) from I. Let Vk be the count of the initial conditions that finally arrives at the stable steady state Xk. Then the 
BS for the fixed point Xk is estimated as V

V
k .

Numerical Simulation. For numerical integration, we used fifth-order Runge-Kutta-Fehlberg algorithm 
with fixed step size Δ t =  0.01. For simulations of BS measure we choose sufficiently large number (for regular net-
works 20000 and for irregular networks, 5000) of initial conditions and all random initial conditions are chosen 
from [− 5, 5] ×  [− 5, 5] for coupled Duffing-Holmes oscillators and [− 20, 20] ×  [− 30, 30] ×  [0, 50] for coupled 
Lorenz oscillators.

Linear Stability Theorem. If =X f X( ) be −m dimensional dynamical system which exhibits a saddle equi-
librium point O, the saddle equilibrium point can be stabilized in globally mean-field coupled of N identical sys-
tems and the critical coupling strength is > = λ

−
⁎ ⁎

k k
Q1

, where λ* is the maximum real part of eigenvalues of the 
isolated system at the equilibrium point O and ≤ <Q Q(0 1) is the mean-field density parameter.

Proof: Consider N identical systems interacting through global mean-field diffusive coupling as follows:

= + − = …X f X k QX X i N( ) ( ), 1,2, , ,i i i

where f(Xi) be the evolution equation of the ith system, Xi denotes −m dimensional state vector, k be the mean-field 
coupling strength, Q is the mean-field density parameter and = ∑ .=X X

N i
N

i
1

1
The isolate system =X f X( ) possess a saddle equilibrium point O. So the Jacobian matrix = =A J X O of this 

system has at least two real eigenvalues with opposite sign. Let λ* be the maximum real part of eigenvalues 
λ λ λ λ... ., , , , m1 2 3

The Jacobian matrix of the above coupled systems at the trivial equilibrium point ...� ����� �����O O O( , , , )
Ntimes

 is

Figure 7. Random network of Lorenz oscillators: (a) Time series of xi, (i =  1, 2, … , 1000) shows MCOD 
state for ε =  6.0 (b) Time series of xi, (i =  1, 2, … , 1000) show the stabilized saddle state for ε =  30.0 and (c) 
corresponding space-time plot. (d) Variation of BS with respect to the coupling strength ε where yellow color 
represents oscillatory behaviors, blue for MCOD, red and green for corresponding NHSS states and magenta for 
AD state. Other parameter fixed at Q =  0.5 and N =  1000.
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The corresponding characteristic equation is

λ λ− − − . − − = .−det A k Q I I det A kI I[ (1 ) ] { [ ]} 0m m m m
N 1

The  e igenva lues  are  λ λ λ λ− − − − − − … − −⁎ k Q k Q k Q k Q{ (1 ), (1 ), (1 ), , (1 )}m2 3  and 
λ λ λ λ− − − … −⁎ k k k k{ , , , , }m2 3  (N −  1) times. The saddle point O is stable if all the real parts of the 

eigenvalues are negative negative. For this it is sufficient to make λ − − <⁎ k Q(1 ) 0. From this we have the crit-
ical coupling strength is = λ

−
⁎ ⁎

k
Q1

.
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