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Sequence features accurately predict genome-wide
MeCP2 binding in vivo
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Methyl-CpG binding protein 2 (MeCP2) is critical for proper brain development and

expressed at near-histone levels in neurons, but the mechanism of its genomic localization

remains poorly understood. Using high-resolution MeCP2-binding data, we show that DNA

sequence features alone can predict binding with 88% accuracy. Integrating MeCP2

binding and DNA methylation in a probabilistic graphical model, we demonstrate that

previously reported genome-wide association with methylation is in part due to MeCP2’s

affinity to GC-rich chromatin, a result replicated using published data. Furthermore, MeCP2

co-localizes with nucleosomes. Finally, MeCP2 binding downstream of promoters correlates

with increased expression in Mecp2-deficient neurons.
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M
utations in the gene encoding methyl-CpG binding
protein 2 (MECP2) are responsible for several
neurological disorders, including the majority of

Rett syndrome cases1,2. Despite extensive efforts since the initial
identification of MeCP2 (ref. 3), the molecular mechanisms
of its function remain poorly understood. In neurons, MeCP2 is
approximately as abundant as histone octamers in the nucleus
and is believed to be broadly distributed throughout chromatin4.
This high abundance has posed a major technical challenge in
mapping the genome-wide binding sites of MeCP2 and
characterizing the precise DNA sequence features that help
recruit MeCP2. Although there is strong evidence in vitro
supporting the ability of MeCP2 to bind methyl-CpG (mCpG),
MeCP2 may actually bind diverse sequences in vivo, as reflected
in its multifaceted roles5–9. The functional impact of MeCP2
has been previously examined by attempting to identify MeCP2
target genes in neurons8,10–13. In addition to a number of genes
found to be suppressed by MeCP2, multiple studies have also
identified a global reduction of transcription in neurons lacking
functional Mecp2 (refs 10,12,14,15), suggesting a novel activating
role of MeCP2. Resolving whether the resulting repression
and activation of genes in Mecp2-null neurons are direct or
indirect consequences of MeCP2 binding remains a challenge,
largely because the resolution of existing chromatin immuno-
precipitation sequencing (ChIP-seq) data is not sufficient to
decipher the precise binding pattern of MeCP2 in vivo and
identify the specific DNA recognition sequences4,7,16,17.

Using new high-resolution MeCP2 ChIP-seq data from
olfactory epithelium, our study presents a predictive model of
genome-wide MeCP2-binding pattern. Furthermore, integrative
analysis of sequence features and DNA methylation states
revealed that the previously reported methylation preferences
may arise in part from MeCP2’s strong association with GC-rich
chromatin, and this surprising result is replicated in independent
published data sets. Finally, we describe the impact of Mecp2
deficiency on transcriptional regulation.

Results
High-resolution map of MeCP2 genome-wide localization. We
overcame the difficulty of mapping genome-wide binding sites of
MeCP2 by performing ChIP-seq in olfactory epithelial tissue
which contains only one neuronal type, the olfactory sensory
neurons18. We started with small pilot studies and progressively
increased the sequencing depth to reach saturation. Possible
chromatin-shearing biases were controlled by using an Input
library built from the same pool of chromatin used for ChIP.
The final two biological replicates yielded 220 million raw reads
from one of the samples sequenced in one lane and 455 million
raw reads from the second sample sequenced in two lanes.
Eighty-three per cent of the raw reads aligned to the mm9 mouse
genome, and 77% of these alignments were unique. PCR
duplicates accounted for 53 and 82% of the reads, indicating
that saturation was achieved in the final sample. The replicates
were then combined in the downstream analysis (Supplementary
Fig. 1a–c), obtaining a high depth of sequencing hitherto
unavailable for MeCP2. A rigorous normalization using
signal extraction scaling19,20 confirmed the high level of
chromatin immunoprecipitation and showed that 29% of the
genome was enriched for MeCP2 (Supplementary Fig. 1d). By
contrast, reanalysis showed that three other MeCP2 ChIP-seq
data sets published to date had low ChIP enrichment, as
measured by signal extraction scaling and by the high
correlation of ChIP and Input channels (Supplementary
Fig. 1e–i). Regions with strong enrichment in our data (that is,
statistically significant at 5% false discovery rate) were identified

using model-based analysis of ChIP-seq (MACS2)21, yielding 1.0
million peaks covering 11% of the genome. Consistent with
previous studies4, we found that MeCP2 bound the genome at
high frequency (average peak spacing of 2.4 kb). The high
sequencing depth allowed us to map MeCP2 binding with
unprecedented resolution as illustrated for the Bdnf locus in
Fig. 1a (Myc locus in Supplementary Fig. 2). This map revealed
the binding profile to be highly non-uniform on short scales;
MeCP2 has sharp peaks with median width 183 bp, and the half
width at half maximum of autocorrelation was 113 bp
(Supplementary Fig. 1j). ChIP-qPCR (quantitative PCR) around
the Bdnf gene confirmed that four local peaks and seven local
troughs in the ChIP-seq profile indeed had high and low MeCP2
binding, respectively (regions 1–3 and 12–16 in Fig. 1a). We
found that three loci (regions 8, 9 and 11) out of five covering an
extended region with low ChIP-seq signal had low ChIP-qPCR
signal, while remaining two loci (regions 7 and 10) showed
moderate ChIP-qPCR enrichment, which might correspond
to transient binding missed in ChIP-seq (Fig. 1a). Our new
data thus show that MeCP2-binding sites are highly localized at
fine resolution.

MeCP2 peaks are enriched for mCpG. While MeCP2 has a
methyl-binding domain that specifically binds mCpG3,22, it also
has domains that can bind non-methylated DNA7,23. The relative
importance of these domains in vivo is unclear: some studies
reported that MeCP2-binding tracks the density of mCpG4, but
another study found that the majority of promoters with the
highest methylation levels are not bound by MeCP2 (ref. 8).
To investigate whether DNA methylation regulates MeCP2
binding in olfactory epithelial tissue, we mapped methylated
cytosines using whole-genome bisulfite sequencing in two
biological replicates. The CpG methylation levels, defined at
each CpG site to be the fraction of cells having methylation at the
site, agreed well between the samples (r¼ 0.89 in 10 kb windows,
Supplementary Fig. 1k), and the replicates were combined for
downstream analysis. The methylation level also had strong
overlap with previous studies in frontal cortex24 and embryonic
stem cells (ESC)25 (r¼ 0.79 and r¼ 0.76, respectively,
Supplementary Fig. 1l,m). The genome-wide CpG methylation
level was 70%. We then calculated the density of methylated CpG
dinucleotides (mCpG%) defined as the product of the density of
CpG (that is, the percentage of CpG dinucleotides in a 150 bp
window, henceforth denoted CpG%) and the local CpG
methylation level (that is, CpG methylation level averaged over
the same window). Earlier studies found a genome-wide
correlation between MeCP2 binding and mCpG%, albeit the
resolution was limited4,17. We also observed that the MeCP2
ChIP-seq coverage was correlated with mCpG% genome wide
(r¼ 0.39; Supplementary Fig. 3a), while the Input coverage
showed no correlation (r¼ 0.05; Supplementary Fig. 3b).
Strikingly, the mean mCpG% in MeCP2 peaks was 1.7-fold
higher compared with adjacent regions (1.26% versus 0.73%), and
this increase closely tracked the outline of the peaks
(Supplementary Fig. 3c). However, inspection of individual
MeCP2 peaks revealed that many binding sites had low
mCpG% (Fig. 1a; Supplementary Fig. 2); genome wide, 37% of
peaks had lower mCpG% than the surrounding regions
(Supplementary Fig. 3d). Thus, while MeCP2 peaks are
generally enriched for high mCpG%, the fact that many
individual peaks have depleted methylation indicates that other
factors are likely to contribute to the binding profile.

DNA sequence features can predict MeCP2-binding sites. The
abundance of MeCP2-binding sites with depleted methylation
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prompted us to investigate whether the binding pattern of MeCP2
can be predicted from sequence alone. Because most CpGs are
methylated in neuronal cells, an enrichment of CpG has been
observed in MeCP2-bound regions4. Consistent with these
results, our data showed coincidence of MeCP2 binding and
high CpG% (for example, Bdnf locus in Fig. 1a, Myc locus in
Supplementary Fig. 2). This observation generalized genome wide
with a Pearson correlation between MeCP2 ChIP fragment
coverage and CpG% of r¼ 0.40 (Supplementary Fig. 3e).
In contrast to the ChIP signal, Input showed no correlation
with CpG% (r¼ � 0.03, Supplementary Fig. 3f). The majority of
MeCP2 peaks (68%) had higher CpG% than surrounding regions
(Supplementary Fig. 3g), and the mean CpG% was significantly
higher in the peaks (1.6-fold higher, Wilcoxon rank-sum test,
Po2.2� 10� 308; Supplementary Fig. 3h).

To rigorously characterize MeCP2 recognition motifs in an
unbiased way, we trained a Random Forest regressor to
predict MeCP2 ChIP-seq peaks purely based on the sequence
in 200 bp running windows (see Methods section). Strikingly,
mononucleotide frequencies alone had very high predictive power

(area under receiver-operating characteristic (ROC) curve (AUC),
of 94%; Fig. 1b). Inclusion of di- and trinucleotides did not
increase the predictive power appreciably (AUC of 95% for
trinucleotides), but a model using only CpG% had much lower
predictive power (AUC of 78%; Supplementary Fig. 3l). Equating
false positive and negative rates on the ROC curve yielded a
classifier with 88% accuracy. In sharp contrast to the previously
reported CpG preference4, ranking the mono- and dinucleotides
by their predictive importance showed that GC% was by far the
most important feature, while CpG% was only ranked the 4th out
of 11 (Fig. 1c). Our analysis thus suggests that GC%, and not
CpG%, is an accurate predictor of MeCP2 binding. Indeed, the
genome-wide Pearson correlation of the MeCP2 fragment
coverage with GC% was higher than that with CpG% (r¼ 0.68
versus r¼ 0.40, Supplementary Fig. 3e,f,i,j), and 98% of peaks had
significantly higher GC% than surrounding regions (Wilcoxon
rank-sum test Po2.2� 10� 308; Supplementary Fig. 3k).

To reconcile the high enrichment of CpG in MeCP2 peaks with
the low importance of CpG% as a binding predictor, we
controlled for the genome-wide correlation between CpG% and
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Figure 1 | MeCP2 binding is accurately predicted by GC%. (a) Wiggle plots showing sequence GC%, CpG methylation level, mCpG% and MeCP2 ChIP-

seq and Input profiles for each replicate around the Bdnf locus. ChIP-qPCR bars indicate MeCP2 ChIP/Input (%). See Supplementary Table 1 for primer

sequences. (b) ROC curve for predicting MeCP2 ChIP-seq peaks using Random Forest regressor based on GC% in 200 bp windows. (c) Relative

importance of different sequence features in predicting MeCP2 binding using the Random Forrest regressor algorithm (Methods). Trees with maximal

depth 8 were used, but the dominant importance of GC% did not depend on this choice. (d) GC% and CpG% dependence of the mean MeCP2 enrichment

(colours) calculated using 150 bp windows. The contours indicate the genome-wide joint distribution p(GC%, CpG%) and contour labels indicate the

enclosed genome fraction. The inset shows mean MeCP2 enrichment versus GC%.
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GC% by first classifying 150 bp genomic windows by GC% and
CpG% and then calculating how the mean MeCP2 coverage
depended on these two variables. This representation clearly
revealed that the coverage depended strongly on GC% but not on
CpG% (Fig. 1d; Supplementary Fig. 4a,b). Most of the correlation
between CpG% and MeCP2 signal was removed once controlled
for GC dependence (partial correlation rMeCP2,CpG �GC¼ 0.12
compared with rMeCP2,CpG¼ 0.40), but the reverse control
(that is, controlling for CpG dependence in the correlation
between GC% and MeCP2) barely reduced the correlation
(rMeCP2,GC �CpG¼ 0.61 compared with rMeCP2,GC¼ 0.68). Partial
correlation analysis thus effectively removes secondary
correlations arising from confounding factors, and our ensuing
analyses extensively utilize and generalize this approach.
The secondary association between MeCP2 and CpG% was
further supported through reanalysis of previous MeCP2
ChIP-seq data from mature murine neurons4

(rMeCP2,GC �CpG¼ 0.34 and rMeCP2,CpG �GC¼ 0.02; Supplementary
Fig. 4c). Reanalysis of the data from ES cells and ES-derived
neuronal progenitor cells revealed a somewhat stronger CpG
dependence (neuronal progenitor, rMeCP2,GC �CpG¼ 0.30,
rMeCP2,CpG �GC¼ 0.14; Supplementary Fig. 4d,e)17, but ES cells
lacking the methyltransferases Dnmt1, Dnmt3a and Dnmt3b had
very weak CpG dependence but still an appreciable GC
dependence (rMeCP2,GC �CpG¼ 0.20, rMeCP2,CpG �GC¼ 0.02;
Supplementary Fig. 4f). The weaker CpG dependence in the
more differentiated cells is potentially explained by the large
increase in MeCP2 expression throughout neural differentiation26

and a shift from methylation-dependent to methylation-
independent binding in the high free-protein concentration
limit. Reanalysis of published data from murine forebrain and
hypothalamus revealed enrichment profiles constant in both
GC% and CpG% (Supplementary Fig. 4g,h)9,27, a different
pattern potentially explained by the much lower ChIP versus

Input enrichment seen in these data sets (Supplementary Fig. 1e)
or, for hypothalamus, low coverage. To verify that the above
genome-wide binding trends were visible also at individual loci,
we plotted the ChIP signal in short regions with contrasting GC%
and CpG%. Strikingly, regions with no CpG but GC%Z60%
had strong MeCP2 enrichment, supporting that CpG is not
necessary for MeCP2 binding (Fig. 2a–c); conversely, regions with
CpG%Z3% but GC%r35% showed decreased MeCP2
enrichment (Fig. 2e–g). This binding pattern was further
corroborated by three independent lower-coverage ChIP-seq
replicates from the pilot stage of our study (Supplementary
Fig. 4i–n). However, although some previously published data
sets also had a moderate enrichment and depletion in high and
low GC% regions, respectively, the trends were less pronounced
compared with olfactory epithelial tissue (Fig. 2d,h). To control
for the possibility that the signal was caused by potential GC bias
in the sequencing adapter ligation or library amplification, we
also performed ChIP-qPCR in nine regions with high GC%
and no CpG and 13 regions with low GC% but high CpG% and
again found that the binding follows GC% and not CpG%
(Supplementary Fig. 4o; Supplementary Table 2). Modest
correlation of MeCP2-binding strength with GC% could be also
seen in vitro by electrophoretic mobility shift assay (EMSA)
(Supplementary Fig. 5b,c; Supplementary Table 3; Supplementary
Methods). Taken together, these findings show that the primary
sequence predictor of MeCP2 binding is GC% and that the
previously reported correlation between CpG density and MeCP2
enrichment is mostly explained by the confounding correlation of
GC% with CpG%.

Controlling for GC% reduces mCpG dependence of binding.
Even though methylated CpG clearly increased the binding affi-
nity of MeCP2 in vitro (Supplementary Fig. 5d,e; Supplementary
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Figure 2 | MeCP2 binding follows GC% in regions with extreme GC% and CpG%. (a–c) Alignment plots showing MeCP2 enrichment, GC%, and CpG%
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Table 3)28,29, the corresponding in vivo association assessed by
MeCP2 ChIP-seq was only moderate. We further investigated the
extent to which the GC% dependence confounded the association
between MeCP2 and mCpG% and found that much of the
association was removed after controlling for GC%
(rMeCP2,mCpG¼ 0.39, rMeCP2,mCpG �GC¼ 0.19, 150 bp windows;
Supplementary Fig. 6a). In contrast, the MeCP2 enrichment
depended strongly on GC% even after controlling for mCpG%
(rMeCP2,GC �mCpG¼ 0.62). Reanalysis of published MeCP2 ChIP-
seq and cell type-matched bisulfite sequencing data revealed a
similar dichotomy in the brain (rMeCP2,mCpG �GC¼ 0.13 versus
rMeCP2,GC �mCpG ¼ 0.34; Supplementary Fig. 6b)4,24. The MeCP2
binding in ES cells had a stronger dependence on mCpG%
(rMeCP2,mCpG �GC¼ 0.32, rMeCP2,GC �mCpG¼ 0.29; Supplementary
Fig. 6c)17,25. As in the above CpG% analysis, the published data
from murine forebrain and hypothalamus were uniform in
mCpG% and GC% (Supplementary Fig. 6d,e)9,27. The predictive
power of GC% was particularly clear in CpG islands (CGIs): in
CGIs proximal to promoters (within 500 bp of the transcription
start sites (TSS)), mCpG% was suppressed relative to surrounding
regions, but both GC% and MeCP2 signal were distinctly elevated
(Fig. 3a). Contrasting this, distal CGIs were enriched for mCpG%,
GC% and MeCP2 binding (Fig. 3a). Thus, while MeCP2-binding
sites are enriched for both high GC% and mCpG%, the binding
profile generally follows GC%, even where GC% and mCpG%
diverge.

A recent study argued that MeCP2 also recognizes methylated
cytosine in the mCpH context (H¼A,T,C)27. To systematically
investigate the importance of mCpH%, we next built a Gaussian
graphical model for MeCP2 binding and explanatory covariates.
Briefly, a Gaussian graphical model represents the conditional
dependence of random variables as an undirected graph, where
the nodes are the variables of interest and an edge between two
nodes captures the correlation between the connected nodes after
controlling for confounding correlations with the remaining
nodes. We first built a model relating the MeCP2 ChIP, Input,
GC%, CpG%, mCpG% and mCpH% at 150 bp resolution.
Consistent with the above observations, we found a chain of
strong edges from MeCP2 to GC%, CpG% and finally mCpG%
(Fig. 3b). By contrast, the direct edges from MeCP2 to CpG% and
mCpG% were both relatively weak, implying that MeCP2 binding
was mostly independent of these two sequence features once
conditioned on the remaining features. Similarly, mCpH% was
very weakly connected to MeCP2 and slightly more correlated
with Input, suggesting that mCpH% was a subdominant predictor
of MeCP2 binding in olfactory epithelia. Reanalysis of data from
neurons and ES cells revealed similar networks, but these data sets
showed stronger correlation between MeCP2 ChIP and Input,
and the link between MeCP2 and GC% was also somewhat
weaker (Fig. 3c,d). The hypothalamus data set showed a stronger
edge between MeCP2 ChIP and mCpH% than between MeCP2
and GC% (Fig. 3e), but that data set had a very strong correlation
between MeCP2 and Input, making it difficult to interpret the
result. Because one data set had very low counts at 150 bp
resolution (Fig. 3f), we repeated the analysis at 10 kb resolution
and found graphs with similar structures, the main difference
being strong correlations between MeCP2 and Input in ESC,
hypothalamus and forebrain (Supplementary Fig. 6f–j). Our
integrative analysis thus shows that GC% and, to a lesser extent,
mCpG% are the main predictors of MeCP2 binding.

MeCP2 preferentially binds nucleosomal DNA. Given the role
of MeCP2 as an epigenetic regulator, we next investigated the
interplay between MeCP2 and chromatin structure. Previous
in vitro studies of MeCP2 found that the C-terminal portion of

the protein contains a chromatin-binding domain that facilitates
complex formation with nucleosomes5. Much like the H1 histone,
MeCP2 binds reconstituted nucleosomes near the DNA entry and
exit sites and protects proximal linker DNA from digestion5,30, an
observation later corroborated with data obtained from HeLa S3
cells29. To investigate this association in vivo, we measured the
genomic locations of nucleosomes in wild-type (WT) tissue using
MNase-seq. The nucleosomes exhibited previously reported
patterns: expressed genes (see below) had deep nucleosome-
depleted regions around the TSS and distinct þ 1 nucleosomes
(Supplementary Fig. 7a)31,32. Likewise, the transcription
termination sites were also depleted of nucleosomes (Supplemen-
tary Fig. 7b). Consistent with a recent study27, overlaying the
MNase-seq and MeCP2 ChIP-seq data showed preferential co-
localization of MeCP2 peaks with nucleosomes (for example, Myc
locus in Supplementary Fig. 2). Genome-wide, MeCP2 peaks
closely overlapped with sharply increased nucleosome read
density (Fig. 4a). Furthermore, the MeCP2 ChIP-seq and
MNase-seq fragment densities were highly correlated (r¼ 0.66).
Finally, the genome-wide cross-correlation between the MeCP2
ChIP-seq and MNase-seq signals was sharply peaked at zero
offset (Supplementary Fig. 7c; Supplementary Methods). These
pieces of evidence together show that MeCP2 and nucleosomes
coincide genome wide.

Like MeCP2 binding, nucleosome occupancy is guided by
sequence; previous studies in Saccharomyces cerevisiae found that
the nucleosome occupancy correlates strongly with GC%
(refs 33,34), and subsequent studies further argued that GC% is
the primary predictor of intrinsic nucleosome occupancy35.
Consistent with these results, we found that the nucleosome
occupancy correlates strongly with GC% but not with CpG%
(Fig. 4b, rMNase,GC �CpG¼ 0.57 44 rMNase,CpG �GC¼ � 0.12).
This sequence dependence is similar to that of MeCP2, and we
therefore augmented our previous Gaussian graphical model by
including the MNase-seq data. This modification reduced the
direct correlation between MeCP2 and GC% from 0.61 to 0.39
and introduced a three-way interaction involving nucleosome
occupancy (Supplementary Fig. 7d). Furthermore, at each fixed
GC%, plotting the conditional MeCP2 enrichment as a function
of MNase-seq density confirmed the dependence of MeCP2
enrichment on nucleosome occupancy (Supplementary Fig. 7e).
To investigate the relative effects of nucleosome and GC%, we
plotted how the mean MeCP2 enrichment jointly depends on
these covariates and found that the GC% dependence was much
stronger than the nucleosome dependence (Fig. 4c). Thus, while
MeCP2 binding still conditionally depends on nucleosome
occupancy when controlled for GC%, its marginal dependence
on GC% seems stronger.

MeCP2-binding pattern correlates with repressor function. The
regulatory function of MeCP2 remains unclear. While earlier
studies found that MeCP2 acts as a repressor in individual
methylated promoters36,37, subsequent studies did not find a
genome-wide increase in gene expression in Mecp2-deficient
neurons38. On the contrary, several recent studies found
numerous transcriptional changes in Mecp2-deficient tissues,
most of which seemed to implicate MeCP2 acting as a global
activator10,12. A previous study reported that genes with
increased mCpG% around the TSS exhibited increased
MeCP2 binding17. Even though we also observed increased
MeCP2 binding, GC% and CpG% immediately downstream of
the TSS (Supplementary Fig. 8a–c), we found that mCpG% and
the CpG methylation level actually decreased around the TSS
(Supplementary Fig. 8d,e). Furthermore, the genes with the
highest CpG methylation level had the lowest MeCP2 enrichment
(Supplementary Fig. 8e). To understand this anticorrelation, we
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sorted the promoters into quintiles of GC% and CpG methylation
level and found that genes with high GC% (and CpG%) had
decreased methylation level and mCpG% (as expected given the
hypomethylation of proximal CGIs discussed above) and that the
anticorrelation between MeCP2 binding downstream of the
TSS and CpG methylation level disappeared after conditioning
on GC% (Supplementary Fig. 8e). Thus, as was the case in
genome-wide analysis, MeCP2 enrichment primarily tracked
GC% across the promoter.

To investigate Mecp2 function in the regulation of
transcription genome wide, we performed RNA-seq and
compared the WT with Mecp2 KO. The expression values of
the biological triplicates clustered correctly into separate WT and
KO groups (Supplementary Fig. 9a). An earlier study found
that the majority of MeCP2-bound promoters are actually
transcriptionally active, suggesting that even if MeCP2 acts as a
repressor, its binding may not completely silence gene
expression8. To investigate the relation between MeCP2 binding
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Figure 3 | MeCP2 enrichment depends weakly on mCpG%. (a) GC% (green), mean MeCP2 enrichment (purple) and mCpG% (red) around proximal
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and gene expression, we sorted genes by their expression levels in
WT animals and aligned the MeCP2 ChIP enrichment around
the TSSs (Supplementary Fig. 9b). While MeCP2 is strongly
enriched downstream of the TSS, this enrichment did not
correlate with expression status and was almost constant for
FPKM values between 0.1 and 50 (Supplementary Fig. 9c,d). In
the region upstream of the TSS, the MeCP2 ChIP enrichment was
marginally lower in highly expressed genes compared with lowly
expressed genes, particularly in the proximal promoter
(Supplementary Fig. 9e).

To test whether MeCP2 binding is associated with repressed
transcription, we first identified transcripts with significant
differences in expression between WT and Mecp2 KO, giving
1,690 transcripts in total (Supplementary Fig. 9f). The median
changes in up- and down-regulated genes were 1.50- and
0.64-fold, respectively. We found that the MeCP2 enrichment
downstream of the TSS was 78% higher in upregulated transcripts
compared with downregulated transcripts after Mecp2 KO
(Wilcoxon rank-sum test P¼ 1.4� 10� 50; Fig. 5a;
Supplementary Fig. 9g). It should be noted, however, that peak
heights might represent either more binding across cell
population or more stable binding in a subset of cells; thus, the
observed higher MeCP2 enrichment should be interpreted with
caution. The GC% in the 50 end of Mecp2 KO upregulated genes
was also markedly higher than in downregulated genes (65 versus
55%, Wilcoxon rank-sum test P¼ 3.7� 10� 50), and the increase
largely tracked the MeCP2 enrichment in extent and magnitude
(Fig. 5b). Although mCpG% did not differ appreciably between
the 50 ends of up- and down-regulated genes (Fig. 5c),
MeCP2-binding level did correlate with differential expression

(Fig. 5d). Importantly, the differential expression did not depend
on GC% or mCpG% after conditioning on MeCP2-binding level
(P¼ 0.16 and P¼ 0.28, regression slope t-test on ranked data),
suggesting that the dependence of differential expression on
MeCP2 was not an indirect effect mediated through GC% or
mCpG% (Fig. 5d). Consistent with earlier observations9,39, long
genes were more upregulated than short genes. Furthermore, this
length dependence remained after controlling for MeCP2
binding in the promoter, suggesting that it is an effect
independent of MeCP2-binding downstream of promoter
(Fig. 5d). Taken together, these findings suggest that MeCP2
both directly downregulates genes with strong binding and
indirectly downregulates long genes.

Recent studies showed that Mecp2-deficient embryonic stem
cell-derived neuronal nuclei were smaller in size, had decreased
total RNA and rRNA and had down-regulation of both
transcription- and translation-related genes14,15. In contrast to
these studies, we did not observe significant differences in
either neuronal cell body or nucleus sizes within neuronal
epithelium (t-test; Po0.1, Fig. 5e; Supplementary Fig. 10a,b).
Mecp2 KO mice are often under-nourished and under-weight,
but the WT and KO mice used in our study had similar body
weight, within 2 g of difference. Of note, cells within the olfactory
epithelium are tightly packed, possibly making the detection
of subtle differences difficult. However, we observed a 25%
reduction in the total RNA extracted from equal number
of viable cells from WT and KO (Supplementary Fig. 10c,d),
and gene ontology analysis revealed that translation and RNA-
processing categories were significantly downregulated
(Supplementary Fig. 9h). Furthermore, differentially expressed
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ribosomal genes, all of which were downregulated, had lower
MeCP2 binding than significantly upregulated genes (t-test;
P¼ 1.6� 10� 4), suggesting that the observed reduction
in transcripts may be due to global alterations in chromatin
rather than a direct consequence of local MeCP2 binding at
those targets.

Discussion
This study shows that MeCP2 binds distinct but numerous sites
throughout the genome in a manner that can be accurately
predicted using DNA sequence features alone. To date, the lack of
a fine-resolution genome-wide binding map has been a major
bottleneck in understanding the mechanism of MeCP2
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function40. One challenge has been the fact that MeCP2 has a
widespread binding pattern along the entire genome4, thereby
diluting the ChIP-seq signal when sequenced at shallow depth.
Another complication arises from the diversity of neuronal types
present in the brain tissue4,27. In addition to diverse neuronal
populations, a large number of glial cells might also reduce the
MeCP2 ChIP enrichment level41. We have overcome these
difficulties by performing high-resolution MeCP2 ChIP-seq in
olfactory epithelium, which has only one type of neurons, namely
the olfactory sensory neuron. The olfactory epithelial tissue
harvested for our experiments consisted of mostly olfactory
sensory neurons (77.2%) and only a small fraction of
sustentacular cells (14.0%), and underlining stromal cells (8.8%)
(data from this study). As a result, distinct individual MeCP2-
binding sites could be identified, and only very low correlation
was observed between MeCP2 ChIP-seq and Input data,
distinguishing our results from previous published data sets9,27.
We believe the preponderance of a unique neuronal population in
conjunction with an unconventional deep-sequencing strategy
made our high-resolution data possible.

While our data exhibited the previously reported enrichment of
CpG in MeCP2 peaks, we found that the GC% is the predominant
predictive feature and that the correlation between MeCP2
binding and CpG% is confounded by the correlation between
GC% and CpG%. Integrative analysis further showed that GC% is
the dominant feature associated with MeCP2 binding even after
including methylation information. This observation was further
supported by reanalysis of published mouse brain MeCP2
ChIP-seq data4. We found that the GC% continued to be an
essential feature in mouse ES cells, but the mCpG% also played an
important role in this cell type17. Interestingly, while knocking
out the methyltransferases Dnmt1, Dnmt3a and Dnmt3b in ES
cells modified the MeCP2-binding pattern, it did not significantly
change the overall affinity of MeCP2 for chromatin17. Thus, the
observed difference in binding pattern between olfactory epithelia
and ES cells may be due to the large increase in MeCP2
expression throughout neuronal differentiation and a consequent
change in the balance between methylation-dependent and
methylation-independent binding modes tuned by MeCP2
concentration.

Because numerous genomic features correlate with GC%, we
investigated whether the high level of MeCP2 binding in GC-rich
regions reflects direct sequence specificity or is confounded by some
secondary GC-associated effect. First, previous studies have observed
moderate technical GC biases in sequencing library preparation42,43.
To test for such potential biases, we preformed ChIP-qPCR and
found good agreement with ChIP-seq. The degree of MeCP2 ChIP
enrichment compared with Input is also much stronger than the
level of previously reported GC biases. Second, the disappearance of
the correlation between differential gene expression and GC% after
conditioning on MeCP2 binding (but not vice versa) suggested that
it is the local MeCP2 binding that can predict differential expression
after MeCP2 KO. Third, in vitro binding assays found increased
binding affinity for high-GC DNA compared with low-GC DNA,
supporting the role of GC% in recruiting MeCP2. Finally, the co-
localization of MeCP2 peaks with MNase-seq peaks implied the
importance of local chromatin structure in recruiting MeCP2 in vivo
and suggested that the sequence specificity of MeCP2 might in part
arise from its interaction with nucleosomes that themselves prefer
GC-rich sequences.

The combined results of our study thus provide support for
two binding modes of MeCP2: (1) binding to abundant GC-rich
sequences, many of which are found in nucleosomes and (2)
binding to mCpG. These results clarify the role of DNA sequence
in recruiting MeCP2 and provide functional insights into this
important epigenetic regulator.

Methods
Animals. Animal care and experimental procedures were approved by the
Institutional Animal Care and Use Committee at University of California, Davis
(UCD), and were in compliance with the National Institute of Health (NIH) policy.
All experiments were performed at UCD. To ensure minimum and equal olfactory
stimulation, experimental animals were individually housed in circulating clean air
cages for minimum of 24 h before use. Male Mecp2-/y (KO) and Mecp2þ /y (WT)
littermates were obtained by crossing heterozygous Mecp2-/þ female (Jackson
Laboratory strain: B6.129P2(C)-Mecp2tm1.1Bird/J, stock number 003890)44 with
inbred C57BL/6J male.

Chromatin immunoprecipitation and sequencing. ChIP-seq was performed
based on established protocols18. Three pilot ChIP assays were performed using
two biologically independent samples, each sample consisting of two 8-week-old
male mice (C57BL/6J). Each sample was independently ChIPed, and another
independent ChIP was later performed on the material remaining from the second
sample. Sequencing was performed separately on the three ChIPed DNA libraries,
comprising the three pilot ChIP-seq data sets. To obtain deep-sequencing data,
independent ChIP assays were performed again as biological replicates. ChIP-seq
analyses presented in the paper were largely based on these latter deep-sequencing
data sets. For each ChIP assay, two 8-week-old male mice (C57BL/6J) were used to
obtain main olfactory epithelium (MOE). Dissociation of MOE was done via
trituration in phosphate buffer saline (PBS) with protease inhibitors (Roche,
#1183615300). Final number of cells from each experiment was counted and
evaluated. Within this preparation, 77.2% of the cells were olfactory sensory
neurons, 14% were sustentacular cells and 8.8% were cells from the stroma.
MAGnify chromatin immunoprecipitation kit (Life Technologies, Grand Island,
NY, USA) was used for all ChIP assays. For the pilot ChIP-seq experiments,
5� 107 cells and 5 mg of MeCP2 antibody (Diagenode, pAb-052-050) were used.
Antibody specificity was confirmed using western blot (Supplementary Fig. 1n).
For the deep-sequencing ChIP-seq experiments, 2.5� 108 cells and 50 mg of
MeCP2 antibody were used. ChIP assay was scaled up accordingly (see details
below). Protein–DNA complexes were crosslinked with 1% formaldehyde for 5 min
at room temperature. Crosslinking was quenched by adding Glycine to final
concentration of 0.125 M. After media PBS washing step, MOE cells were
incubated in lysis buffer (5 mM PIPES, 85 mM KCl, 0.5% IGEPAL CA-630) on ice
for 10 min. We performed gentle dounce homogenization with 10 strokes to release
the nuclei and centrifugation to remove supernatant. After adding shearing buffer
(50 mM Tris, 10 mM EDTA, 0.1% SDS, 0.5% sodium deoxycholate, pH 8.0)
containing protease inhibitors, samples were sonicated for 30 min with 30 s
intervals to shear genomic DNA using a Bioruptor 300 (Diagenode, Denville, NJ,
USA). Sheared DNA was evaluated by 2100 Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA) to confirm that the fragment sizes ranged between 200 and
300 bp. From the same sample, Input samples were taken and set aside. The
remaining sheared genomic DNA preparation was split into two equal portions
and incubated with MeCP2 antibody (Diagenode, pAb-052-050) or Rabbit IgG
(Millipore, Cat# 12-370) for negative control (IgG ChIPed DNA was examined by
qPCR and subsequently was not followed by library construction). ChIP assays
were done according to the instructions from the MAGnify ChIP systems. For pilot
ChIP-seq libraries, 5 mg of MeCP2 antibody was coupled to 15 ml of Protein A/G
Dynabeads for 2 h at 4 �C. For making deep-sequencing libraries, 50 mg of MeCP2
antibody was coupled to 200 ml of Protein A/G Dynabeads for chromatin binding.
After adding chromatin to antibody-coupled beads, the tubes were rotated
end-over-end at 4 �C for 2 h. MeCP2–genomic DNA complexes bound on the
beads were subsequently washed by IP Buffer and prepared for reverse
crosslinking. Input DNA samples were included at this step and reversed
crosslinked in parallel with the ChIPed samples. Reverse crosslinking was done
by DNase-free Proteinase K. MeCP2 ChIP-seq and Input DNA libraries were
prepared according to manufacturer’s instruction (Bioo Scientific, Austin, TX,
USA) using 5143-01 NEXTflex ChIP-Seq kit and 514120 NEXTflex ChIP-Seq
Barcodes-6. ChIP and Input DNA were PCR amplified (14 cycles), cleaned up and
sequenced on Illumina Hi-Seq 2000.

Micrococcal nuclease digestion and sequencing (MNase-seq). For MNase
digestion, olfactory neuroepithelia were harvested from Mecp2 WT littermate adult
mice and resuspended in PIPES buffer (5 mM PIPES, 85 mM KCl, 0.5% NP-40, pH
8.0) at 4 �C. After disruption with a dounce homogenizer, nuclei were collected by
centrifugation. Collected nuclei were washed once, resuspended in the MNase
buffer and digested with 0.5 units of MNase (New England Biolabs, Ipswich, MA,
USA) per microlitre volume for 15 min at 37 �C. MNase digestion was stopped by
putting the samples on ice and adding EDTA to a concentration of 10 mM. After
digestion with 0.1 mgml� 1 RNase A (Fermentas, Pittsburgh, PA, USA), DNAs were
purified with DNA Purification Magnetic Beads (Life Technologies, Grand Island,
NY, USA), and pellets were dissolved in H2O. DNA fragments corresponding to
mononucleosomes (about 150 bp) were confirmed by using 2100 Bioanalyzer
(Agilent Technologies Santa Clara, CA, USA). MNase-seq libraries were prepared
as described (Bioo Scientific, Austin, TX, USA) using 5140-01 NEXTflex DNA
Sequencing kit and 514101 NEXTflex DNA Barcodes-6. High throughput
sequencing was done with Illumina Hi-Seq 2000.
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RNA sequencing. Olfactory neuroepithelia were collected from three different WT
and KO mice respectively. Total RNA was extracted with TRIzol Reagent
(Life Technologies, Grand Island, NY, USA). The quality of the RNA was
determined with an Agilent 2100 BioAnalyzer. Equal amounts of total RNA (13 mg)
were used for subsequent isolation of mRNA using Dynabeads mRNA purification
kit (Invitrogen). Construction of RNA-seq libraries was done using NEXTflex
Directional RNA-Seq kit (Bioo Scientific). cDNA library sequencing was performed
with Illumina Hi-Seq 2500 at QB3 Vincent J. Coates Genomics Sequencing
Laboratory in the UC Berkeley.

Bisulfite sequencing. Five-hundred nanograms of DNA was isolated from two
wild-type olfactory epithelia (OE) and bisulfite converted using the EZ DNA
methylation-Lightning kit (Zymo Research, Irvine, CA, USA). One-hundred
nanograms of bisulfite-converted DNA from each OE was then used to make
indexed, Illumina sequencing compatible libraries using the Epignome Methyl-Seq
Kit (Epicentre, Madison, WI, USA) and Epignome Index PCR Primers (Epicentre).
Each bisulfite-converted OE sample had a separate sequencing index allowing for
paired end sequencing of both samples in one lane. Whole-genome bisulfite-treated
DNA libraries were sequenced with 100 bp paired end reads by Beijing Research
Institute (BGI), Sacramento, CA, USA. We performed sequencing in two biological
replicates obtaining 173 and 161 million pair-end reads, respectively.
Deduplication of the raw sequencing reads resulted in 161 and 152 million reads
constituting combined 21� genomic coverage (computed as the number of
sequenced base pairs divided by the genome size). We aligned the deduplicated
reads to the mm9 reference assembly using Bismark45 package with Bowtie2
aligner, using default Bowtie2 alignment scoring. Methylation calls were performed
by Bismark package. The bisulfite conversion rate, estimated using reads mapped to
unmethylated mitochondrial DNA, was 99.2%. The methylation level of each CpG
in the genome was then estimated as the ratio l(x)¼ nm(x)/ntot(x) where nm(x) is
the number of reads supporting methylation at position x and ntot(x) is the total
number of covering reads. After binning the genome we estimated the methylation
level l(i) of each bin i as the weighted average of l(x) using the weights
w(x)¼ ntot(x). This is equivalent to l ið Þ ¼

P

x2i
nmðxÞ=

P

x2i
ntotðxÞ and reduces the

variance of the estimate by down weighting CpGs with low coverage. We then
estimated the density of methylated, mCpG%, to be fmCpG(i)¼ l(i)fCpG(i), where
fCpG is the fraction of CpG in the window. Bins with fCpG(i)¼ 0, for which l(i) is
undefined, were defined to have fmCpG¼ 0, but bins with fCpG(i)40 but all
ntot(x)¼ 0 were left undefined. The same method was used for methylated CpH
dinucleotides. The methylation levels in murine frontal cortex (GSM1173783)24

and embryonic stem cells (GSE30202)25 were calculated using the same statistics.

MeCP2 ChIP-seq and MNase-seq data analysis. The MeCP2 ChIP-seq and
Input reads were aligned to the mm9 reference genome using Bowtie 2 (ref. 46).
Reads mapping to multiple sites in the genome were discarded. PCR duplicates
were removed by keeping at most one mapped read at each position in the genome.
The biological replicates were then combined. This yielded 122.1 and 103.7 million
reads in the MeCP2 ChIP and Input sets respectively. The fragment coverage
values of the ChIP and Input sets were calculated after extending the map
coordinate by 200 bp (the experimentally determined fragment length). Published
MeCP2 ChIP and Input reads from murine whole brain (GSM494291) (ref. 4),
forebrain (GSM1464563, GSM1464564) (ref. 9), hypothalamus (GSM1633577,
GSM1633578) (ref. 27), and embryonic stem cells (GSM972976, GSM972981,
GSM972995 and GSM1161419) (ref. 17) were processed using the same pipeline.
Peaks were called using MACS2 with the narrow peak setting21. The MNase-seq
reads were also aligned using Bowtie2, but they were not deduplicated. This yielded
101.2 million reads. The nucleosome occupancy was calculated by extending the
map coordinates 146 bp and tabulating the coverage.

Masking. We used two criteria to identify anomalous genomic regions to be
masked from downstream analysis. First, plotting the number of genome-wide
occurrences (y axis) of the nucleosome occupancies (x axis) on a log–log scale
revealed two distinct types of genomic regions; while the bulk of the genome had
moderate coverage, a small fraction of genome—about 0.005%—had anomalously
high coverage and highly repetitive sequences. The latter was removed by masking
loci with occupancy 4100 and the surrounding ±10 kb region. Second, extended
regions of low mappability were identified by first calculating the mean of the
ENCODE 50 bp mappability track in 1 kb bins and then flagging regions where ten
or more consecutive bins have mappability below 50%47. These flagged regions and
the surrounding ±10 kb were masked.

Normalization of MeCP2 ChIP-seq enrichment. The relative normalization of
the MeCP2 ChIP and Input sets was determined using signal extraction scaling19, a
method that equalizes the non-enriched background in two sets. Briefly, to separate
the ChIP-enriched signal from the non-specific background, we first calculated the
list of pairs (nChIP, nInput), where nChIP and nInput are the ChIP and Input coverage,
respectively, across the genome, and the pairs were ordered by increasing nChIP.
The cumulative fractions of nChIP and nInput along this list of ordered pairs, denoted
fChIP and fInput, respectively, were then plotted against percentile rank in the list

(Supplementary Fig. 1d). The ratio fInput/fChIP evaluated at the percentile of
maximal |fChIP� fInput| is the rescaling factor required to match the background
contribution to the ChIP-track to that in the Input track, and we found this factor
to be u¼ 4.41. To regularize the MeCP2 enrichment in regions with small Input, a
small pseudocount e was added to the tracks, giving the final enrichment measure
n ðMeCP2=Mean MeCP2½ �Þ þ e
ðInput=Mean½Input�Þ þ e . Throughout the paper we use e¼ 0.1, but the results are not

sensitive to this parameter.

Signal alignment analysis. To show the genomic landscape around genomic
features, we created alignment plots that display the value of a signal track in ±1
or ±4 kb regions surrounding ‘alignment points’ as coloured rows in a heat map
(Fig. 2). Each alignment point has an associated score (such as the expression level
of a TSS or the length of CpG-island) that was used to order the regions (rows),
and we indicated this score by using dashed curves. Because of the large number of
alignment points, the maps were pixelated to 200-by-200 pixels, and each
horizontal line of pixels is thus the average of multiple alignment features. The
alignment points we used were TSSs, transcription termination sites, intron/exon
boundaries, CpG-islands—all downloaded from the UCSC table browser48—and
the MeCP2 enrichment-peak centres. The signal tracks were the ChIP-seq and
Input coverage, the MNase-seq nucleosome occupancy, GC% and CpG% in tiled
50 bp windows, and the ENCDOE 50 bp mappability track. The former three were
normalized by their respective genome-wide mean. Plots of MeCP2 enrichment
display the ratio of the pixelated MeCP2 ChIP and Input maps, normalized using
signal extraction scaling. For a more quantitative display of the data, we also
grouped the alignment points into quartiles of the ordering score and plotted the
median signal profile for each quartile.

GC and CpG dependence of ChIP- and MNase-seq signals. To clarify how the
MeCP2 ChIP enrichment and MNase-seq coverage depends on GC% and CpG%,
we first tiled the genome with 150 bp windows (chosen to be roughly the size of
ChIP-seq and MNase-seq fragments) and recorded the fraction fGC of G or C
nucleotides and fCpG of CpG dinucleotides in each window. We also recorded the
values of the three signal tracks—the MeCP2 ChIP-seq and Input coverage and the
WT nucleosome occupancy—at the centre of the windows, all normalized by their
respective genome-wide mean. We then grouped the windows by the pair
(fGC, fCpG) and calculated the average of each signal within each (fGC, fCpG) group.
The MeCP2/Input enrichment was then calculated using these grouped averages.
These values were then visualized as a heat maps by linearly interpolating the
signals between the observed (fGC, fCpG) values. To visualize how the genome-wide
correlation between fGC and fCpG confounds the causal relationship between
sequence and signal, we also displayed the contours of the empirical measure p(fGC,
fCpG), each contour labelled by the enclosed genomic fraction. Because
CpG is much rarer than CpC, GpC and GpG, the region fCpG4f 2

GC=4 was under
sampled and we masked it in the plot.

Bivariate distributions. We created the bivariate distribution plots of the
ChIP-seq coverage and nucleosome occupancies (Supplementary Fig. 1a) by first
tabulating the number of times the two signals s1 and s2 are observed as a pair
(s1, s2) and then normalizing these counts to get an empirical density function. The
contours of this density function were then created by first interpolating between the
observed points (s1, s2) and then placing contours evenly between zero and twice the
mean density in the plotted region. To create the bivariate distributions of the ChIP-
seq and MNase-seq signals versus GC% and CpG%, we first tabulated both the
nucleotide content in tiled 150 bp windows and the value of the signal track in the
centre of these windows and then proceeded as above. The MeCP2 ChIP, Input and
MNase-seq signals were all normalized by their respective genome-wide mean.

Random Forest regression for MeCP2 binding. To improve our understanding
of how sequence determines MeCP2 binding of DNA, we built a machine learning
programme that predicts MeCP2 binding based on the concentration of k-mers in
the bound sequence. This programme puts a lower bound on the degree to which
one can predict the level of MeCP2 binding only from local concentration of
k-mers in DNA sequence and also determines the relative importance of various
k-mer concentration in the DNA sequence on MeCP2 binding.

We used Random Forest regressor, a non-parametric supervised learning
method used for classification and regression that is particularly suitable for our
goal, as it can capture the potentially complex relationships between sequence
features and MeCP2 binding. We divided the mouse genome into 200 bp windows
and used mono-, di- and trinucleotide concentrations (removing features that are
equivalent under reverse complement symmetry) as predictors of the window
averaged fold enrichment obtained by MACS2 peak caller from MeCP2 ChIP-seq
signal and Input. We used 10,000 randomly sampled 200 bp windows across the
uniquely mappable regions of mouse genome as a training set for a 100 tree
Random Forest regressor. Our programme uses scikit-learn implementation of
Random Forest regressor with CART algorithm.

We first trained the Random Forest regressor on mono-nucleotides only. Since
the concentration of all mono-nucleotides adds up to 1 and the concentration of
C equals that of G due to the strand symmetry and similarly for A and T, the only
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independent feature is the GC%. The Pearson correlation between the true MeCP2
ChIP-seq enrichment and that predicted based on GC% was 84% across the
mappable part of genome. We further used the regressor to classify sites as MeCP2
bound or unbound by thresholding of regressor predicted value. We compared this
classification with prediction of MeCP2 binding by MACS2 peak caller, where we
required that a predicted MeCP2-bound window has at least 50 bp overlap with
MACS2 peak to be called a true positive. ROC of this classifier in shown in Fig. 1b,
and the AUC of ROC is 94%. We investigated robustness of our results with respect
to varying depth of regression trees and found that AUC varies o1%, and
correlation between prediction of MeCP2 enrichment and its observed values
varies o2% as the depth of regression trees varies between 3 and 8.

Next, we added the dinucleotide concentrations into the feature set. Since we
now have multiple features in the set, we are interested in how important the
individual features are for the prediction of MeCP2 enrichment. The average
relative tree-depth of a feature used in trees of the forest is used to quantify the
relative importance of the features on the predicted value. Our Random Forest
regressor showed that dinucleotides have very small importance and hence a
negligible impact on the prediction of MeCP2 binding. GC% has importance of
88%, while the second most important feature, the GpC dinucleotide has
importance of only 2.3%. Furthermore, the importance of CpG falls consistently
below the importance of CpC/GpG and GpC. Relative importance of features is
shown in Fig. 1c. Due to the negligible importance of dinucleotides, the AUC of the
ROC and the Person correlation showed little improvement with inclusion of
dinucleotides; AUC only improved by 0.5% and Pearson correlation by 1.2%.
Similarly, inclusion of both di- and tri- nucleotides showed negligible importance
of all di- and tri- nucleic features and little improvement in ROC and Pearson
correlation. With both di- and tri- nucleotides included in the feature set, the
importance of GC% is 87%, the highest di-nucleotide GpC has importance of 2.3%
and the highest trinucleotide CAG has importance of 0.5%. Similar results were
obtained as depths of regressors ranged between 3 and 8.

Expression analysis. The RNA-seq reads were aligned to the mm9 refGene using
TopHat 2 (refs 49,50). Only reads mapping uniquely, in proper pairs, and to the
same chromosome were retained, leaving 65, 55 and 56 million reads in the WT
replicates and 58, 51 and 51 million reads in the KO replicates. Differential gene
expression and statistical significance were calculated for the refGene transcripts
using cufflinks and cuffdiff51, ran with default parameters but keeping only
uniquely mapped and proper read pairs.

Gaussian graphical models. In a Gaussian graphical model the weight of the edge
between two random variables Xi and Xj is the full partial correlation
rXi ;Xj �V= Xi ;Xjf g ¼ � Jij=

ffiffiffiffiffiffiffiffi
JiiJjj

p
where Jij is the inverse of the correlation matrix rXi,Xj.

The pairwise correlation all pairs of random variables were calculated after
removing filtered regions and, when relevant, regions with undefined methylation
density.

Differential expression aggregated by gene annotations. We identified sig-
nificantly downregulated gene ontology terms by first calculating the aggregated fold
change for each gene ontology (GO) term—defined as the mean of the expression
change log2WT/KO across all associated genes—and then ranking the GO terms by
this aggregated fold change. We used the GO Consortium’s mouse annotation
(gene_association.mgi and go-basic.obo downloaded on 13 March 2015) and
restricted the analysis to genes with expression larger than 1 FPKM (geometric mean
between WT and KO) and to GO terms with 10 or more such genes52. The FPKM
values were pooled for genes with multiple refSeq transcripts. To assess the
significance of the expression changes, we first quantified the dispersion of the
differential expression by binning the genes by log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WT�KO
p

, calculated the mean
and variance of the fold changes within each bin, and performed quadratic fits for
the fold and variance. Using these dispersion fits we then calculated the Z-score of
the differential expression for each gene and calculated the significance of the
aggregated differential expression using the t-test. We finally used the Benjamini–
Hochberg procedure to control the false discovery rate.
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