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The hallmark of malaria, an infectious disease caused by parasites

rom the Plasmodium genus, is cyclic fever. Fevers and chills generally

ccur within 48 h (h) for Plasmodium falciparum ( Fig. 1 A) and Plasmod-

um vivax and every 72 h for Plasmodium malariae. This periodic fever

as been known for almost a century to be a consequence of synchronous

aturation of the parasites inside the host erythrocytes followed by the

upture of infected cells and the massive release of parasites into the

loodstream ( Garcia et al., 2001 ; Stauber, 1939 ; Taliaferro, 1925 ). In

he 1970s, Hawking observed that many Plasmodium species follow mul-

iple 24-h life cycles in the vertebrate host, suggesting that the malaria

arasite has a circadian rhythm ( Hawking, 1970 1975 ). The circadian

hythm functions as an internal oscillator that repeats approximately

very 24 h inside an organism; this rhythm is controlled by an external

timulus, such as a photoperiod, and is responsible for synchronizing

ehavioral and physiological rhythms ( Rusak and Zucker, 1975 ). 

Several explanations for Plasmodium infection coinciding with the

ost’s circadian clock have been proposed. The first evidence of rhythm

n host-parasite interactions was proposed as Hawking’s hypothesis,

hich suggested that parasites have evolved to match the availability of

ector timing to maximize their transmission. In one such study, Hawk-

ng showed that transmissible microfilaria of Wuchereria bancrofti mi-

rate in the host’s circulation during the evening period when mosquito

ites occur frequently, thereby facilitating the transmission of parasites.

ased on this observation, Hawking proposed a similar theory for Plas-

odium parasites in which mature schizonts evolved to rupture at a spe-

ific time to ensure that the maturation of gametocytes coincided with

he nocturnal activity of mosquitoes. 

However, this hypothesis lacked experimental support until recently,

hen it was shown that gametocytes of the rodent malaria parasite P.

habaudi coincide with mosquito rhythm and become more infective, de-

pite exhibiting a lower blood count ( Schneider et al., 2018 ). Similarly,

nother study demonstrated that in an avian model, Plasmodium trans-

ission was more frequent during the evening period ( Pigeault et al.,

018 ). This study was further proof of a classic experiment in which

nverting the host light-dark cycle also caused the inversion of the in-

raerythrocytic cycle of avian ( P. cathemerium ) malaria parasites, and

rythrocyte rupture shifted to the daytime from night ( Boyd, 1929 ). The
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ecent findings revitalized the idea of the Hawking hypothesis of host-

arasite interaction and suggested the relevance of circadian rhythm. 

In 1978, Gore and Noblet exposed Leucocytozoon smithi -infected

urkeys to normal, continuous, or inverted light and found that the

urkey body temperature and gametocyte numbers coincided with the

idpoint of the light period in natural and reversed-light exposure.

owever, turkeys subjected to continuous light exposure exhibited

onstant temperature and asynchronous gametocytes ( Gore and No-

let, 1978 ). 

Gore et al. (1982) also investigated the effect of L. smithi gameto-

yte rhythmicity in pinealectomized and ocular enucleated turkeys af-

er exposing them to either 14 h light:10 h dark or to darkness with

ntermittent 10–20-min periods of red light. These researchers did not

bserve the pineal gland to play a direct role in gametocyte periodicity;

owever, an indirect role in the regulation of parasite rhythmicity was

vident ( Gore et al., 1982 ). 

A similar method was employed to isolate the merozoites of P.

habaudi . The authors observed that schizogony shifted to daytime after

rtificially lighting the mouse chambers from 6 p.m. to 6 a.m. This pro-

edure allows the diurnal rupture of erythrocytes ( David et al., 1978 ).

dditionally, the establishment of the in vitro culture of P. falciparum by

rager and Jensen reported that parasite synchronicity was lost outside

he vertebrate host ( Trager and Jensen, 1976 ). These findings indicate

hat the host’s circadian rhythm controls parasite development inside

ed blood cells. 

In the vertebrate system, biological clocks have been identified

s transcription–translation-based feedback loops and have been di-

ectly linked with metabolism, cell growth, immunity and signaling

 Takahashi, 2017 ). In recent years, efforts have been made to identify

he molecular cues that mediate the circadian rhythm in malaria para-

ites while they proliferate inside the vertebrate host. 

Searching for the host-derived signal, Hotta et al. considered mela-

onin to be a strong candidate for controlling asexual parasite develop-

ent. The asexual growth of P. falciparum is responsible for the clini-

al symptoms of malaria and can cause cerebral malaria, which can be

ethal if left untreated. The first evidence that melatonin may modulate

he intraerythrocytic cycle or asexual development, promoting parasite
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Fig. 1. (A) Asexual replication inside the host’s erythrocyte. Once merozoite invade the red blood cells, it undergoes through distinct morphological stages – ring, 

trophozoite and schizont. This whole process takes 48 h in P. falciparum . Very few parasites deviate to sexual replication and form gametocytes which is taken up 

by mosquito during blood feed. (B) Different conditions where (i) Normal mice infected with P. chabaudi quickly returned to synchronous state within few days; (ii) 

Melatonin receptor blocker luzindole administration to mice disrupt the synchrony of P. chabaudi parasites; (iii) Pinealectomized mice also exhibit asynchronous 

growth but melatonin administration modulate asexual replication back to synchronous state. Red dot representing pineal gland. (iv) Administration of suboptimal 

dose of chloroquine (1.5 mg/kg) has little effect on survival rate of P. chabaudi infected mice but; (v) Suboptimal dose of melatonin in combination of luzindole 

increase the mice survival rate to 75% and reduces the parasite load to normal chloroquine dose (3 mg/kg) which has maximal effect on mice survival. 
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aturation (from trophozoites to schizonts), was obtained through both

n vitro and in vivo experiments, where melatonin was added to P. falci-

arum culture and injected into pinealectomized mice infected with P.

habaudi ( Fig. 1 B) ( Hotta et al., 2000 ). Next, we proposed that bursting

n a coordinated manner could avoid exposing new merozoites to host

mmune effectors and splenic clearance. 

The signaling cascade underlying melatonin-dependent regulation of

he Plasmodium life cycle was also investigated and determined to be as-

ociated with cAMP, phospholipase C (PLC), production of IP 3 , and Ca 2 + 

elease from the endoplasmic reticulum ( Hotta et al., 2000 ; Alves et al.,

011 ; Beraldo et al., 2005 ). Taken together, these intracellular signals

unction collectively to promote a temporal upregulation of gene expres-

ion related to a subset of genes from the ubiquitin/proteasome system

UPS) ( Koyama et al., 2013 ; Lima et al., 2013a , 2013b ). Interestingly,

he P. falciparum protein kinase 7 (PK7) knockout strain fails to respond

o maturation promoted by melatonin treatment and the activation of

he UPS genes ( Koyama et al., 2012 ). Importance of parasite rhythm

nd drug effect has been studied and it was shown that P. chabaudi in-

ected mice have higher survival rate even at suboptimal chloroquine

1.5 mg/kg) when administered in combination with melatonin antag-

nist luzindole ( Fig. 1 B) ( Bagnaresi et al., 2008 ). This study implicates
he effective malaria treatment strategy by altering parasite’s rhythm

nd melatonin related indole compound might be a promising approach.

o this end, Dias et al. has pointed the participation of a P. falciparum

rotein kinase PfeIK1 in the melatonin signaling cascade, since mela-

onin presented no effect in parasitemia in parasites lacking this protein

PfeIK1 − ). In addition, the authors identified indole compounds able to

brogate the hormone effect in the parasitemia of P. falciparum 3D7 in

itro and with antimalarial activity. Triptiofen, one of the compounds

ested, abolished the effect of melatonin in parasitemia and presented

he lowest IC 50 value in vitro . This compound was implicated to act at

he mature forms of the intraerythrocytic cycle of P. falciparum 3D7,

ignificantly decreasing parasitemia after 36 h treatment with 1 μM and

0 μM ( Dias et al., 2020 ). 

RNA-seq data of P. falciparum -infected RBCs treated with melatonin

isplay 38 genes that are differentially expressed in wild-type parasites.

he same experiment was performed in the PK7 knockout parasites, re-

ulting in a distinct gene expression pattern that suggests the partici-

ation of PK7 in the melatonin signaling cascade ( Lima et al., 2016 ).

evertheless, melatonin was also able to modulate the expression of

hree genes (FIS1, DYN1, and DYN2) that encode protein homologs

f mammalian FIS1 and DRP1 (Dynamin Related Protein 1) involved
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n mitochondrial fission. These findings suggest that melatonin may

lso play a role in the maturation of the P. falciparum mitochondrion

 Scarpelli et al., 2019 ). 

Beraldo and Garcia have shown that melatonin precursors, N-acetyl

erotonin, serotonin, and tryptamine are equally able to modulate the in-

raerythrocytic cycle of P. falciparum ( Beraldo and Garcia, 2005 ). Inter-

stingly, we also observed that unlike synchronous P. falciparum and P.

habaudi infection, P. berghei and P. yoelli asynchronous infections were

ot affected by melatonin addition in vitro , with no elevation in cytoso-

ic Ca 2 + concentration being observed in the parasite ( Bagnaresi et al.,

009 ). 

The role of melatonin in parasite biology has been discussed else-

here ( Koyama et al., 2013 ; Bagnaresi et al., 2012 ; Srinivasan et al.,

014 ). Two independent laboratories have recently published new in-

ights regarding daily rhythms associated with malarial infection. Ex-

osing P. chabaudi -infected mice to either complete darkness or light-

ark cycles, Rijo-Ferreira et al. evaluated the effect of the light-dark pe-

iod on the gene expression profile. Interestingly, more than 4000 genes

rom a total of 5400 genes in the Plasmodium genome were cycling, and

he peak of gene expression did not change significantly from one con-

ition to another, indicating that parasite rhythms persist in their rhyth-

ic host in the absence of light. Additionally, the authors showed that

arasites were able to synchronize their rhythms to the host rhythms us-

ng mutant mice (Fbxl3 mutant) with a prolonged daily cycle subjected

o complete darkness. The time of host food intake was investigated, and

he authors concluded that the host food intake pattern does not drive

arasite rhythms. Arrhythmic mice mutant for Cry1/Cry2 were sub-

ected to complete darkness and used to test whether parasites maintain

heir rhythms even in an arrhythmic host. The rhythm of gene expres-

ion was similar in both conditions, and parasites were able to maintain

heir 24 h cell cycle rhythmicity for approximately five days. However,

arasites in arrhythmic mice experienced decay and loss of synchrony in

he following 16 days. These findings suggest that P. chabaudi possesses

n intrinsic clock that drives parasite rhythms, although host cues are

ssential to synchronize one parasite to another in a population ( Rijo-

erreira et al., 2020 ). 

In 2020, Smith et al. performed a time-series transcriptomic analy-

is in four geographically distinct P. falciparum parasites to investigate

he molecular signature of periodic genes when host-derived extrinsic

actors were absent. The authors observed an abundance of conserved

eriodic genes; among them, approximately 92% of the genes have sig-

ature rhythmic oscillation. In this model, the researchers observed that

he variation in cycle period length of parasites is very similar to that of

nown circadian cell lines ( Smith et al., 2020 ). This study notes that the

ost’s cue is involved in the synchrony of the intraerythrocytic cycle.

onetheless, this cue increases the complexity of host-parasite periodic-

ty owing to not only the parasite’s intrinsic rhythm but also the external

actors affecting the host’s role in cell-cycle rhythm. 

Finally, this issue is an old and fascinating problem for Plasmodium

iology, and it requires further investigation. Understanding the open

uestion of how the parasite senses and transduces the environmental

ues that induce the progression of its cell cycle may lead us to the

evelopment of new antimalarials. 
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