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Abstract: The gastrointestinal (GI) system contains many different types of immune cells, 
making it a key immune organ system in the human body. In the last decade, our knowledge 
has substantially expanded regarding our understanding of the gut microbiome and its 
complex interaction with the gut immune system. Short chain fatty acids (SCFA), and 
specifically butyrate, play an important role in mediating the effects of the gut microbiome 
on local and systemic immunity. Gut microbial alterations and depletion of luminal butyrate 
have been well documented in the literature for a number of systemic and GI inflammatory 
disorders. Although a substantial knowledge gap exists requiring the need for further 
investigations to determine cause and effect, there is heightened interest in developing 
immunomodulatory therapies by means of reprogramming of gut microbiome or by supple
menting its beneficial metabolites, such as butyrate. In the current review, we discuss the role 
of endogenous butyrate in the inflammatory response and maintaining immune homeostasis 
within the intestine. We also present the experimental models and human studies which 
explore therapeutic potential of butyrate supplementation in inflammatory conditions asso
ciated with butyrate depletion. 
Keywords: butyrate, short chain fatty acids, gut microbiome, gut microbiota, dysbiosis, 
inflammation, immunity, innate immunity, adaptive immunity, epithelial barrier, 
inflammatory bowel disease

The Gut Microbiome – Overview
The human gastrointestinal tract houses trillions of microbes predominantly within 
the colon known as the gut microbiota (Figure 1). These microbes consist of 
a commensal blend of bacteria, fungi (mostly yeasts), viruses/phages, archaea, 
and parasites.1 The gut microbiome is a term used to describe the genetic and 
functional aspects of the gut microbiota. Currently, most knowledge regarding the 
gut microbiome pertains to its bacterial composition which is reported to be at a 1:1 
ratio with the body’s eukaryotic cellular composition;2 and its health is character
ized by its richness and diversity. At the phylum level, the gut microbiota is 
comprised of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and 
Verrucomicrobia, with gram negative Bacteroidetes and gram positive Firmicutes 
representing roughly 90% of the gut microbiota in healthy humans.1 However, with 
high interpersonal and intrapersonal variability in the human gut microbiota there is 
no standard microbial ecology that all healthy people share.3

While gut colonization begins in utero, the first major colonization occurs and 
varies with the mode of infant delivery, vaginal versus Cesarean section, and the 
method of infant feeding, breast milk versus infant formula.4 Within the first 2–3 years 
of life, gut microbiome development occurs alongside the physiological and immune 
maturation of the intestine. As the infant diet progresses to solid foods, a sustained 
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shift occurs in the richness and diversity of the gut micro
biome where it begins to resemble that of an adult. 
Throughout life, multiple factors can influence the composi
tion of the gut microbiome such as diet, medications, phy
sical, metabolic and psychological stress, geography, and 
aging which is reviewed elsewhere5 (Figure 2).

Diet is one of the main driving factors contributing to the 
composition and diversity of the gut microbiota. In response 
to diet, the gut microbiota produces various metabolites.6 

A diet rich in complex indigestible carbohydrates (eg, fibers) 
supports gut microbe-derived metabolites such as short 
chain fatty acids (SCFA), notably acetate, propionate, and 
butyrate. Conversely, diets low in fiber and high in fat and 
simple carbohydrates have a low SCFA fermenting capacity 
and are linked with chronic health conditions such as color
ectal cancer and cardio-metabolic diseases.6

Crosstalk Gut Microbiota and 
Host – Mutualism for Homeostasis
The gut microbiota and its host co-exist in a symbiotic 
relationship where both parties mutualistically benefit 

from the presence of the other. The host provides the gut 
microbiota a safe dwelling niche with a steady supply of 
nutrients for its survival, and the microbiota supports the 
host by generating beneficial metabolites, such as vita
mins, enzymes and SCFA, participating in pathogen exclu
sion, and supporting the intestinal epithelial barrier and 
immune defenses.7 The intestinal mucosal immune system 
is the largest immune constituent in the body that is in 
contact with the external environment making it essential 
for host defense and maintaining homeostasis. To accom
plish this, the mucosal immune system needs to be tolerant 
of mutualistic microbes, while at the same time it must 
ensure a beneficial microbial composition by limiting 
microbial overgrowth and being reactive to opportunistic 
pathogens. Studies in germ-free animals indicate the gut 
microbiome is essential for optimal intestinal immune 
development and defense. Germ-free animals demonstrate 
deficiencies in mucosal immune development which com
promises their immune defense mechanisms. Absence of 
a gut microbiome leads to underdeveloped lymphoid struc
tures (eg, Peyer’s patches, mesenteric lymph nodes) and 

Figure 1 Distribution of gut microbes within human gastrointestinal tract. Microbiota comprised of bacteria, fungi, yeasts, viruses, and protozoa present throughout the 
gastrointestinal system, with colon containing the highest number and diversity of microbes. Reprinted with permission, Cleveland Clinic Center for Medical Art & 
Photography ©2015. All Rights Reserved.163

https://doi.org/10.2147/JIR.S300989                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 6026

Siddiqui and Cresci                                                                                                                                                  Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


reduced immune cell populations such as IgA-producing 
plasma cells, CD4+ lamina propria T-cells and intraepithe
lial αβ T-cell receptor CD8+ cells.8,9 Angiogenin-4, 
a Paneth cell-derived antimicrobial peptide important for 
epithelial host defense against gut microbes, demonstrated 
decreased gene expression in germ-free compared to con
ventional mice.10 Although the gut microbiome involve
ment in mucosal immune regulation expands beyond the 
intestinal tract,9 here in this review we focused on intest
inal innate and adaptive immunity.

Short-Chain Fatty Acids – Butyrate
Short-chain fatty acids are organic acids produced predomi
nantly in the colon by gut microbial fermentation of dietary 
fermentable fiber and resistant starches, and to a lesser 
extent, dietary and endogenous proteins.11 SCFA are mono
carboxylates with a concentration ratio in a healthy colonic 
lumen of roughly 60:25:15 acetate (C2):propionate (C3): 
butyrate (C4), respectively.11 The presence of these weak 

acids in the colon lowers luminal pH which favors the 
growth of butyrate-producing bacteria. The use of metage
nomic-targeted approaches have  identified butyrate- 
producing bacteria as a functional group rather than 
a coherent phylogenic group.12 Predominating within the 
Firmicutes phylum within clostridial clusters IV and XIVa, 
butyrate producers are gram-positive, strictly anaerobic and 
oxygen-sensitive, saccharolytic bacteria.11 Numbers of clos
tridial clusters IV and XIVa are low in the neonatal period, 
slightly increase up to 2 years of age, and then dramatically 
rise during late childhood and adolescence, but then begin 
to decline again in adulthood and especially in the 
elderly.13,14

Butyrate
The SCFA butyrate is known to be of high biological 
importance. Butyrate is the primary fuel source for the 
colonocyte where nearly 90% of generated butyrate is 
metabolized locally in the colonocyte. SCFA absorption 

Figure 2 Key factors influencing the composition and diversity of the gut microbiome. Many factors can influence the gut microbiota composition and diversity beginning 
with the birthing process and first feeding methods. Other factors such as diet, psychological and physiological stress, pharmaceutical exposure, geographic residence and 
traveling and exposures, are among several factors which influence the microbiome throughout the lifecycle. Reprinted with permission, Cleveland Clinic Center for Medical 
Art & Photography ©2015. All Rights Reserved.163
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occurs by passive diffusion, as well as active transport by 
intestinal epithelial cells via sodium-coupled monocarbox
ylate transporter 1 (SMCT1 encoded by SLC5A8) and 
proton-coupled monocarboxylate transporter 1 (MCT1; 
encoded by SLC16A1).15 Expression of SCFA transporters 
is regulated by the presence of SCFA, as demonstrated in 
germ-free mice and conditions of gut dysbiosis and 
reduced luminal SCFA.16–18 SCFA not metabolized in 
the colon is carried into the liver via the portal vein and 
used as an energy substrate for hepatocytes, thus leaving 
very little butyrate in the systemic circulation.19 However, 
SCFA can reach the brain and cross the blood–brain bar
rier likely due to high expression of MCT1 on endothelial 
cells, with average butyrate concentrations of 17.0 pmol/ 
mg of brain tissue in humans.20 Butyrate supports the 
integrity of the intestinal epithelial barrier by regulating 
the expression of tight junctional proteins and supporting 
intestinal mucus production.19,21 Laboratory studies sug
gest that butyrate assists with gut motility22 by serving as 
a ligand and activator of SCFA receptors,23 inducing the 
gut hormone peptide YY24 or mediating enterochromaffin 
cell release of serotonin.25 Butyrate enhances water and 
electrolyte absorption through upregulation of the Na+-H+ 

exchanger and induction of genes encoding for ATPase ion 
exchangers.22 As a histone deacetylase inhibitor, butyrate 
can alter gene expression, inhibit cell proliferation, and 
induce cell differentiation or apoptosis, leading to buty
rate’s anti-tumor properties.21 Butyrate also has anti- 
inflammatory properties due in part to its role in HDAC 
inhibition in various cell types such as the intestinal 
epithelium and immune cells, as well as inhibition of the 
activation of the transcription factor nuclear factor-κB 
(NF-κB).21 Through downregulation of the NF-κB signal
ing pathway, butyrate has been shown to modulate proin
flammatory cytokine production.21,26

SCFA and G-Protein Coupled 
Receptors
SCFA can modulate cellular functions by activating SCFA- 
sensing pertussis toxin-sensitive Gi -protein coupled recep
tors (GPCR). These include GPR41 (free fatty acid receptor 
3; FFAR3), GPR43 (free fatty acid receptor 2; FFAR2), and 
GPR109A (hydroxycarboxylic acid receptor 2; HCAR2). 
These receptors are expressed in several tissue and cell 
types in humans and animals18,27–35 (Table-1).

Through interactions with these GPCRs, SCFA can acti
vate anti-inflammatory signaling cascades and modulate 

intestinal homeostasis. Using experimental mouse models 
to induce intestinal inflammation and bacterial infection, 
GPR43, GPR41, and SCFA exposure were necessary for 
mounting an immune response, mitigating inflammatory 
insults, and clearing bacteria36 via the induction of chemo
kine and cytokine release in intestinal epithelial cells and 
activated effector T cells. These responses were due to acti
vated extracellular signal-regulated kinase 1/2 and p38 mito
gen-activated protein kinase which were GPR41/43 
dependent.36 GPR109A is highly expressed on innate 
immune cells and adipose tissue, as well as the apical mem
brane of intestinal epithelial cells.34 GPR109a−/− mice have 
altered intestinal immune capacity with reduced frequency of 
Treg and IL-10 producing CD4+ T cells in the colon.33 When 
subjected to chemically-induced colonic inflammation and 
cancer with dextran sodium sulfate (DSS) and azoxymethane 
(AOM), GPR109a−/− mice had exacerbated inflammation 
and colon carcinogenesis, suggesting the importance of 
GPR109a in promoting anti-inflammatory properties and 
colonic homeostasis.33 Further studies showed that Gpr109a- 
dependent signaling suppressed IL-23 production from den
dritic cells and reduced colonic inflammation.37 Presence of 
GPR109a was also shown to protect against experimental 
Escherichia coli (ETEC) infection, secretory IgA responses, 
and intestinal barrier integrity.38 Sivaprakasam et al 
provided a detailed review of SCFA receptors.39

Intestinal Immunity
As the largest compartment of the immune system, the 
intestine contains anatomical and physiological distinc
tions of its immune components. The Peyer’s patches 
and the mesenteric lymph nodes comprise organized lym
phoid tissues known as the Gut Associated Lymphoid 
Tissue (GALT). The effector sites of the intestine are the 
mucosal epithelium and the underlying lamina propria. 
Within the lamina propria are many different immune 
cells including activated T cells, plasma cells, and numer
ous innate immune cells including mast cells, dendritic 
cells, eosinophils, and macrophages (Figure 3). 
A detailed review of the intestinal immune system can 
be found in Mowat et al.40

Butyrate in Intestinal Immunity – 
Innate
Mucosal Barrier
The single layer of intestinal epithelial cells and its adjacent 
mucous layer serve as the host’s first line of intestinal immune 
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defense by providing a physical barrier against pathogen pene
tration. It also possesses the ability to secrete antimicrobial 
peptides by Paneth cells located at the bottom of the intestinal 
crypts and secretory immunoglobulin A (sIgA). In response to 
microbes, epithelial cells secrete cytokines and chemokines 
that recruit immune cells for protective immunity. Within the 

lamina propria, macrophages and dendritic cells also facilitate 
the innate immune response in the mucosa. Dysregulation of 
these immune responses can lead to inflammatory conditions 
of the intestine.

Tight junctional proteins seal the paracellular space 
between intestinal epithelial cells, and disassembly of 

Table 1 SCFA G-Protein Coupled Receptors18,27–35

GPCR Tissue/Cell Expression Signaling Ligands

GPR41, FFAR3 Adipose tissue, peripheral blood mononuclear cells (PBMC), pancreas, 
spleen and placenta monocytes, neutrophils, and monocyte-derived 

dendritic cells

Gαi/G0 Β- 
gustducin

Acetate, propionate, butyrate, 
formate, pentanoate

GPR43, FFAR2 Intestinal epithelium, monocytes, neutrophils, PBMCs, B and 

T lymphocytes, T regulatory cells, and colonic myeloid cells

Gαi/G0 and  

Gαq/11 Β- 

arrestin-2

Acetate, propionate, butyrate, 

pentanoate, hexanoate, 

formate

GPR109A, HCAR2, 
NIACR1

Colon, ileum, jejunum, duodenum; adipose tissue, lung, spleen, 
monocytes, monocyte-derived dendritic cells, dendritic cells, and 

macrophages

Gαi/G0 Β- 
arrestin-1

Butyrate, β-hydroxybutyrate, 
niacin

Abbreviations: GPR, G-protein coupled receptor; FFAR2, free fatty acid receptor 2; FFAR3, free fatty acid receptor 3; HCAR2, hydroxycarboxylic acid receptor 2; 
NIACR1, nicotinic acid receptor.

Figure 3 Interaction of the gut microbiota with components of intestinal innate and adaptive immunity. Intestinal immune cells including dendritic and mast cells, neutrophils, 
B and T lymphocytes are depicted in representative locations within gastrointestinal mucosa. G-protein coupled receptors in which butyrate serves as a ligand are present on 
major immune cells and function as key link for butyrate mediated modulation of immune function. Reprinted with permission, Cleveland Clinic Center for Medical Art & 
Photography ©2021. All Rights Reserved.163
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these junctional proteins can allow for bacteria and bacter
ial byproducts to translocate from the gut lumen into 
systemic circulation. Butyrate supports intestinal integrity 
as demonstrated in in vitro and in vivo experimental mod
els. Various intestinal cell models (eg, Caco-2 human 
intestinal cells,41–43 E12 human colon cells44) of inciting 
conditions (eg, lipopolysaccharide (LPS),45 ethanol41,42) 
demonstrate butyrate treatment protects against functional 
disruption of intestinal epithelial integrity using methods 
of transepithelial electrical resistance (TER) and perme
ability of fluorescein-isothiocyanate (FITC)-dextran. 
Multiple mechanisms have been demonstrated for buty
rate’s direct effects on the intestinal epithelial barrier. 
Increased TJ reassembly and TER restoration was due to 
butyrate’s induction of AMP-activated protein kinase 
(AMPK) activity.41,43,46 During exposure to LPS, buty
rate’s protection against LPS-induced TER reduction and 
paracellular permeability coincided with less activation of 
NLRP3 inflammasome and autophagy via butyrate’s 
HDAC activity.45 Butyrate has also been shown to stabi
lize hypoxia-inducible factor (HIF), a transcription factor 
that coordinates low oxygen in the colonic epithelium to 
regulate intestinal barrier function.47 Positive effects of 
butyrate on TJ proteins are dose dependent, with lower 
doses demonstrating benefit. In vitro studies with E12 
mucus-producing epithelial cells demonstrated that lower 
(1–10 mM), but not higher (50–100 mM), butyrate dosing 
prevented alterations in TER, FITC-dextran permeability, 
and mucus production by goblet cells.44 Higher butyrate 
dosing in Caco-2 monolayers (8 mM) was cytotoxic redu
cing TER, increasing FITC permeability, and inducing 
apoptosis compared to lower dosing (2 mM).48 In 
a mouse model of ethanol exposure, the amount and deliv
ery method of tributyrin, a butyrate prodrug, paradoxically 
impacted the effect on intestinal TJ proteins and liver 
injury. Higher doses (10 mM) provided daily in the food 
supply increased liver injury and steatosis compared to 
lower doses provided by oral gavage, despite both meth
ods and doses protecting against ethanol-induced disas
sembly of intestinal TJ proteins.41 Together, these data 
support the notion that butyrate has a direct beneficial 
effect on supporting the intestinal epithelial barrier integ
rity in a dose-dependent manner.

Mucosal Inflammation
The intestinal immune system must remain tolerant of 
commensal microbes in order to maintain homeostasis. 
Pattern recognition receptors (PRRs), including toll-like 

receptors (TLRs) and nucleotide-binding oligomerization 
domain-containing protein 2 (NOD2) are expressed by 
intestinal epithelial cells and immune cells within the 
lamina propria. These evolutionary conserved receptors 
recognize microbially-associated molecular patterns 
(MAMPS) and trigger diverse innate immune responses. 
Some PRRs also recognize damage-associated molecular 
patterns (DAMPS) released during cellular stress or tissue 
injury. Toll like receptors (1, 2, 4, 5, and 6) are located 
primarily in the plasma membrane and interact with com
ponents of microbial pathogens. Despite having different 
ligands, PRRs share signaling pathways that ultimately 
activate pro-inflammatory transcription factors, such as 
NF-κB, which controls expression of genes encoding for 
proinflammatory cytokines, chemokines, inducible inflam
matory enzymes, adhesion molecules, growth factors, 
acute phase proteins, and immune receptors.49 Thus, it is 
essential that there is tight regulation of PRR activity to 
avoid excessive inflammation and dysregulated immune 
responses. A more detailed review of PRRs can be found 
in Burgueno et al.50

Multiple human and animal studies demonstrate that in 
response to butyrate within the intestine proinflammatory 
cytokines such as IFN-γ, TNF-α, IL-6, and IL-8 are inhib
ited, and anti-inflammatory cytokines IL-10 and TGF-β are 
induced.40 Butyrate has a long-standing history of being 
anti-inflammatory through its inhibition of NF-κB, as 
demonstrated in several in vitro and in vivo studies.51–55 

Butyrate, a ligand for GPR109A, inhibited LPS-induced 
activation of NF-κB in normal colon cells.34 The nuclear 
transcription factor PPARγ, which antagonizes NF-κB, 
was reported to be upregulated by butyrate in HT-29 
colonic epithelial cells.56 Butyrate suppression of reactive 
oxygen species through support of the antioxidant system 
has been suggested as a means for butyrate inactivation of 
NF-κB inflammatory signaling.57 In a mouse model of 
chronic-binge ethanol feeding which induces oxidative 
stress, tributyrin co-supplementation mitigated losses in 
gene expression of superoxide dismutase 2 (SOD2), thior
edoxin (TRX1) and protected against ethanol-induced 
NOX1.58

Mucosal Antimicrobial Peptides
Antimicrobial peptides (AMP), including defensins, catheli
cidins, and C-type lectins (eg, regenerating [Reg] islet- 
derived protein family), are highly conserved, evolutionary, 
and are important in innate immunity at intestinal mucosal 
surfaces. Butyrate has been shown to promote production of 
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AMPs by intestinal epithelial cells through its interaction 
with GPR43,59 activation of MEK/ERK and JNK 
pathways,60 and its cell proliferation mechanisms.60 

Butyrate was also shown to increase AMPs secreted by 
macrophages. Acting via its HDAC3 inhibitory function, 
butyrate drove monocyte to macrophage differentiation and 
induced macrophage production of AMPs, S100A8 and 
S100A9 genes and calprotectin expression, in the absence 
of increased proinflammatory cytokine response, which led 
to enhanced bactericidal function in vitro and in vivo.61

Butyrate and Intestinal Innate 
Immune Cells
Neutrophils
As first responders into an inflammatory site, neutrophils 
are responsive to pathogens by producing cytokines that 
begin coordinating the recruitment and activation of other 
immune cells. Several neutrophil functions are modulated 
by SCFA. By regulating the production of inflammatory 
mediators, such as TNFα and IL-17, SCFA modify neu
trophil recruitment.62 Neutrophil chemotaxis has been 
shown to be regulated through the SCFA activation of 
the GPR43 receptor in neutrophils.63,64 SCFA may also 
modify neutrophil functions such as their phagocytic capa
city and ability to produce and release reactive oxygen 
species and nitric oxide.65 Butyrate and propionate induce 
apoptosis in both activated and non-activated neutrophils, 
which depends on activation of caspases but not Gαi/o and 
Gαq pathways, suggesting independence of SCFA 
receptors.66

Macrophages
Intestinal macrophages are the most abundant immune cells 
within the lamina propria where they are important for the 
induction of innate immune responses. In bone marrow- 
derived macrophages stimulated with LPS, butyrate 
decreased secretion of IL-6, IL-12p40, and nitric oxide to 
a greater extent than acetate or propionate in a dose depen
dent manner, suggesting butyrate has anti-inflammatory 
effects on macrophages.30 Butyrate treatment in macro
phages isolated from the colonic lamina propria and stimu
lated with LPS, had less inflammatory response exhibited by 
decreased IL-6 secretion and mRNA expression, IL-12 and 
inducible nitric oxide synthase, but butyrate had no effect on 
TNFα or MCP-1.30 Similar effects were noted in macro
phages isolated from the colonic lamina propria of mice 
treated with antibiotics and butyrate, suggesting that butyrate 

modulates immune responses of colon lamina propria 
macrophages. These responses were dependent on HDAC 
inhibition but not TLRs and GPCRs.30 Contrary to these 
studies, SCFA alone or in combination, and/or combined 
with TLR agonists, led to pro-inflammatory effects by indu
cing IL-1β, IL-6, CXCL8/IL-8 in human peripheral blood 
mononuclear cells.67 Thus, the divergences on the inflam
matory effects of butyrate appears to depend on the cell type 
studied and the conditions, environment, and type of 
stimulation.68

Mast Cells
Mast cells, which are abundant within the GI tract mucosa 
and submucosa, are known to play a role in GI diseases 
such as food allergy, as well as certain forms of colitis and 
Crohn’s disease.69–72 Provision of dietary fibers and pre
biotics that are fermented into SCFA have been tested in 
animal models of food allergens. Benefits relating to ana
phylaxis scores and IgE concentrations were noted with 
fiber supplementation, or the addition of acetate or buty
rate to animal drinking water, suggesting the production of 
SCFA from fiber as the mediating effector on mast cells.73 

Similarly, prebiotics tested in mouse models of colitis 
which led to increased fecal SCFA levels were linked 
with protection of the intestinal barrier, and a reduction 
in inflammation and inflammatory cytokines.74 

Germinated barley, a prebiotic that is fermented into 
SCFA, reduced colonic mast cell recruitment when fed 
to rats in an experimental colitis model;75 and ulcerative 
colitis patients fed germinated barley had reduced inflam
mation and an improved clinical activity index.76,77 When 
testing the direct effects of butyrate on mast cells, jejunal 
mucosa of pigs treated with butyrate had reduced mast cell 
degranulation and gene expression of proinflammatory 
cytokines.78 These data corroborate a previous report 
demonstrating that the direct effect of butyrate on mast 
cells was due to the MAPK signaling pathway and inhibi
tion of JNK phosphorylation.79

Innate Lymphoid Cells
Innate lymphoid cells (ILC) are regulated by multiple endo
genous mammalian cell-derived factors and integrate innate 
and adaptive immune responses to assist in maintaining 
physiological homeostasis.80 Nontoxic ILCs consist of 
three distinct groups: ILC1, 2, and 3 and are defined based 
on their transcription factor requirements, effector cytokine 
expression, and other distinct effector functions.80 ILC3s 
express retinoid-related orphan receptor γt (RORγt) and 
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produce IL-17A, IL-22, lymphotoxin, and GM-CSF.81 

While ILC3s increase in population in the distal small 
intestinal lamina propria, they were found to have distinctive 
distribution in proximal versus ileal Peyer’s patches in mice 
based on specific transcription factor expression; and the 
suppression of RORγt + ILC3 in ileal Peyer’s patches was 
linked with the presence of butyrate.82 Butyrate levels, 
which were higher in the ileum than jejunum as expected, 
were inversely associated with RORγt+ ILC3s and IL-22 
expression, suggesting that butyrate was a regionally specia
lized factor suppressing ILC3s in terminal ileal Peyer’s 
patches.82 A study in mice found butyrate supplementation 
and subsequent increased colonic butyrate levels, promoted 
IL-22 production from ILCs in the lamina propria and 
mesenteric lymph nodes through histone deacetylase inhibi
tion and GPR41 by promoting aryl hydrocarbon receptor 
and hypoxia-inducible factor 1α.83 IL-22 aids in protecting 
the intestine against inflammatory injury by inducing AMPs 
and supporting the intestinal barrier.84,85

Butyrate in Intestinal Immunity – 
Adaptive
Butyrate has been shown to play an important role in an 
adaptive immune response via two distinct pathways: 
firstly, from the effect of butyrate on monocyte-derived 
dendritic cells (DC),32,86–88 and secondly, through buty
rate’s direct effect on T lymphocytes.89,90

Dendritic Cells
As specialized antigen presenting cells, dendritic cells (DC) 
are in direct contact with the gut microbiota and its metabo
lites. In the intestine, DC induce adaptive immune responses 
in primary T cells bridging the gap between innate and 
adaptive immunity.91,92 Immature DC help maintain a state 
of immune tolerance, and mature DC can activate immune 
responses. Butyrate treatment is reported to have 
a significant impact on differentiation, maturation, and over
all T lymphocyte stimulating effects of human monocyte 
derived DC.86,90 In vitro studies found butyrate in the pre
sence of inducers (eg, LPS, TNF-α) affected the differentia
tion of DC and induced an immunosuppressive effect in DC 
derived from human monocytes and inhibited T cell 
proliferation.21,86 Butyrate treatment at low non-toxic 
doses reduced the expression of mature DC surface markers 
for mature DC (CD80, CD83, CD40, CD45, MHC class II 
molecules).21,86 Multiple studies have also explored the 
modulatory effect of butyrate on cytokine production by 

DC, and reported that butyrate treatment inhibited the pro
duction of pro-inflammatory cytokine IL-12 when DC were 
stimulated.21,86,93 Liu et al reported that butyrate treatment 
resulted in 3-fold decrease in IL-12 secretion, 5-fold 
decrease in IFN-γ, and 11-fold increase in IL-10 secretions 
from DC.21 Butyrate-stimulated DC significantly promoted 
IL-10 production by priming Type-1 regulatory T cells 
(Tr1).93 Through activation of GPR109a in macrophages 
and DC, butyrate plays a key role in maintenance of pro- 
and anti-inflammatory T lymphocytes, as butyrate potenti
ates conversion of naïve T cells to FoxP3+ regulatory T cells 
while suppressing IFN-γ+ T cells.33,87 Kaiser et al also 
reported that butyrate rendered DC metabolically less active 
by significantly antagonizing LPS-induced extracellular 
acidification rate, as well as by significantly reducing mito
chondrial oxygen consumption rate in butyrate treated DC at 
baseline.93

T and B Lymphocytes
Independent of its immunomodulatory effects mediated by 
DC and macrophages, butyrate also has dose-dependent 
direct effects on T lymphocytes.89,94,95 By utilizing 
a combination of both in-vivo and in-vitro experiments, 
Arpaia et al concluded that butyrate can boost extrathymic 
Treg-cell generation by acting directly on T cells, and in 
the absence of DC, this effect was mediated by an increase 
in the extrathymic CNS1 (Conserved Noncoding 
Sequence-1)-dependent differentiation of Treg cells.89 

Butyrate via its HDAC function, caused increased Foxp3 
protein acetylation, which ultimately resulted in higher 
Foxp3 protein levels in Treg cell culture.89 Kespohl et al 
studied the effect of different butyrate concentrations 
(0.1mM to 1mM for in-vitro, and 50mM to 200mM for in- 
vivo via oral route) on T cell-mediated immune response 
utilizing CD4+ T cells.95 They reported that at lower 
concentrations (0.1 to 0.5 mM) butyrate facilitated differ
entiation of Tregs both in-vitro and in-vivo, while at 
a higher concentration (1mM) butyrate induced the expres
sion of the transcription factor T-bet which resulted in 
IFN-γ-producing Tregs or conventional T cells.95 In addi
tion to its direct effect on CD4+ T lymphocytes, butyrate 
also directly modulated gene expression in CD8+ cyto
toxic T lymphocytes and altered gene expression of effec
tor molecules such as IFN-γ in a dose dependent 
manner.96,97 Butyrate also improved the memory potential 
and enhanced recall capacity of CD8+ T memory cells 
(Tmem) through reprogramming cellular mitochondrial 
metabolic flux.98,99 SCFA have also been shown to 
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promote IL-10 production from Th1 cells via GPR43 
mediated effect, which plays an important role in main
tenance of intestinal homeostasis and Gpr43−/− CBir1 Tg 
Th1 cells have been reported to induce severe colitis in 
mice.100 Recent studies have also investigated the effect of 
butyrate on regulatory B lymphocytes (B10) and found 
butyrate to have anti-inflammatory properties resulting 
from induction of IL-10 producing B cells.101,102 

However, conflicting data exist, as other studies which 
utilized different doses of butyrate reported direct inhibi
tory effect of butyrate on B10 cells, and speculated that 
previous reports on B10 induction by butyrate likely 
resulted from indirect effects via serotonin-derived meta
bolite 5-hydroxyindole-3-acetic acid.103 A study by Daien 
et al showed that the SCFA acetate promoted B10 cell 
which resulted in an anti-inflammatory effect.103 Butyrate 
has been reported to cause B-cell intrinsic epigenetic mod
ulation of antibody response by HDAC inhibitory effect 
and enhancing class-switch DNA recombination, which 
results in inhibition of autoimmune response.104 SCFA 
also induce antibody response by stimulating intestinal 
mucosal IgA responses and systemic IgG responses.105 

Overall, a substantial level of evidence has been reported 
supporting the role of SCFA in general and butyrate in 
specific in various stages of adaptive immune responses.

Clinical Significance for Select GI 
Diseases
Inflammatory Bowel Diseases
Inflammatory bowel diseases (IBD) are chronic intestinal 
inflammatory disorders with two main subtypes: Crohn’s 
disease and ulcerative colitis.106 Although exact pathogen
esis of IBD is not completely understood, IBD involves 
complex interactions among various influencing factors of 
genetics, gut microbiota and mucosal immunity via both 
innate and adaptive immune responses.106 In both subtypes 
of IBD, a reduction in butyrate producing gut microbes has 
been reported.107,108 As it has been described in our pre
vious detailed discussion in this review, butyrate has 
multi-stage modulating effects on intestinal defense 
mechanisms which include protection of the intestinal 
mucosal barrier through promotion of tight junctional pro
teins in the intestinal epithelium, support of innate and 
adaptive immune responses, as well as inhibition of oxi
dative stress by reducing cyclooxygenase-2 (COX-2) 
levels, and improved detoxification of hydrogen peroxide 
(H2O2) by induction of catalase.109,110 Since the late 20th 

century when the implication of butyrate in colitis was first 
highlighted, a series of experimental and clinical studies 
have been conducted.110,111

Experimental Studies with IBD Modeling
In this section, we discuss the studies exploring the butyrate 
effect in IBD-specific processes. For the broader and more 
detailed overview of the butyrate effect on overall immune 
function please refer to the earlier section of this review. 
Although some of these previously discussed concepts do 
have significant application in IBD pathogenesis, they will 
not be discussed in the current section to avoid redundancy. 
Intestinal mucosal ulceration is one of the major manifesta
tions of IBD, and butyrate’s effects on intestinal epithelial cell 
growth and cell death processes have been well-documented. 
Depending on the overall homeostatic condition, such as the 
presence or absence of an alternate energy source, butyrate has 
been shown to have either growth stimulatory or apoptotic 
properties for human colonic epithelial cells.112 In addition, 
butyrate has been shown to reduce DNA damage from oxida
tive stress in both human and rat-derived colonocyte 
cultures.113,114 Early life exposures such as breastfeeding has 
been reported to have a protective role against development 
and pathogenesis of IBD.115 Gao et al studied this mechanism 
further and analyzed this effect by utilizing immature human 
enterocytes.116 Their team reported that breast milk induced 
the anti-inflammatory environment in newborns’ GI tract via 
its metabolite butyrate by inducing the expression of genes for 
both tight junctional proteins and mucus production.116 As 
discussed in earlier section of innate immunity, inflamma
somes, a group of cytosolic protein complexes which regulate 
the balance of commensal bacteria and protect from patho
genic organisms, also have a potential role in pathogenesis of 
IBD.117,118 While inflammasomes are protective when intest
inal barrier is intact, once the barrier is disrupted by gut 
dysbiosis, inflammasomes’ activation and recruitment of 
immune cells are associated with mucosal inflammation – 
which is another major pathophysiologic mechanism for 
ongoing inflammation in IBD.118 Butyrate has been shown 
to modulate pro-inflammatory signals and inhibit several 
nucleotide-binding oligomerization domain-like receptor-3 
(NLRP3) inflammasome markers in an in vitro co-culture 
model of intestinal inflammation.118,119 One study reported 
that butyrate significantly reduced IL-8 secretion, and there
fore IL-8 mediated chemotaxis, when IL-1β was inhibited by 
other IBD therapies (such as 5-ASA), highlighting 
a mechanism behind the inconsistent clinical response by 
butyrate alone and potential for combining butyrate with 
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other treatment modalities of IBD.120,121 Geirnaert et al aug
mented the microbiota derived from Crohn’s disease patients 
by adding butyrate-producing bacteria (F. prausnitzii, 
Butyricicoccus pullicaecorum, and the mix of six butyrate- 
producers) which improved epithelial barrier integrity 
in vitro.122

Animal Studies
In animal models, preventative and therapeutic potential of 
butyrate for colitis has been studied either by modulating 
butyrate levels through dietary supplementation of butyrate- 
yielding prebiotics, sodium butyrate, or tributyrin, or through 
direct sodium butyrate instillation via rectal enemas. In a DSS- 
induced colitis model in male outbred-CD-1 mice, the dietary 
provision of baked corn and bean snack (20–40 g/kg body 
weight) resulted in the highest concentration of butyrate in the 
cecum and feces, and an anti-inflammatory effect by down- 
regulating IL-1 receptor, TLR receptors and TNF-alpha 
pathways.123 Smith et al reported that 150mM of butyrate 
supplementation in drinking water resulted in increased colo
nic regulatory T cells (cTregs) frequency and number in the 
germ free mice.124 Similarly, in another study byZhang et al, 
they studied the effect of butyrate supplementation in a rat 
model of colitis and reported that butyrate supplementation 
played an important role in regulating Treg and Th17 cell 
balance and exerted protective effect against development of 
IBD.125 Impaired intestinal barrier function and increased per
meability is considered one of the key mechanisms in devel
opment of IBD, and as discussed earlier butyrate 
supplementation has been shown to mitigate this effect in 
multiple in-vitro animal models.42,126 In IL-10 deficient mice 
which are prone to development of colitis, butyrate supple
mentation has been shown to provide protection against colitis 
through reducing the amount of colitogenic IgA-coated 
bacteria.127 Butyrate enemas have also been shown to stimu
late mucosal repair and healing, and exert anti-inflammatory 
effect in intestinal epithelium.128–130 Burrello et al reported that 
fecal microbiota transplantation with healthy stool in mice 
exposed to chronic intestinal inflammation decreased colonic 
inflammation, effects which are mediated through T cell 
modulation.131,132

Human Studies and Therapeutic 
Application
Human studies for therapeutic use of butyrate in IBD have 
been implemented since late 20th century. In 1992 
Scheppach et al performed a clinical trial in which 

100mMol/L of butyrate via rectal enema was compared 
with placebo for distal ulcerative colitis and reported that 
butyrate improved all parameters related to colitis including 
clinical indices with decreased stool frequency and blood in 
stool, and endoscopic and histological inflammatory 
grading.133 Other clinical trials which followed reported 
mixed results, ranging from no to some butyrate effective
ness, although not at the degree of therapeutic value.134,135 

Hamer et al studied the effect of butyrate in low grade 
inflammation in ulcerative colitis patients in remission, 
and reported only minor improvements in inflammatory 
and oxidative stress parameters after rectal enema of 
10mM sodium butyrate for 20 days.136 In a systematic 
review and meta-analysis of eight randomized clinical trials 
on a total of 227 patients with UC, Jamka et al reported that 
current limited evidence does not support the use of buty
rate enemas in UC.137 Due to inconsistencies in the 
response of butyrate therapy, perhaps at some degree due 
to variability in dosages, duration and a standardization of 
the formula, current applicability of butyrate in IBD is 
considered as an add-on supplementary therapy at 
best.121,138 One area in which butyrate has shown more 
consistent effectiveness is in cases of diversion colitis, 
a post-surgical manifestation when a part of colon is out 
of continuity and butyrate depletion is thought to be the 
major factor for driving inflammation.139 Although surgical 
treatment with either reconnection or resection of the 
diverted colon is a more definitive treatment, butyrate 
enema has been shown to have therapeutic value when 
medical management is considered.140 It should be noted 
that due to overall discrepancy in the evidence, there 
remains a lack of SCFA or butyrate related guidelines 
from GI and Nutrition Societies.141,142 Although most stu
dies utilizing the gut microbiota reprogramming by means 
of probiotics, prebiotics, and synbiotics,143 or the fecal 
microbiota transplantation in patients with UC or CD have 
produced positive results,144–146 the exact mechanism 
behind this complex interaction between the gut micro
biome and the host is not clearly understood, requiring 
further investigations to determine the role and implications 
of butyrate in management of this complex inflammatory 
disorder.

Colorectal Cancer
Patients with colorectal cancer have been reported to have 
low levels of SCFA including butyrate.147 As mentioned, 
butyrate has been reported to have a paradoxical effect on 
the proliferation of intestinal epithelial cells, supporting 
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healthy cells in homeostasis, but suppressing the hyper- 
proliferation induced by cancer.112,148,149 Sodium butyrate 
has been shown to induce apoptosis in human colonic 
cancer cell lines in a p-53 independent pathway.150 

Butyrate also provides protection against oxidative stress 
and DNA damage.113 Butyrate has also been reported to 
have cancer protective effects via several pathways which 
include suppression of Neuropilin-1 (NRP-1),151 inhibition 
of mitogen-activated protein kinase (MAPK) signaling 
pathway,152 differential regulation of Wnt-β-catenin sig
naling pathway,153,154 and upregulation of microRNA 
miR-203 and promotion of cell apoptosis,155 and inhibi
tion of pro-proliferative miR-92a.156 Due to a well- 
established role of dietary pattern with colorectal cancer, 
the majority of human trials have investigated interven
tions by means of modifying dietary fiber intake and 
reported reduced risk of colorectal cancer 
recurrence.157,158

Recent extensive meta-analyses' have confirmed these 
trends and reported a strong association of colorectal can
cer risk with dietary pattern and specifically with a low 
fiber, high fat and simple sugar containing diet.159,160 

Although there are several possible theories through 
which the anti-colon-cancer effect of the high fiber diet 
is thought to be mediated, the evidence from in-vitro 
studies have shown that butyrate plays a major role as an 
important intermediary metabolite in this 
pathway.140,161,162 More research is needed to show the 
direct effects of gut microbially generated butyrate on anti- 
colon cancer effects.

Conclusion and Future Perspectives
In summary, butyrate is a key gut microbial metabolite 
which mediates the effects of the gut microbiota on the 
immune system, and not only does it play a key role in 
the maintenance of intestinal immune homeostasis, but it 
also has future potential therapeutic implications for 
a spectrum of gastrointestinal and systemic disorders. 
Figure 4 summarizes what is currently known regarding 
butyrate’s role within the intestinal immune system. 
Certain challenges remain due to its low bio-availability, 
short half-life, variable levels in healthy individuals, as well 
as the lack of consistent clinical data supporting its value as 
a therapeutic option. Future studies including rigorous 

Figure 4 Overview of butyrate modulatory effects on immune function. Butyrate enhances the intestinal mucosal barrier by directly inducing tight junctional proteins in the 
epithelium. This effect is further augmented by butyrate’s induction of IL-22 secretion from ILC3 cells. Through interaction with GPCR 43 and 41, butyrate inhibits the 
proinflammatory cytokine secretion from neutrophils. Butyrate has direct effects on macrophages and dendritic cells via GPCR and modulates T cell function by increasing 
Foxp3 T cells while inhibiting IFN-ɣ producing T cells. Butyrate increases serotonin production and is also an inhibitor of HDAC. It modulates B cell function through these 
routes and increases anti-inflammatory cytokine IL-10 while it decreases IL-17. By increasing IgA and IgG antibody response from B cells, butyrate augments specific 
immunity and inhibits autoimmunity. Reprinted with permission, Cleveland Clinic Center for Medical Art & Photography ©2021. All Rights Reserved.163
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experimental models and explorations are necessary to 
further characterize the potential of butyrate as 
a preventative or therapeutic option for inflammatory and 
immune-mediated intestinal conditions.
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