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Machine Learning Classifier Models: The Future for Acute Respiratory
Distress Syndrome Phenotyping?

Acute respiratory distress syndrome (ARDS) is a heterogeneous
clinical syndrome characterized by severe respiratory failure
requiring mechanical ventilatory support for which there is no
therapy and in which mortality remains approximately 40% (1, 2).
A recent important advance has been the subclassification of
ARDS into subphenotypes that have potential prognostic and/or
therapeutic significance. Calfee and colleagues reported that an
approach called latent class analysis (LCA) could identify one-third
of patients with ARDS with a “hyperinflammatory” phenotype,
with the remainder having a “hypoinflammatory” pattern (3). The
hyperinflammatory phenotype had higher levels of proinflammatory
biomarkers and poorer outcomes, including fewer ventilator-free
and organ failure–free days and higher mortality. Biological
plausibility to these subphenotypes has been suggested by differential
responses to treatment (3, 4). A recent LCA of a large negative
randomized controlled trial of simvastatin in ARDS demonstrated
potential benefit in the hyperinflammatory group (5). Other approaches
to ARDS phenotyping exist, including a “physiologic phenotyping”
approach (based on the focal versus diffuse distribution of lung
infiltrates) (6) and transcriptomics-based approaches (7).

Classifying patients into hyperinflammatory and
hypoinflammatory subgroups in real time would enable rapid
implementation of a precision medicine approach. Key
impediments to the real-time use of these approaches are that
nonstandard assays for Il-6 and sTNFR1 are required and that LCAs
are computationally complex.

Computational modeling approaches are increasingly
being applied in medicine. Machine learning (ML) is when
a computer algorithm is trained with known input and output
values to predict outcomes from novel data with similar input
characteristics. In this issue of the Journal, Sinha and colleagues
(pp. 996–1004) present data demonstrating the potential of an
ML approach using readily available clinical data to identify
ARDS subphenotypes (8).

ML Classification and ARDS
Sinha and colleagues examined whether an ML approach,
specifically a variant of the gradient-boosting machine (GBM)
algorithm (9), could accurately identify inflammatory subtypes
of ARDS (8). They used standard clinical and laboratory
parameters to categorize patients from three prior clinical trials
into inflammatory subtypes. This data were divided into subsets
using 10-fold cross-validation to train and optimize the settings
(hyperparameters) of the ML algorithm with the objective of
building a model for the task of categorizing entries into the
hypoinflammatory and hyperinflammatory subphenotypes. The
performance of the optimized GBM classifier model was evaluated on a
fourth separate dataset by comparing the classes it assigned to the “gold-
standard” LCA classes. For the hypoinflammatory class, the GBM
model (with a probability threshold of 0.5) gave the correct answer
(assuming LCA is correct) in 98% of cases (460 of 468), but for the
hyperinflammatory class, it was only correct in 63% of cases (175 of
277). The combined accuracy for both classes was 85%.

The probability threshold at which cases are assigned to each
subphenotype can be varied, which, in essence, moves borderline
cases into the hypoinflammatory or the hyperinflammatory class.
For example, moving to a threshold of 0.3, the GBM model was
correct in 93% of cases for the hypoinflammatory class and 78%
of cases for the hyperinflammatory class, with an overall accuracy
of 87%. This changing threshold depended on the etiology
of ARDS, particularly sepsis-related ARDS, indicating that clinical
judgment may still be required in the implementation and
interpretation of these algorithms. Although the authors highlight
the performance of their method as quantified using the area under
the curve (AUC), which provides a valid and useful measurement
of the performance of a probabilistic classifier, classification
accuracy is more amenable to direct clinical interpretation.

The authors showed that these subphenotypes could be
predicted using in-hospital data generated up to admission to an
ICU with ARDS. They also demonstrated that inflammatory
biomarkers and 90-daymortality were higher in the hyperinflammatory
phenotype as classified by the model. Findings for treatment
interactions for statins, fluid management, and positive end-
expiratory pressure strategy in ARDS for the ML-derived classes
were consistent with those seen previously for LCA-derived classes.
An alternative GBM model built only with readily available laboratory
and vital sign variables achieved a comparable performance
(AUC=0.94) with one using all variables (AUC=0.95) and was able
to identify similar treatment interactions. We note that Calfee and
colleagues took care to keep training data separate from their
evaluation data by holding out a cohort as the evaluation group.
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When selecting parameters to improve model performance, they
appropriately performed cross-validation within the training data.

There are some inherent limitations to the approach, as the
authors acknowledge. Most significantly, the databases used in
this study came from NHBLI ARDS Network clinical trials, so the
results might not generalize to real life data extracted from electronic
medical records or observational cohorts.

ML: The Future of Personalized Medicine?
The potential for ML to advance critical care medicine is increasingly
recognized, such as in the prediction of ARDS development
(8, 10, 11). It will be important to the potential and the limitations
of ML algorithms, to recognize that because they are based on
extracting rules and correlations that are implicit in data, their
performance is limited by the characteristics of that data. The
application of any ML approach is hampered by the lack of a
gold-standard method to either diagnose or classify ARDS
(8, 11, 12). It is also important to continue to improve our
knowledge of the underlying biology and pathophysiologic
mechanics, as this will further inform approaches to develop
personalized medicines for patients with ARDS.

As we adopt more ML approaches to data interpretation, we
should ask whether ML should be the new standard approach
to data interpretation. Although traditional statistical approaches,
such as multivariate logistic regression, have been widely adopted,
ML approaches benefit from being able to discover more complex
multifaceted nonlinear relationships between patient data and disease
states. For example, ML has been demonstrated to outperform
multivariate logistic regression analysis in predicting the risk of
lower gastrointestinal rebleeds (13). However, although nonlinear
ML models have greater explanatory power than linear statistical
methods, the same nonlinearity properties can result in very poor
predictions if models are used in situations that extrapolate far
beyond the scope of the training data and can also give rise to
“black box” models that do not support clinical insight. These
challenges can be addressed through the careful choice of appropriate
ML algorithms, the conscientious and rigorous evaluation of models,
and the application of techniques from the emerging field of
explainable artificial intelligence.

Sinha and colleagues are to be congratulated for advancing the
field of ML in medicine and advancing the prospect of
personalized medicines for ARDS by demonstrating a compelling
application of ML in identifying ARDS subphenotypes from
readily available clinical data with the potential for near-bedside
deployment. n
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