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Large-scale study of the properties of T-cell receptor (TCR) and B-cell receptor (BCR)
repertoires through next-generation sequencing is providing excellent insights into the
understanding of adaptive immune responses. Variable(Diversity)Joining [V(D)J] germline
genes and alleles must be characterized in detail to facilitate repertoire analyses. However,
most species do not have well-characterized TCR/BCR germline genes because of
their high homology. Also, more germline alleles are required for humans and other
species, which limits the capacity for studying immune repertoires. Herein, we developed
“Immune Germline Prediction” (IMPre), a tool for predicting germline V/J genes and
alleles using deep-sequencing data derived from TCR/BCR repertoires. We developed a
new algorithm, “Seed_Clust,” for clustering, produced a multiway tree for assembly and
optimized the sequence according to the characteristics of rearrangement. We trained
IMPre on human samples of T-cell receptor beta (TRB) and immunoglobulin heavy chain
and then tested it on additional human samples. Accuracy of 97.7, 100, 92.9, and 100%
was obtained for TRBV, TRBJ, IGHV, and IGHJ, respectively. Analyses of subsampling
performance for these samples showed IMPre to be robust using different data quantities.
Subsequently, IMPre was tested on samples from rhesus monkeys and human long
sequences: the highly accurate results demonstrated IMPre to be stable with animal and
multiple data types. With rapid accumulation of high-throughput sequence data for TCR
and BCR repertoires, IMPre can be applied broadly for obtaining novel genes and a large
number of novel alleles. IMPre is available at https://github.com/zhangwei2015/IMPre.

Keywords: immune repertoire, novel germline gene, novel germline allele, TCR, BCR

INTRODUCTION

The “immune repertoire” is defined as the collection of diverse T-cell receptors (TCRs) and B-cell
receptors (BCRs) created by somatic recombination of many germline V (variable), D (diversity), J
(joining), and C (constant) gene segments. The immune repertoire (hereafter termed “repertoire”)
comprises the adaptive wing of the immune system. In recent years, advances in next-generation
sequencing technology have enabled assessment of millions of B- or TCRs from a single sequencing
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assay. This strategy allows researchers to study the repertoire in
a more comprehensive way. Sequencing of the repertoire (Rep-
seq) is being applied in several research areas: (i) monitoring of
residual disease and immune reconstitution in cancers; (ii) under-
standing the diversity of T- and B-cell repertoires generated upon
vaccination or infection; (iii) investigation of the mechanisms of
immune surveillance in specific diseases (especially in infectious
and autoimmune diseases); and (iv) production of monoclonal
antibodies targeting specific antigens (1–5).

Well-characterized TCR/BCR germline genes are critical for
analyses and interpretation of Rep-seq data. The publically avail-
able ImMunoGeneTics (IMGT) database1 collects the genes
of certain species. However, such information is not avail-
able for most species, which makes studying of repertoires
highly challenging (if not unattainable). Deciphering of TCR and
BCR germline loci requires additional resource-intensive efforts
beyond conventional sequencing of the whole genome because
these loci comprise multiple highly homologous and polymor-
phic gene family members. For instance, according to the IMGT
database, the human immunoglobulin heavy-chain (IGH) locus,
located at chromosome 14 (6), is composed of 123–129 V genes,
27 D segments, 9 J segments, and 9 C genes. The other two
immunoglobulin light chain and four TCR loci are organized in
a similar way, so exact identification of the many homologous
gene sequences is difficult. In addition, like gene loci from human
leukocyte antigens, germline genes also exhibit high polymor-
phism of alleles. There are >470 IGH V alleles in the IMGT
database, but recently reported novel alleles (7, 8) from a few
individuals suggest that numerous V alleles are absent. Many
alleles for humans and other species have not been found. Absence
of alleles may influence analyses of repertoires greatly. If the seg-
ment allele is assigned in error, the somatic hypermutation (SHM)
cannot be identified exactly and may result in misleading clini-
cally relevant decision-making processes (9). Well-characterized
TCR/BCR germline alleles (polymorphisms) are critical for Rep-
seq analyses.

Investigation of BCR/TCR germline genes and alleles is prob-
lematic, a validated method is lacking, and few studies in this
area have been published. The conventional method employs a
polymerase chain reaction (PCR)-based cloning strategy. That is,
primers are designed based onhumangermline genes and are used
to extract the species’ counterparts through PCR amplification
using genomic DNA (10–12). This is the most direct approach
for obtaining sequences with high accuracy but is suitable only
for species that are significantly homologous with humans. With
this approach, iterative PCR optimizationmight be needed, which
requires designing of primers on multiple occasions. Greenaway
and colleagues showed germline genes to be inferred from the
genomes of assembled species (13). However, precise and accurate
assembly of genes from the V/J region is difficult due to their
high homology; the inferred germline genes extracted from the
genome could, therefore, contain errors. In addition, Gadala-
Maria and coworkers discovered 11 unreported alleles (poly-
morphisms) from Rep-seq data on human IGH (8). However,
that research focused on human IGH alleles with five or fewer

1http://www.imgt.org/.

mutations, required known germline sequences, and could not
be used to predict novel genes. To resolve these issues, a tool
for inferring novel germline genes/alleles without a genome and
known germline genes/alleles is needed.

We designed primers at the conservative C region to cap-
ture the TCR/BCR rearranged repertoires using high-throughput
sequencing. We developed a de novo tool, Immune Germline
Prediction (IMPre), to infer novel TCR/BCR germline genes and
alleles using Rep-seq data without known germline sequences or
assembled genome data. Without knowing V/J gene segments,
primers designed at the C region are available for all species,
which is a perfect perspective to infer the highly homologous
germline genes/alleles, and IMPre is the first tool to do this. IMPre
is implemented using C and Perl programs and comprises four
main steps: data processing, clustering, assembly, and optimiza-
tion. As part of this effort, we developed a clustering algorithm,
Seed_Clust, based on the same seed k-mer (i.e., all the possible
substrings of length k contained in a string) to classify sequences.
Subsequently, a multiway tree structure was used in the assembly
step to extend seeds in both directions. T-cell receptor beta (TRB)
and IGH samples from humans were sequenced to train IMPre,
and additional human samples were used for testing. Accuracies
were 97.7, 100, 92.9, and 100% for TRBV, TRBJ, IGHV, and IGHJ,
respectively. Subsampling performance was estimated, and results
showed IMPre to be robust evenwith different data quantities, and
that 1 million sequences were sufficient for germline prediction.
IMPre performs with good efficiency and speed while using less
memory. TRB samples from rhesus monkeys and additional long-
sequence human samples were used to retest IMPre. The highly
accurate results obtained suggest that IMPre is stable with animal
and long-sequence data.

MATERIALS AND METHODS

Design and Overview of the IMPre System
Two main recombination characteristics support the notion that
rearranged repertoire data can be used to infer germline genes.
First, the probability of V(D)J insertion/deletion at a gene ter-
minus in an individual tends to decrease with increasing length
of the deletion (14, 15). We analyzed our data (Table S1 in Sup-
plementary Material) on the distribution of length of the V/J
deletion (Figures S1A,B in Supplementary Material). We found
that a length of the V deletion >50% for TRB and 70% for IGH
were within 1 bp, whereas the length of the J deletion was much
more diverse; however, the value tended to decrease if the deletion
length increased. Then, we downloaded the rearranged sequences
from the IMGT database and observed the same trend from 3907
fully annotated sequences (Figure S1C in Supplementary Mate-
rial). Second, researchers have reported that immunoglobulin (Ig)
genes introduce SHMs at 10–3 per bp per cell division (16, 17).
SHMs are, in general, randomwith a low frequency (≤5%), except
for known G/C “hotspots” (≤10%) among large-scale repertoire
data (7). Germline genes can be predicted after elimination of
SHM effects. These phenomena provide a strong theoretical basis
for accurate identification of germline genes and alleles.

The IMPre pipeline mimics the reverse process of VDJ rear-
rangement in TCRs and BCRs (Figure 1A) and comprises
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FIGURE 1 | Overview of IMPre workflow. (A) Rearrangement. (B) IMPre flowchart shows four steps and uses rearranged sequences as the input. Sequences are
divided into V and J parts during the data-processing step. The Seed_Clust algorithm is used to cluster sequences for each part. For each cluster, sequences are
used for assembly and further optimization. (C) Clustering. The pseudocode outlines the Seed_Clust clustering algorithm. (D) Assembly. A multiway tree structure
stores nucleotides and assembles using a one-nucleotide extension strategy. The V gene begins to extend from the right subtree and then from the left subtree.
Two parameters, Ar and Ur, determine whether a nucleotide should be added or not.

four steps: data processing, clustering, assembly, and optimiza-
tion (Figure 1B). During data processing, rearranged repertoire
sequences are converted into forward sequences and partitioned
into V and J parts. During clustering, the Seed_Clust algorithm
is based on seed k-mers and used for sequence clustering that
prioritizes large clusters with the same seed k-mers. A pseudocode
that describes this step in detail is shown in Figure 1C. Each
sequence is assigned to one cluster. During assembly, for each
cluster, a multiway tree structure is constructed to store the seed
and upstream/downstream nucleotides. It begins at the seed and
is extended using a one-nucleotide extension strategy for de novo
assembly. The Ar and Ur (detailed definitions are shown below)
are used to ascertain if a nucleotide should be added or not added
(Figure 1D). During optimization, three steps are used. TheTrim5
Ratio, Trim5 Rate, andMore5 Rate (definitions are shown below)
are calculated to filter out false-positive (FP) readings. Sequences
with the same overlapping region are merged to eliminate redun-
dancy. Similar low-frequency sequences are removed to filter

out sequences with SHM and PCR/sequencing errors. Finally,
inferred sequences are annotated by known germline sequences.

Data Processing
Immune Germline Prediction can process the rearranged
sequences with or without the C region. If the C region is
embodied, it is identified using previously reported publically
available C sequences with a limit of two mismatches for the first
18 bp. The identified C region is used to convert all the sequences
to forward sequences and then is trimmed for further analyses.
To predict V and J genes independently, rearranged sequences
are partitioned into two parts. IMPre extracts the last 60 bp
(parameter: −jm) from the 3’ end of sequences to define the “J
part.” Sequences that are trimmed in the last 40 bp (parameter:
−vm) of the 3’ end are defined as the “V part.” Parameters can
be adjusted, but they must cover the entire potential V and J
regions. To avoid missing regions, the V portion of the sequence
is tolerated to contain a D gene (for IGH and TRB) and a partial
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J gene. Also, the J portion may contain a D gene (for IGH and
TRB) and a partial V gene (Figure 1B).

Clustering
Immune Germline Prediction clusters V and J sequences sep-
arately (Figure 1B), and both use the same clustering strategy
detailed in Figure 1C. Heyer et al. reported a quality cluster
algorithm (QT_Clust) for expression data (18). Similarly, to dis-
cover large clusters, we developed a clustering algorithm for V
and J sequences. The algorithm prioritizes the largest cluster that
included the same seed k-mer, defined as Seed_Clust.

Seed_Clust operates in five main steps (Figure 1C). In step (1),
length-provided subsequences (k-mer) are created as seeds (S)
from all sequences. In step (2), a matrix Mm × n is constructed
using the seed k-mer, where m is the number of seeds and n is
the number of unique sequences. If the seed Sj is included in
the sequence N i, then Mj,i = 1; otherwise, Mj,i = 0.2. The score Tj
(defined inFigure 1C) is calculated for each seed Sj. In step (3), the
maximum score Tj is selected, and the sequences that embody the
seed Sj are regarded as one cluster and are outputted. In step (4),
the output sequences are removed from thematrixMm × n. In step
(5), steps (1)–(4) are repeated under iteration until all sequences
belong to one cluster.

The seed k-mer is dependent upon sequence length and other
characteristics. However, the last 10 bp of the 3’ end at the “V part”
sequence are excluded for seed creation because this region might
not truly belong to the V gene; similarly, the first 5 bp at the 5’ end
of the J portion are not considered.

Assembly
Each cluster is assembled independently (Figure 1B). We devel-
oped an assembly strategy based on seeds and one-nucleotide-
by-one-nucleotide extension (Figure 1D). In this step, a multiway
tree is generated to store data and to aid assembly. First, the seed
of each sequence is set as the center position k, and the upstream
nucleotides are set at positions k− 1, k− 2, . . ., in order, whereas
the downstream nucleotides are set at positions k+ 1, k+ 2, . . .,
in order. Each position may consist of four nucleotides, except
position k, and the number of supporting sequences for each
nucleotide is calculated.

The assembly begins from the seed and extends in the direc-
tion of the right subtree [usually in the direction toward CDR3
(complementarity-determining regions) sequences]. After the
right subtree is complete, it extends further in the direction toward
the left subtree. Criteria and rules are identical for left and right
subtrees (Figure 1D). For each time, one nucleotide (“note”)
is considered to be added for extension, and then all “brother-
notes” are considered successively. After finishing all brother-
notes, the algorithm extends to all “child-notes.” For example,
three nucleotides (“A,” “C,” and “G”) at position k+ 1 are con-
sidered for addition to the seed, and three extended sequences
are created if the nucleotides meet requirements. Then, three
nucleotides (“C,” “G,” and “T”) at position k+ 2 are considered
for addition to the extended sequences separately. Nucleotides
at the remaining positions comply with the same rule iter-
atively. Finally, multiple qualified extended sequences can be
retained.

For each time, to ascertain if the nucleotide (note) should or
should not be added for extension, we defined two parameters,Ar
and Ur:

Ar(i, j)

=
Number of supporting reads for an extended sequence

Number of total reads at position i

Ur(i, j)

=
Number of unique supporting reads for an extended sequence

Total number of unique reads at position i ,

i ∈ {.., k − 2, k − 1, k, k + 1, k + 2, . . .} , j ∈ {A,C,T,G}

Here, an “extended sequence” is defined as the sequence after
one nucleotide j is added in position i. We provide an example
to illustrate these two parameters (Figure 2A). Here, there are 10
reads in the cluster. When it extends to position i, three reads
contain the nucleotide “A” in a total of seven reads, so Ar(i,A) is
equal to 42.9%. Likewise, two unique reads contain the “A” in the
total of six unique reads, so Ur(i,A) is equal to 33.3%. The two
values can be calculated for other nucleotides in the same way.
Defaults for the two parameters are V: Ar> 0.15, Ur> 0.12; J:
Ar> 0.12, and Ur> 0.10. Actually, most SHMs can be filtered in
this step.

Optimization
Numerous potential germline sequences are obtained from the
assembly step, but they must be optimized further to elimi-
nate incorrect sequences. The assembly step yields four types of
sequences (Figure 2B), among which three are not accurate or
precise, and are defined as FPs. Among them, one is derived from
a non-specific PCR amplification and the other two types exhibit
missing portions of the germline sequence (too short) or contain
extra V–D/D–J additions (too long).

Three steps are used to filter incorrect sequences (Figure 3A).
First, FP sequences are filtered. Genuine rearranged V/J gene seg-
ments feature diverse V/J deletion/insertion lengths and recom-
binewithmultiple adjacentD genes. Therefore, the diversity of the
5 bp-trimmed or extended sequences is significantly higher for the
correct type of sequence (Figure 2B). Three factors (Trim5 Ratio,
Trim5 Rate, and More5 Rate) derived from these characteristics
are introduced to filter out the incorrect sequences, and the defi-
nitions are listed as shownbelow: (TheTrim5Ratio includesTrim5
Ratio1 and Trim5 Ratio2, whereas the Trim5 Rate includes Trim5
Rate1 and Trim5 Rate2.)

Trim5 Ratio1 =
Number of supporting reads for Strim5

Number of supporting reads for S ×100

Trim5 Ratio2

=
Number of unique supporting reads for Strim5

Number of unique supporting reads for S ×100

Trim5 Rate1

=
Number of supporting reads for Strim5

1
n

∑n
i=1{Number of supporting reads for Strim5(i)}

×100
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FIGURE 2 | Parameters in assembly and optimization steps (schematic). (A) An example for Ar and Ur calculation in the assembly step. There are 10 reads in
a cluster. Each time, we determine whether the nucleotides in position i should be added for extension or terminated using the values of Ar and Ur. (B) Four types of
inferred sequences obtained from the assembly step. For the reads, orange denotes the V region, red is inserted nucleotides, green is the D region, blue is the J
region, and gray is the reads from non-specific amplification. Strim5 are 5 bp shorter than S, and Smore5 is a 5 bp fragment.

Trim5 Rate2

=
Number of unique supporting reads for Strim5

1
n
∑n

i=1{Number of unique supporting reads for Strim5(i)}
×100

More5 Rate

=
Number of unique supporting reads for Smore5

1
n
∑n

i=1{Number of unique supporting reads for Smore5(i)}
×100

where n is total number of inferred sequences, S is the inferred
sequence from the assembly step, Strim5 is the 5 bp-trimmed S at
the end (the V gene is trimmed at the 3′ end and the J gene is
trimmed at the 5′ end), Smore5 is a 5-mer subsequence which is
extended from S (extended from the 3′ end of S for V and the
5′ end of S for the J gene). S, Strim5, and Smore5 are illustrated in
Figure 2B. For example, taking Trim5 Ratio1 in Figure 2B, the
value of Trim5 Ratio1 for the “Right” type sequence is 2, whereas
the values for other three types of sequences are equal to 1.

Defaults of three factors are set as:Trim5Ratio>1.5,Trim5Rate
>2 (for TRB-J >0.5), andMore5 Rate >5.

Second, to eliminate redundancy in inferred germline
sequences, sequences are merged if they have identical
overlapping regions (two mismatches are allowed for the V
gene at the 3′ end and two mismatches are allowed for the J gene
at the 5′ end).

Third, elimination of SHM and PCR/sequencing errors is
attempted (Figure 3B). The predicted germline sequences are

clustered into multiple groups using the QT_Clust algorithm
(18). Sequences with the most reads are defined as the “center
sequence,” and other sequences with more than three mismatches
(two mismatches for the J gene) are clustered into the same group
with the center sequences (the last 3 bp at the 3′ end for theV gene,
and the first 3 bp at the 5′ end for the J gene are masked). Accord-
ing to analyses of human germline sequences from the IMGT
database (Figure S2 in Supplementary Material), we assumed that
the sequences within one group arose from the same germline
genes. Theoretically, observation of more than two alleles for each
gene in one sample is not possible, so some sequences must be
filtered if there are more than two sequences in one cluster. Thus,
Ratio(S) for each sequence S is introduced as

Ratio(S)= number of supporting reads for the center sequence
number of supporting reads of S .

The predicted sequence S is filtered out if the Ratio(S) >10
because Boyd and colleagues reported that almost all ratios of the
two alleles in an individual were <10 (7). Furthermore, at most,
two sequences in a cluster are retained [retention of the center
sequence and another sequence with the lowest Ratio(S)].

Another effective way to eliminate SHMs is using multiple
individuals to infer germline genes/alleles (Figure 3B). If the
inferred sequence is observed inmultiple individuals, it is likely to
be the “true” germline sequence. SHMs would occur at random,
and the chances of multiple individuals using identical alleles with
the same SHMs are rare.
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FIGURE 3 | Detailed optimization strategy and output format. (A) Pipeline for the optimization step. (B) Details for elimination of SHM and PCR/sequencing
errors. (C) Output format of IMPre. IMPre outputs two files: one is the annotation file and the other is the inferred sequence.

Annotation and Output
To measure the certainty of an inferred germline sequence, we
provide a score for each inferred germline sequence according to
seven important factors with different weightW (the total weight
is 100 and the range of scores is between 0 and 100, Figure 3C).
The score for each sequence S is defined as

Score(S) =
Trim5 Ratio1 (S)

max {Trim5 Ratio1} × WTrim5 ratio1

+
Trim5 Ratio2 (S)

max {Trim5 Ratio2} × WTrim5 ratio2

+
More5 Rate (S)

max {More5 Rate} × WMore5 rate

+
Trim5 Rate1 (S)

max {Trim5 Rate1} × WTrim5 rate1

+
Trim5 Rate2 (S)

max {Trim5 Rate2} × WTrim5 rate2

+
#merged sequences

max {#merged sequences} × Wmerged num

+ {Wmajor|Wminor}

(WTrim5 ratio1,WTrim5 ratio2,WMore5 rate,WTrim5 rate1,WTrim5 rate2,

Wmerged num,Wmajor,Wminor) = (20, 20, 15, 10, 10, 15, 10, 5)

where “#merged sequences” is the number of sequences merged
in the optimization step.

Similarity of human alleles for α and β chains, as well as
for heavy and light chains, in IMGT, was analyzed. Hamming
distances between any alleles and the *01 allele in a gene were
calculated (Figure S5 in Supplementary Material, Inner_gene). As
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a control, Hamming distances between the *01 allele and one of
the alleles in other genes (Figure S5 in Supplementary Material,
Outer_gene) were also calculated and had the highest similarity
with the *01 allele. Thus, themost probable dividing lines between
the Inner_gene and Outer_gene were a Hamming distance for the
V and J gene of 7 and 5, respectively (Figure S5 in Supplementary
Material). To distinguish between inferred germline genes and
alleles, and to determine which alleles belonged to the same
genes, two steps were used to provide a recommended name
for each inferred sequence. First, sequences were aligned to the
known germline sequences of the human and mouse from the
IMGT database, where other known germline sequences could
also be added for annotation using the parameter “−known.” If
the mismatch number between the sequence and nearest known
germline sequence was <7 bp (for J: ≤5 bp), the sequence was
regarded as a novel allele belonging to the gene of the nearest
known germline. Second, for sequences with a mismatch number
>7 bp (for J: >5 bp), we clustered sequences into a group if
their Hamming distance was <7 bp (for J: ≤5 bp) using the
QT_Clust algorithm (18) and assumed that the sequences in
a group belonged to one gene. We named the group using a
character as an assumed gene name followed by an asterisk and
allele number (Figure 3C) according to the nomenclature rules
set by the IMGT collaboration. Notably, accurate nomenclature
requires complete assembly of the genome for TCR and BCR
germline loci, which is not available for most species. Besides, a
few independent V segments are high homologous between each
other, with the mismatch number less than 7 bp. Therefore, the
gene and allele names provided here are just as reference, and
much more sufficient evidence are required by further work.

To annotate the inferred sequences, information of the mapped
nearest known germline sequence was provided in the output
file, which included the nearest allele, number of mismatches,
and number of deviated bases (Figure 3C). Each sequence was
marked as “known,” “novel_allele,” or “novel_gene,” and a name
recommended in terms of the standards and rules stated above.
Overall, IMPre outputs two files: one is the annotation file and the
other is the inferred sequencewith the FASTA format (Figure 3C).

Simulation of In Silico Sequences
Themethod to generate simulated BCR repertoire sequences were
described in the previous paper (14). Here, we create 12 datasets
and each one includes 105 rearranged sequences. First, we generate
sequencing error with the rate of 0.5% (per base) for all sequences.
Second,we generate the SHMfor 80%of sequences of dataset, with
different SHM level rates: 0, 1, 5, 10, 15, and 20% (per base) for
six dataset separately, and with the SHM rate 1% for the other
six datasets, where the mutations occur at random. Third, for
the latter six datasets, we generate the hotspot mutation in them,
with the hotspot rate of 5, 10, 15, 20, 25, and 30%, respectively.
We generate the hotspot mutations like that: for the sequences
derived from the same germline allele, partial of them (hotspot
rate 5% means 5% of them) create a same specific mutation. For
example, there are 100 rearranged sequences derived from the
germline IGHV1-1*01, 20 of them have the same mutation at
position 120, such as A->C, so the hotspot rate is 20%. Therefore,
all germline alleles made up the dataset generate the same hotspot
mutation rate.

Collection and Preprocessing of Samples
Research was reviewed prospectively and approved by a duly
constituted ethics committee (Institutional Review Board on
Bioethics and Biosafety of BGI-Shenzhen).

All human samples were recruited after obtaining written
informed consent. Mononuclear cells were isolated from the
peripheral blood of five healthy individuals using Ficoll-Paque
(GE Healthcare, Little Chalfont, UK) gradient centrifugation.
RNA was extracted using TRIzol® (Invitrogen, Carlsbad, CA,
USA). Three samples were used to capture TRB, and two samples
were used for IGH.We used a Rapid Amplification of cDNA Ends
(5′ RACE) kit (v2.0, Invitrogen) to amplify the target region with
primers at a C region. TRB primers were used based on the study
by Warren and colleagues (19). PCR products were sheared using
a Covaris S2 system (Applied Biosystems, Foster City, CA, USA).
Biotinylated fragments were purified and excised in 100–200 frag-
ments to prepare a library. Samples were sequenced using a HiSeq
2000 system (Illumina, San Diego, CA, USA) with a paired-end
(PE) 100 bp (Table S1 in Supplementary Material). An additional
human sample was collected. Multiplex PCR was used to amplify
IGH with BIOMED-2 primers (20) at the FR1 region and C
region. We undertook sequencing with MiSeq and PE 300 bp kits
(Table S1 in Supplementary Material). Data of two healthy Indian
rhesus monkeys were collected [we adhered to the Guidelines for
the Care and use of Animals for Scientific Purposes (November
2004) established by the Singapore National Advisory Committee
for Laboratory Animal Research]. TRB samples were sequenced
using HiSeq 2000 with PE 150 bp kits (Table S1 in Supplementary
Material). All sequence preprocessing was done and PE reads
merged using IMonitor (14).

Raw deep-sequencing data of human samples are available at
the NCBI Short Read Archive2 under the accession numbers
SRA339484 and RJNA309577.

RESULTS

Training Parameters of Software Using
Human Samples
Currently, there are relatively complete germline sequences for
humans in the IMGT database. If we align the TRB or IGH
repertoires to the human known germline sequences, and we
can identify which gene and allele exists in the TRB and IGH
samples. Therefore, rearranged repertoire data for humans were
adopted to train IMPre. Two TRB (S01-R and S03-R) samples and
another IGH (H09, of which the mutation rate is 5.36% per base
and 72.25% sequences contain error bases) sample from healthy
humans (Table S1 in Supplementary Material), amplified by 5′

RACE and sequenced using the Illumina platform, were used as
the training dataset. The assembly step used Ar and Ur to judge
whether a sequence extension should continue or terminate. To
train these two parameters, we calculated the Ar and Ur for the
true germline sequence (TGS) and error germline sequence (EGS)
in each cluster outputted by the clustering step of IMPre. After
clustering, if the sequence contained the V or J germline allele

2http://www.ncbi.nlm.nih.gov/Traces/sra/.
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without mismatch and <3 bp deletion at the junction region, we
defined it as the TGS, otherwise it was defined as an EGS. Human
germline sequences from the IMGT database were trimmed 3 bp
at the 3′ end for the V gene (or trimmed 3 bp at the 5′ end for the J
gene) for use as the reference database. Sequences after clustering
were aligned to the reference database using a global-alignment
strategy. TGSs and EGSs were determined using the criteria stated
above, and the Ar and Ur for them calculated (Figure 4A). Ar
and Ur values for TGSs are shown in red, and EGSs are shown
in black, in Figure 4A. Remarkably, TGSs exhibited much higher
values than EGSs forUr andAr. Hence, we could useAr andUr (V:
Ar> 0.15, Ur> 0.12; J: Ar> 0.12, Ur> 0.10) to distinguish most
TGSs from EGSs.

For the optimization step, we used five parameters (Trim5
Ratio1, Trim5 Ratio2, Trim5 Rate1, Trim5 Ratio1, andMore5 Rate)
to filter FP sequences. We observed four types of sequences from
the assembly step (Figure 2B). Herein, we define the extended
sequences of the “right” type as “true positive” (TP) and the other
three types as FP. We aligned the extended sequences to known
germline sequences in humans (as reference, from the IMGT
database). If the identity was >90%, missed nucleotides at the
terminus (compared with the reference) were <20 bp and extra
nucleotides at the terminus were <5 bp, the extended sequence
was regarded to be a TP, otherwise it was defined as a FP. Then,

we calculated the values of five parameters for TPs and FPs
(Figures 4B,C). As expected, TPs exhibited higher values for all
parameters than FPs, which demonstrated their discriminatory
power on TPs and FPs for TRB and IGH samples [Trim5 Ratio
>1.5, Trim5 Rate >2 (for TRB-J >0.5), andMore5 Rate >5].

Evaluation of IMPre Accuracy Using
Human Samples
A TRB sample (S02-R) and IGH sample (H08) from healthy
humans were used to evaluate the accuracy of IMPre. Predicted
germline sequences were aligned to known human germline
genes and alleles, and the nearest allele was determined for each
sequence to calculate the mismatch number, identity, and devi-
ated bases (Figure 5). Deviating bases were the number of missed
nucleotides (−) or extra nucleotides (+) at the 3′ end of V (and 5′

end of J) compared with the nearest allele. Currently, 48 V and 13
J TCR-β functional human genes as well as 53 V and 6 J IGH func-
tional human genes have been reported in the IMGT database.
For these samples, most VJ genes could be predicted with at least
one allele using this method. All 13 J genes, 42 of 48 V genes for
TRB, all 6 J genes and 36 of 53 V genes for IGH were observed in
addition to 2 pseudogenes per sample. Compared with the nearest
allele, the mismatch number, deviated bases, and identity were

FIGURE 4 | Training IMPre parameters using human samples. (A) Two human TRB samples and an IGH sample are used for training parameters, Ar and Ur,
used in the assembly step. Red triangle: TGSs; black triangle: EGSs. The dashed line for TRB indicates the following: Ar(V)= 0.15, Ur(V)= 0.12, Ar(J)= 0.12, and
Ur(J)= 0.10. The dashed line for IGH indicates the following: Ar(V)= 0.15, Ur(V)= 0.12, Ar (J)= 0.12, and Ur(J)= 0.10. (B) Two human TRB samples are used for
training five parameters (Trim5 Ratio1, Trim5 Ratio2, Trim5 Rate1, Trim5 Rate2, and More5 Rate) used in the optimization step. The Trim5 Ratio includes Trim5 Ratio1
and Trim5 Ratio2 (solid), and the Trim5 Rate includes Trim5 Rate1 (hollow) and Trim5 Rate2 (solid). Red: TP; black: FP. The dashed line denotes the following: Trim5
Ratio= 1.5, Trim5 Rate= 2, Trim5 Rate(J)= 0.5, and More5 Rate= 5. (C) A human IGH sample is used for training five parameters (Trim5 Ratio1, Trim5 Ratio2,
Trim5 Rate1, Trim5 Rate2, and More5 Rate) used in the optimization step. Red: TP; black: FP. The dashed line denotes the following: Trim5 Ratio= 1.5, Trim5
Rate= 2, and More5 Rate=5.
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FIGURE 5 | Detailed evaluation of the predicted sequences for human samples. Predicted sequences were aligned to known human germline genes to
determine the nearest alleles and calculate the mismatch number, deviated base, and identity. A “+” for the nearest alleles indicates that the sequence has multiple
nearest genes. A “+/−” in deviated bases indicates that it includes extra nucleotides/missed nucleotides at the terminus. F, functional; P, pseudogene; ORF, open
reading frame (definition from the IMGT). (A) TRB S02-R sample. (B) IGH H08 sample.

used to assess the quality of the predicted sequence. The sequence
was considered to be correct if the identity was >90%, and the
absolute deviated base was<5. Accuracies for TRBV, TRBJ, IGHV
and IGHJ were 97.7, 100, 92.9, and 100%, respectively (Table 1),
which showed that IMPre is highly accurate for TRB and IGH.
Average identity, average deviated base, and average mismatch
were, respectively, 99.7%, 1.1, and 0.3 for TRBV; 100%, 1.1, and
0 for TRBJ; 99.1%, 1.7, and 0.6 for IGHV; and 98.9%, 1.1, and 0.6
for IGHJ. High identity, few deviated bases, and fewermismatches
suggest that IMPre could predict human germline genes/alleles

accurately and precisely. Furthermore, most nearest alleles for
samples were *01 for TRB and IGH samples, suggesting that *01
is the major allele in the population. The few heterozygous alleles
observed in the present study are comparable to those noted by
Boyd and coworkers (7).

Evaluation of Efficiency and Robustness
Immune Germline Prediction was implemented using Perl and
C programs. We optimized the programs multiple times to
reduce memory use and increase the efficiency of clustering and
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TABLE 1 | Evaluation of the predicted V/J germline sequences of humans and rhesus monkey.

Sample Species-chain Predicted V germline genes/allelesc Predicted J germline genes/allelesc

Number Accuracy
(%)a

AVE
identity
(%)

AVE
|deviated

bases (bp)|b

AVE
mismatch

(bp)

Number Accuracy
(%)a

AVE
identity
(%)

AVE
|deviated

bases (bp)|b

AVE
mismatch

(bp)

S02-R Human-TRB 44 43 (97.7) 99.7 1.1 0.3 13 13 (100.0) 100.0 1.1 0
H08 Human-IGH 42 39 (92.9) 99.1 1.7 0.6 8 8 (100.0) 98.9 1.1 0.6
05D328 Monkey-TRB 46 44 (95.7) 99.0 1.3 1.6 15 15 (100.0) 99.0 1.1 0.5
A8L087 Monkey-TRB 46 43 (93.5) 98.9 1.3 1.8 14 14 (100.0) 99.2 0.9 0.4
AVE1d Monkey-TRB 46 44 (94.6) 99.0 1.3 1.7 15 15 (100.0) 99.1 1.0 0.5
H88-LS Human-IGH 35 34 (97.1) 100.0 1.1 0 6 6 (100.0) 100.0 1.2 0

a Identity ≥90% and |deviated bases| ≤5 were defined as correct and used to calculate accuracy.
bAVE, average; absolute values of deviated bases were used to calculate average values.
c Identity ≥90% and |deviated bases| ≤5 were defined as correct and used to calculate the average identity, deviated bases, and mismatches.
dAverage of 05D328 and A8L087 samples.

FIGURE 6 | Performance assessment. (A) Time and memory test. The following parameters were used: “−v_seed 40, −v_min_e 1, −j_min_e 1” and default for
the remaining parameters. (B) Subsampling from five human samples. Predicted allele number, high identity, and deviated bases were used to assess the accuracy
of predicted sequences.

assembly. One million subsequences were extracted at random
from TRB and IGH samples, which were used to test IMPre per-
formance. IMPre used 38min and 41 s and 1.63Gb peak memory
for the entire TRB analysis, whereas 25min and 17 s and 1.11Gb
peak memory were used for the IGH analysis (Figure 6A).

Immune Germline Prediction exhibited good accuracy for
human deep-sequencing data. However, we did not know if the
method was stable for lower throughput data or for optimal and
minimal data requirements. Random sampling was done using
five samples at a sequence interval of 1million from1million to 15
million sequences. For each subsample, germline sequences were
predicted using IMPre and aligned to human known germline
genes for assessment. The predicted allele number, high iden-
tity (>90%) rate, and deviated base (≤5) rate were calculated

(Figure 6B). Predicted numbers were fairly stable with a change
in data size for TRB and IGHJ. Certain fluctuations were observed
for IGHV, and the number tended to decrease with increase in
data size. Similarly, the high identity and deviated base rate for
TRB and IGHJ presented an almost flat line for most samples
except for one TRBV sample (which produced lower values for
both measures). IGHV exhibited a slight fluctuation for both
measures, but they tended to have slightly high rates with increas-
ing data size. In summary, the predicted accuracy was relatively
stable for various subsamplings and demonstrated that IMPre is
robust and reliable. Furthermore, accuracies between 1 million
and 15 million sequences were similar, so 1 million sequences
were sufficient for this analysis. The data size for IGH could be
larger for greater accuracy.
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Evaluation of TRB Samples from Monkeys
Immune Germline Prediction performed well using human sam-
ples, so the next step was to test its performance with non-human
species. TCR-β germline alleles are incomplete, but the germline
genes for rhesus monkeys are relatively complete in the IMGT
database, thereby providing positive controls for our evaluation.
Two rhesus monkeys (Table S1 in Supplementary Material) were
sequenced for TCR-β using a 5′ RACE approach, and these data
were used to predict TRB germline genes. IMPre parameters were
the same as for human samples, and the predicted sequences were
aligned to the known germline genes for rhesus monkeys (see text
footnote 1). Assessment details are provided in Figure 7, Figure
S3 in Supplementary Material, and Table 1. Accuracy was 94.6%
for V genes and 100% for J genes, values which were similar to
the human results. Most V/J genes were predicted for at least
one allele. All J genes and, on average, 39 of 59 V genes, were
observed per sample. The inferred V sequences exhibited, on
average, 99% identity, 1.3 deviated bases, and 1.7 mismatches
per sample, whereas the J sequences exhibited 99.1% identity,

1.0% deviated bases, and 0.5% mismatches per sample (Table 1).
We also observed two V pseudogenes for each sample; only two
predicted identities for sequences were <90% for each sample;
four deviated bases of sequences (absolute value) were >5 bp
(Figure 7B). However, compared with human samples, slightly
moremismatches were observed (Figure 7B), which was probably
due to incomplete alleles in the database. These data showed
that IMPre and the parameters it employs can infer high-quality
germline sequences for non-human samples precisely.

Evaluation Using Long-Sequence
Human Samples
The analyses carried out above were based on prevalent short-
sequence data (Illumina Hiseq). To ascertain if all IMPre param-
eters were suitable for long sequences (the entire V region was
sequenced using MiSeq), a human IGH sample (Table S1 in
Supplementary Material) with primers designed at FR1 and C
regions were used to test IMPre. The parameters applied were the
same as thosementioned above except for the changed seed length

FIGURE 7 | Detailed evaluation of predicted sequences for TRB samples from rhesus monkeys. Predicted sequences were aligned to known germline
genes for rhesus monkeys for the nearest alleles and to calculate the mismatch number, deviated bases, and identity. (A) 05D328 sample. A “+” in the nearest
alleles indicates that the sequence exhibits multiple nearest genes. A “+/−” in the deviated bases indicates that it exhibits extra nucleotides/missed nucleotides at
the terminus. F, functional; P, pseudogene; ORF, open reading frame. (B) Statistics of the predicted sequences for two TRB samples. The left panel is the predicted
V/J gene and allele number, including functional gene (F) and pseudogene (P). The identity, deviated base, and mismatch number for predicted sequences are
calculated and displayed. V and J sequences are combined together.
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FIGURE 8 | Detailed evaluation of predicted long sequences for an IGH sample (H88-LS). Predicted sequences were aligned to known human IGH germline
alleles, and accuracy evaluated. (A) Predicted V/J gene and allele number. (B) Identity distribution for predicted V/J sequences. (C) Distribution of deviated bases for
predicted V/J sequences. (D) Distribution of mismatch number for predicted V/J sequences. (E) Length distribution of predicted V sequence. The V primer is
trimmed for these predicted V sequences. (F) The accuracy of inferred germline sequences for simulated datasets. e0.5%: 5% of sequencing error rate; m1%: 1% of
mutation (occur at random) rate. Each dataset includes 105 sequences. (G) The accuracy of inferred germline sequences for simulated datasets (containing hotspot).
hs5%: 5% of hotspot rate, that means 5% of rearranged sequences derived from the same germline allele occur a same specific mutation. Each dataset includes
105 sequences. (H) Comparison of inferred germline sequences from H88-LS sample and spiked-in sample. Venn diagram shows the number of inferred germline
sequences.

(200 bp). Assessment results showed that IMPre performed well
using a long sequence (Table 1; Figure 8). The assessment detail
for each sequence is displayed in Figure S4 in Supplementary
Material. We predicted 27 V genes and most V3 genes were lost
(Figure S4 in Supplementary Material) due to V3 accounting for
only 3.7%of the raw sample sequences; all 6 J geneswere identified
(Figure 8A). Except for two sequences containing a mismatch,
predicted V sequences were completely consistent with known
germline gene/alleles in the IMGT database (Figure 8D), and
the identities were 100% (Figure 8B); all predicted J germline
sequences were consistent with known germline gene/alleles
(Figures 8B,D). All deviated bases of predicted V/J sequences
(absolute values) were between −2 and 3 bp (Figure 8C). All
predicted V sequences were >224 bp after trimming of the V
primer (Figure 8E). Overall, this surprising accuracy showed that
IMPre is suitable for long-sequence data. It was much better than
the results obtained from short sequences, suggesting that long
sequences are favorable for improved accuracy of prediction.

Somatic Hypermutation Analysis and
Novel Gene/Allele Effect
To evaluate the different SHM levels effects on IMPre, we gen-
erated 12 datasets by computer with 0.05% sequencing error rate
and different mutation rates, and 6 of datasets included different

hotspot levels. Surprisingly, the accuracy is not declined along
with the mutation (occur at random) rate increased (Figure 8F),
which proves the good stability and performance of IMPre. Fur-
thermore, for the dataset that 5% of simulated sequences of each
germline allele contain a specific hotspot mutation, 90.91% of the
germline sequences are inferred completely correct (Figure 8G).
However, 65% of them can be identified when the hotspot
rate reaches to 30% (Figure 8G). The decreasingly accuracy is
expectable because it is difficult to discriminate between themuta-
tion and real novel allele when 30% of sequences appear a same
mutation.

In our method, theoretically, we assemble the potential
germline sequence using the reads in an independent cluster,
where most of reads derive from the same V/J segments, so the
presence of one segment do not influence the processing of other
V/J segments inference. To test this speculation, the rearranged
sequences were simulated (with 0.5% sequencing error rate and
1% mutation rate) from two novel V genes and two novel V
alleles and then were spiked in the raw sequencing data of H-88
sample. As a result, the spiked-in 4 novel genes or alleles were
inferred successfully by IMPre, and 34 (97.14%) germline alleles
were repeated from the spiked-in data; however, 1 gene inferred
fromH-88 sample was not detected anymore in the spiked-in data
(Figure 8H). The result demonstrates that the presence of one
segment has little effect on other segments’ inference.
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DISCUSSION

In the present study, we introduced a novel tool, IMPre, based
on rearranged repertoire data to predict novel genes and alle-
les. This method involves data processing, clustering, assembly,
and optimization (Figure 1). We developed a clustering algo-
rithm, Seed_Clust, to cluster sequences using the same seed k-
mer. Then, a multiway tree was put in place to store nucleotides
from a cluster, and a one-nucleotide extension strategy used
for sequence assembly beginning with the seed. Ur and Ar
values were applied further to determine where the extension
should stop, which could be used to discriminate between a
real gene segment and a FP sequence (Figure 4A). The three-
step optimization process was designed to filter out FPs, merge
redundant sequences, and remove SHM and PCR/sequencing
errors (Figures 4B,C). We first trained this method using human
samples and then assessed accuracy using additional samples
(Figure 5; Table 1).

This method is based on certain probabilities of occurrence,
including assembly and optimization parameters, so its stability
had to be validated. We tested stability using three approaches.
First, we selected data randomly from human samples at an inter-
val of 1 million sequences with sizes from 1 million to 15 million
sequences to evaluate the accuracy of the predicted sequences.
Second, two non-human samples (TRB of rhesus monkeys) were
used to test this method under the same key parameters. Third,
three human IGH samples with the entire V region were used to
ascertain if long-sequence datawere suitable for thismethod using
the same key parameters. The accuracy of all three tests was stable
and similar to the results from the original human samples. Most
parameters were derived from the characteristics of the V(D)J
combinatorial mechanism, and we used human samples to train
these parameters. Thus, if the V(D)J combinatorial mechanism of
other species was similar to those of humans, IMPre could predict
germline genes and alleles precisely. However, IMPre could miss
a gene if its frequency in a sample was very low. To improve
accuracy and infer all genes, more individuals are required. Also,
the predicted sequence observed in multiple individuals is more
credible and regarded to be the authentic germline gene or
allele.

Somatic hypermutation is one of the obstacles for inferring
BCR germline sequence. We utilized some strategies to process
this problem and proved it good (Figure 8). It was reported
that the SHM creates at random and at low rate (7, 16, 17).
Therefore, most of SHMs can be filtered in the assembly step,
because the two parameters Ar and Ur for extension used in
assembly step filter the low-frequency sequence in the cluster
group. We simulated six datasets with different SHM levels and
found our method can eliminate the SHM effect (Figure 8F).
However, some cells experiencing continuous antigen exposure
(such as HIV) or lymphocytes proliferating (such as leukemia)
result in high rate of SHM (hotspot). We also simulated six
datasets with different hotspot rates and found the accuracy
declined when the hotspot rate more than 10%. In this case,
we recommend using multiple individuals to infer the germline
genes/alleles and select the inferred sequence appeared in different
individuals.

For some species, the rearranged repertoire cannot be amplified
using multiplex PCR if the V/J germline genes are not known.
However, the repertoire can be amplified using the 5′ RACE
method for almost all species because the C region is conservative
and it is easier to design the primer in this region. The arranged
repertoire data generated by 5′ RACE provide an opportunity to
infer the germline gene using IMPre. Unlike conventional PCR-
based cloning strategies, we do not: (i) need to consider if the
species is homologous with humans; (ii) use the known germline
genes in a publically available database; or (iii) need the genome
sequence. Hence, this is a simpler and more direct method to
find germline genes. Unlike a method that infers the germline
gene from a species genome, we predicted genes more accurately
because exact and correct assembly for the highly homologous and
polymorphic region is difficult.

In the near future, there will be a rapid accumulation of high-
throughput sequence data for TCRandBCR repertoires, including
various large-scale disease studies and application projects. These
data can be used to infer novel alleles for humans and other species
using IMPre.Many novel V/J alleles could be identified from these
data. The rearranged repertoire data generated by multiplex PCR
are also available to infer novel alleles because the latter will be
included among them.

For future novel studies on prediction of germline genes, D
genes can also be added using deep sequencing of repertoire data
using the same strategy. Distributions of the length of 5′ and 3′

D deletions are similar to those in V genes (14). After the V and
J germline genes have been identified for a rearranged sequence,
the subsequence between V and J segments can be extracted
and used to infer D germline segments. The IMPre tool that we
developed provides a comprehensive approach for identification
of novel BCR/TCR genes and alleles in certain species with greatly
improved speed, cost, and accuracy.
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