
Page 1 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1361 | https://dx.doi.org/10.21037/atm-22-6170

Introduction

Melanoma, a fatal malignancy that originates from 
melanocytes, accounts for about 80% of skin cancer-related 
deaths, although it comprises only 5% of skin cancers. 
Localized melanoma is mainly treated through surgery, 

which is not effective in metastatic disease (1). Although 
chemotherapy improves melanoma prognosis, the median 
survival time of metastatic melanoma is no more than  
10 months, and the surviving rate is merely 27% (2). 
Previously, important immune checkpoint inhibitors 
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(ICIs) acting on programmed cell death-ligand 1 (PD-
L1), programmed cell death-1 (PD-1), and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4), were 
reported to be effective treatments for melanoma treatment 
(3-5). However, a significant proportion of patients still do 
not benefit from these treatments or develop secondary 
resistance to the drugs (6). In the past 30 years, the efficacy 
for metastatic melanoma treatments has remained low 
despite extensive research.

Unlike prophylact ic vaccines, tumor vaccines are 
therapeut ic and are designed to break the immune 
system’s tolerance to cancer antigens. Tumor vaccines 
provoke immune responses to specific tumor-associated 
antigens by activating CD8+ and CD4+ T cells (7,8). 
Therefore, it is crucial to find candidate antigens that may 
enhance the efficacy of melanoma vaccines. The current 
research team has previously sought to develop melanoma 
vaccines (9,10). Our previous findings, as well as those 
of other groups, have indicated that tumor vaccines 
can inhibit and kill tumor cells by activating specific 
cytotoxic T lymphocyte (CTL) effects and by inducing 
the production of specific antibodies in tumor-bearing 
hosts. However, due to the diminished immunogenicity 
in tumor cells and the complexity of cancer immune 
escape, there is a wide gap between actual tumor vaccine 
benefits and expected outcomes. Researchers have taken 
keen interest in identifying highly efficient, specific, and 
strongly immunogenic antigens that may enhance the 
efficiency of melanoma vaccines.

Normally, secretory epithelial cells express mucin 1  
(MUC1) on the surface membrane. Its dif ferent ial 
expression in normal versus cancer cel ls makes it 

a  prom is i ng a nt igen for  c a ncer  i m mu not herapy 
(11,12). O ver 80% of human cancers a re MUC1-
posit ive (11,12).  The current research g roup has 
con f i r med  t h at  t he  M UC1 ex pre s sed  i n  mou se 
colon tumor cells has a dominant antigenic epitope 
t h a t  e l i c i t s  M U C1  a n t i b o d y  p r o d u c t i o n  (13) .  
MUC1’s immunogenicity is associated with the epitopes 
of B cell receptor and T cell receptor, and it has potential 
as a vaccine antigen candidate (14). Modulation of MUC1 
expression affects the immunogenicity of anticancer 
vaccines and their antitumor effects. In normal cells, 
large amounts of MUC1 sugar chains prevent the 
presentat ion of ant igenic pept ides and hinder the 
proximity of CTLs, thereby avoiding the k ill ing of 
autologous cells by CTLs (14-16). However, MUC1 
has emerged as a novel glycopeptide epitope due to its 
configuration change, loss of steric hindrance in tumor 
cells, and easy exposure to immune cells. Additionally, 
epithelial-mesenchymal transition (EMT) and cancer 
metastasis can be promoted by MUC1 overexpression. 
The co-transportation of the C-terminal transmembrane 
subunit of MUC1 into the nucleus along with β-catenin 
may suppress E-cadherin as well as upregulate Snail, 
Slug, vimentin, and Twist. It was also found that the 
PD-1 and PD-L1 expressed highly in MUC1-positive 
colon cancer cells, which suggested that there was the 
positive correlation between the expressions MUC1 and  
PD-1. It is very promising to apply immunotherapy for 
targeting the PD-L1/PD-1 signaling pathway in MUC1-
positive cancer (14-16). Our previous report showed that 
the immunogenicity of colon cancer vaccines significantly 
correlates with MUC1 expression level (13).

Here, MUC1 was silenced in murine melanoma B16F10 
cells using short hairpin RNA (shRNA). shMUC1-
B16F10 and B16F10 cell vaccines were then prepared 
using the repeat freeze-thawing approach and their anti-
tumor efficacy examined. The data from the study show 
that MUC1 is a key target antigen for melanoma, and 
that downregulating MUC1 reduced a clonal formation, 
proliferation, and migration capabilities of B16F10 cells in 
vitro and weakened the immunogenicity and anti-tumor 
effects of the shMUC1-B16F10 vaccine when compared 
with the B16F10 vaccine in vivo in C57BL/6 mice. 
Altogether, these findings imply that MUC1 mediates the 
anti-tumor efficacy of the melanoma B16F10 cell vaccine. 
The data offers valuable support for clinical research on 
melanoma vaccination. We present the following article in 
accordance with the ARRIVE reporting checklist (available 
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at https://atm.amegroups.com/article/view/10.21037/atm-
22-6170/rc).

Methods

Cell culture

Murine melanoma cel ls, B16F10, and human renal 
epithelial cells, HEK 293T were purchased from Shanghai 
Academy of Biological Sciences (Shanghai, China). The 
mouse lymphoma cell line, YAC-1, was obtained from the 
Chinese Academy of Sciences cell bank (Shanghai, China). 
The B16F10 and YAC-1 cell lines were passaged in Roswell 
Park Memorial Institute (RPMI) 1640 complete medium 
enriched with 1% mixture of penicillin-streptomycin and 
10% fetal bovine serum (FBS; Gibco, Waltham, MA, 
USA). The HEK 293T cell line was grown in Dulbecco’s 
modif ied Eagle medium (DMEM) enriched with 1% 
mixture of penicillin-streptomycin and 10% FBS (17). The 
passaging of cells was performed at conditions of 37 ℃, 5% 
CO2, and in a humidified incubator. The morphology of 
cells was observed under an inverted microscope.

Construction of a B16F10 cell line with stable silencing of 
MUC1

A stable MUC1-silenced B16F10 cell l ine (shMUC1 
B16F10) was constructed as described previously (18). 
Briefly, the B16F10 cell line was cultured with 5×104 cells 
per well in 24-well plates, until the cells reached 50–70% 
confluence. Those cells were then transfected by replacing 
the normal culture media with diluted shMUC1 lentiviral 
stock solution. After 72 hours, the B16F10 cells were 
digested with trypsin, and then washed with phosphate-

buffered saline (PBS). After that, they were seeded on  
10 cm-culture dishes (Sigma-Aldrich, St. Louis, MO, 
USA), with 500 cells per dish, followed by continuous 
selection using puromycin (Thermo Scientific, Cleveland, 
OH, USA) for 3 weeks. We selected clones that survived 
with cloning rings. This was followed by expansion and 
subcloning procedures based on the limiting dilution 
method. The eff iciency of MUC1 silencing was then 
determined through western blott ing and real-t ime 
quantitative polymerase chain reaction (RT-qPCR) tests.

Western blot and RT-qPCR analyses

Next, the efficiency of MUC1 silencing was evaluated in 
the stably-infected cells (Lv-shMUC1-B16F10) relative 
to cells transfected with scramble shRNA and wild type 
B16F10 cells. We used RT-qPCR to determine the MUC1 
messenger RNA (mRNA) and different EMT factors, 
N-cadherin, E-cadherin, and vimentin, using Vazyme 
ChamQTM SYBR qPCR master mix (Low ROX Premixed) 
(Code: Q331-02/03; Vazyme, Nanjing, China) as described 
before (19,20). Step One PlusTM real time system (Applied 
Biosystems, Framingham, MA, USA) was used to apply 
RT-qPCR. The cycling condit ions were as follows: 
in stage 1, the initial heat activation was performed at  
95 ℃ for 3 minutes. Then, the denaturation was applied 
at 95 ℃ for 10 seconds. Finally, the combined annealing/
extension process was conducted for 40 cycles, at 60 ℃ for  
30 seconds (18). The ΔΔCt method was appl ied to 
calculate relative gene expression, with glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) as reference gene. 
Primers used are presented in Table 1.

To determine MUC1 protein expression level, 2×106 
Lv-shMUC1-B16F10 cells, scramble cells, and wild type 

Table 1 Primer sequences for RT-qPCR analysis

Gene Forward (5'-3') Reverses (5'-3')

GAPDH CAGCTACTCGCGGCTTTACG GTGATGGGCTTCCCGTTGAT

MUC1 ACGTGAAGTCACAGCTTATACA AGGGCAAGGAAATAGACGATAG

E-cadherin GAGTGCCACCACCAAAGACA GAAAACATTGGTTGAGATAAGCCT

N-cadherin TCTCCTAACCCAGGGCCTTA CACCGCTACTGGAGGAGTTG

Vimentin CTAGCCGCAGCCTCTATTCC AAGCGCACCTTGTCGATGTA

Perforin CCTCCTATGGCACGCACTTTATC TCCACGTTCAGGCAGTCTCCTAC

Granzyme B AGATCTCCTGCTACTGCTGACC GCTGCTGATCCTTGATAGAAAGT

RT-qPCR, real time quantitative polymerase chain reaction; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; MUC1, mucin 1.

https://atm.amegroups.com/article/view/10.21037/atm-22-6170/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6170/rc
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B16F10 cells were separately lysed with an extraction buffer 
for proteins (78501, Thermo Scientific, USA). Western 
blot analysis was conducted as previously described (21,22) 
using MUC1 recombinant rabbit monoclonal antibody 
(1:1,000, ab45167, Abcam, Cambridge, UK), horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit IgG (H + 
L, 1:2,000, ab205718, Abcam), and rabbit anti-GAPDH 
antibody (1:10,000, ab8245, Abcam) (18).

Determination of proliferation and colony formation 
ability of cells

Colony formation and Cell Counting Kit-8 (CCK-8) 
assays were conducted as described previously (13,18). 
Briefly, about 200 B16F10 cells, scramble cells, and Lv-
shMUC1-B16F10 cells were seeded in 6-well plates (NEST 
Biotechnology, Wuxi, China). When the cell colonies had 
formed 14 days later, 0.1% solution of crystal violet (Sigma-
Aldrich) was used to stain them at room temperature for 
30 minutes in the dark. Excess dye solution in the stained 
plates was removed by washing 3 times using PBS. After air 
drying the above plates, the clones were counted, and the 
data were analyzed statistically using GraphPad (GraphPad 
Software, San Diego, CA, USA).

For CCK-8 cell proliferation assays, 2×103 B16F10 
cells, scramble cells, or Lv-shMUC1-B16F10 cells per 
well were added into 96-well plates. Then, 3 wells 
from each group were then incubated for 4 hours with 
10 μL of CCK-8 (Sigma-Aldrich) per well, every day. 
The opt ical density (OD) of each cell solut ion was 
recorded under 450 nm wavelength in the microplate 
reader (Perkin-Elmer, Waltham, MA, USA) followed 
by data analysis on GraphPad. Cell proliferation rate 
(%) = (OD of various days − 0 h OD)/(0 h OD − blank 
control OD) × 100%.

Cell cycle analysis

About 1×106 cells (B16F10, scramble, or Lv-shMUC1-
B16F10) were harvested and rinsed with PBS as described 
previously (23). Cells were added to 500 μL of ice-cold 
buffer, centrifuged, and the supernatant was discarded. 
They were then rinsed in PBS after 30 minutes of fixing 
using cold ethanol at 4 ℃. Next, they were resuspended 
in 500 μL RNase A (100 μg/mL, KeyGEN, Nanjing, 
China) and incubated at 37 ℃. After 30 minutes, 200 μL  
propidium iodide (PI) staining solution (50 μg/mL) was 
used to resuspend and incubate those cells on ice for  

30 minutes in the dark. Finally, the cell cycle distribution 
in each group was analyzed through a f low cytometry 
(FCM) machine [Becton, Dickinson, and Co. (BD), 
Franklin Lakes, NJ, USA].

Migration assay

Transwell migration assay was conducted as described 
previously (13). Briefly, 3×104 cells (B16F10 cells, scramble 
cells, or Lv-shMUC1-B16F10 cells) were added into the 
upper transwell chambers (Corning, Inc., New York, NY, 
USA) and cultured for 36 hours. Then, the cells in those 
chambers were dyed with 0.1% solution of crystal violet 
(Sigma-Aldrich) after fixation. They were then imaged 
(magnification: 200×) on 6 random fields of view per 
chamber and data analyzed on GraphPad 8 software.

Vaccine preparation

Vaccine preparat ion was conducted as prev iously 
reported (13,18). Briefly, whole tumor cell lysate vaccines 
were prepared using the repeat freeze-thaw method by  
30 minutes of freezing 5×106 cells (B16F10 cells, scramble 
cells, or Lv-shMUC1-B16F10 cells) at −80 ℃ followed by 
30 minutes of thawing at room temperature. This process 
was repeated thrice.

Experimental protocol in vivo

To estimate the anti-tumor efficiency of the Lv-shMUC1-
B16F10 vaccine in vivo, 60 C57BL/6 mice (female, age: 
5–6 weeks, weight: 16–18 g) purchased from the Animal 
Center of Yang Zhou University of China were housed 
under specif ic-pathogen-free (SPF) condit ions and 
routinely raised. Male C57BL/6 mice are easy to fight with 
each other in the same cages, resulting in injury or death. 
Given the long duration of the experiment, to avoid the 
additional interference caused by the above conditions on 
the experimental results, we chose relatively mild female 
C57BL/6 mice. Experiments were performed under a 
project license (No. 20200405010) granted by the animal 
research and ethics board of Southeast University, in 
compliance with Chinese Ethics Committee guidelines for 
the care and use of animals. A protocol was prepared before 
the study without registration. Mice were divided randomly 
into the PBS, B16F10, scramble, and Lv-shMUC1-
B16F10 vaccination groups (n=5 in each group). All the  
C57BL /6 m ice  were  ad m i n i s tered subc ut a neous 
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immunization 3 times (an interval of 10 days between the 
vaccinations), with various indicated vaccines (density: 
5×105) on the right side of abdomen. The mice were 
continued to be fed for 10 days following the final time of 
vaccination. Then, 2×106 B16F10 cells were administered 
in the back subcutaneously. The tumor growth of the 
mice in various groups was examined and recorded 
dynamically once every 5 days. The calculation formula 
(length multiplied by the square of the width divided by 
2) was used to determine tumor volumes (mm3). This was 
repeated thrice and analyzed on GraphPad 8.0 software.

Cytotoxicity assays

Cytotoxicity assays were conducted as described previously 
(13,18). In summary, splenocytes were collected from 
vaccinated mice 18 days after being challenged with 
B16F10 and depleted of erythrocytes by the lysis buffer 
(Beyotime Biotechnology, Shanghai, China). The collected 
splenocytes were resuspended with RPMI 1640 medium 
with 15% FBS for further use. YAC-1 and B16F10 cells 
were collected, marked with the 5,6-carboxyfluorescein 
diacetate succinimidyl ester (CFSE; 20 μg/mL) (Invitrogen, 
Carlsbad, CA, USA) at 37 ℃ for 30 minutes and then 
washed with cold PBS. To estimate the cytotoxicity of 
natural killer (NK) cells, NK effector cells were cultured 
in Corning U-bottom 96 well plates (3×106 cells per well), 
then were incubated with YAC-1 target cells (1×105 cells 
per well) for 6 hours at 37 °C in a cell culture incubator. 
For the antibody-dependent cell-mediated cytotoxicity 
(ADCC) assay, a total of 1×105 B16F10 target cells were 
incubated with 3×106 effector splenocytes in a medium 
containing serum from vaccinated mice at a 30:1 ratio at 
37 ℃ for 6 hours. After incubation, the different effector-
target cells were harvested and rinsed with pre-chilled 
PBS 3 times. Finally, all the cell samples were labeled with 
7-AAD (Beyotime Biotechnology) at room temperature 
for 10 minutes and detected using FCM (BD), followed by 
analysis on FlowJo X (BD).

Enzyme-linked immunosorbent assays (ELISAs)

About 18 days af ter the cells were challenged with 
B16F10, immunized sera were collected from mice in 
vaccine groups. The corresponding ELISA kits and HRP-
labeled antibodies were then prepared to determine the 
levels of tumor growth factor-β1 (TGF-β1), interferon-γ 
(IFN-γ), and the titers of anti-MUC1 immunoglobulin 

G (IgG) antibody in the sera, according to manufacturer 
instructions (eBioscience, Vienna, Austria). Briefly, sera 
samples were diluted at a ratio of 1:5, and each cytokine 
was captured by the specif ic pr imar y monoclonal 
ant ibody and detected by biot in-labeled secondary 
antibody. Plates were read at 450 nm using a microplate 
reader (Perk in-Elmer). Samples and standards were 
run in triplicate, and the sensitivity of the assays was  
0.1 U/mL for IFN-γ and TGF-β1. Sera samples were diluted 
at 1:10 for detecting anti-MUC1 IgG antibody (13,18).

RT-qPCR analysis

The tumor tissues from the mice in various vaccine 
groups were shredded, ground, and fully lysed on ice for 
the extraction of total RNA using the corresponding 
extraction kit (Vazyme Biotech, China, RM201-01). 
Then, RT-qPCR was conducted as previously described 
to determine the mRNA expression levels of E-cadherin, 
vimentin, N-cadherin, perforin, as well as granzyme B (13,18).

Statistical analysis

All the data were pooled and analyzed with GraphPad 
Prism 8 software. The data were from at least three 
independent experiments. Group dif ferences were 
compared with the Student’s t-test and expressed as mean 
± standard deviation (SD). A P value less than 0.05 was 
chosen as the threshold for statistical significance.

Results

MUC1 plays a pivotal role in B16F10 biological 
characteristics

To investigate if MUC1 affects biological characteristics 
of B16F10 cells, the stable shMUC1 B16F10 cell line 
was developed. Significant downregulation of MUC1 
expression in LV-shMUC1-B16F10 cells was observed, as 
shown in Figure 1. MUC1 knockdown markedly reduced 
the proliferation of B16F10 cells. The number of clones 
and the rate of cell proliferation in the Lv-shMUC1-
B16F10 group were lower than in the B16F10 and scramble 
groups (Figure 2). The percentage of cells arrested in G0/
G1 stage in the Lv-shMUC1-B16F10 group was elevated 
when compared with the B16F10 and scramble groups 
(Figure 3). The ratio of cells arrested in S stage was even 
less in the Lv-shMUC1-B16F10 group than in either 
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Figure 2 The effects of MUC1 knockdown on cell proliferation. (A) The number of clones in B16F10 cells, scramble cells and Lv-shMUC1-
B16F10 cells stained with 0.1% crystal violet (magnification: 100×). (B) Various cell clone formation rate was measured in plate with crystal 
violet stain assay. (C) The proliferation rate was determined in various cells by CCK-8 assay. *P<0.05; **P<0.01; ***P<0.001. MUC1, mucin 
1; shMUC1, short hairpin MUC1; CCK-8, Cell Counting Kit-8.
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B16F10 group or scramble group (Figure 3). These findings 
indicate that MUC1 downregulation induced the cycle 
arrest of B16F10 cells in G0/G1 phase. To explore whether 
MUC1 impacted the migration of B16F10 cells, transwell 
assay was conducted. This analysis revealed that fewer 
cells migrated in the Lv-shMUC1-B16F10 group than 
in either the B16F10 group or scramble group (Figure 4), 
indicating that MUC1 knockdown inhibits the migration 
of B16F10 cells. Moreover, it was found that the mRNA 
level of E-cadherin was elevated (Figure 5A), whereas that of 
vimentin and N-cadherin was markedly decreased in the Lv-
shMUC1-B16F10 group when compared with the B16F10 
and scramble groups (Figure 5B,5C). In general, the above 
results show that MUC1 plays an extremely important 
biological role in B16F10 cells.

MUC1 is needed for the B16F10 vaccine to exhibit tumor-
inhibitory effects

To assess if MUC1 knockdown affects the effectiveness 
of the B16F10 vaccine, all the mice were subcutaneously 
immunized 3 t imes in the right f lank using various 
vaccines (5×105 cell lysates) at 10-day intervals between 
the vaccinations. At an interval of 10 days from the last 
vaccination, about 2×106 B16F10 cells were administered 
subcutaneously in the C57BL/6 mice (Figure 6A). The 
experiment was repeated independently 3 times with  
5 mice in each group. Notably, the B16F10 cell vaccine 
significantly inhibited tumor growth when compared with 
PBS. However, tumor mass in mice administrated with 
the Lv-shMUC1-B16F10 vaccine were much larger when 

Figure 3 The effects of MUC1 knockdown on cell cycles. (A) The cell cycle distribution in B16F10 cells, scramble cells and Lv-shMUC1-
B16F10 cells was analyzed by FCM. (B) The proportion of cells in various cell cycle stages. ***P<0.001. MUC1, mucin 1; shMUC1, short 
hairpin MUC 1; FCM, flow cytometry.
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compared to mice inoculated with the B16F10 vaccine 
or scramble vaccine (Figure 6B,6C ). Of note, MUC1 
knockdown blunted the efficacy of the B16F10 vaccine 
in suppressing tumor growth (Figure 6B,6C), suggesting 
that MUC1 may mediate the immunogenicity of B16F10 
vaccine. Moreover, the B16F10 vaccine markedly delayed 
tumorigenesis in vaccinated mice when compared with 

PBS; the Lv-shMUC1-B16F10 vaccine exhibited a worse 
effect of delaying tumorigenesis than the B16F10 and 
scramble vaccines (Figure 6D). The prophylactic efficacy 
of the Lv-shMUC1-B16F10 vaccine was poorer than those 
of B16F10 and scramble vaccines (Figure 6D). Importantly, 
MUC1 silencing reduced the protection of the B16F10 
vaccine against challenge with B16F10 cells (Figure 6B-6D). 
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Figure 4 The influence of MUC1 knockdown on cell migration. (A) Cell migration in B16F10 cells, scramble cells, and Lv-shMUC1-
B16F10 cells was analyzed by transwell migration assay. Migrated cells were stained with 0.1% crystal violet (magnification: 200×). (B) Cell 
migration number in various cells. ***P<0.001. MUC1, mucin 1; shMUC1, short hairpin MUC1.

Figure 5 Detection of cell mRNA levels of invasion related proteins. (A) The mRNA level of E-cadherin in B16F10 cells, scramble cells 
and Lv-shMUC1-B16F10 cells. (B) The mRNA level of N-cadherin in various cells. (C) The mRNA level of vimentin in various cells. All 
the mRNA expression levels in various cells were analyzed by RT-qPCR. **P<0.01; ***P<0.001. mRNA, messenger RNA; MUC1, mucin 1; 
shMUC1, short hairpin MUC1; RT-qPCR, real time quantitative polymerase chain reaction.
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Figure 6 The influence of MUC1 knockdown on tumor growth in vaccinated mice. (A) The immunization strategy used in the study in vivo. 
(B) Tumor mass at 18 days after B16F10 challenge in B16F10 tumor-bearing mice that were first vaccinated 3 times at 10-day intervals with 
various inactivated vaccines (5×105), then challenged using B16F10 cells (2×106) 10 days after the final vaccination. (C) The tumor volume 
was dynamically recorded in various vaccine groups. (D) Tumor-free time was monitored throughout the experiment. *P<0.05; ***P<0.001. 
PBS, phosphate-buffered saline; MUC1, mucin 1; shMUC1, short hairpin MUC1.

Since EMT is a key player in melanoma pathogenesis, the 
mRNA levels got next evaluated of different EMT factors, 
vimentin, N-cadherin, and E-cadherin in tumor tissues from 
multiple groups using RT-qPCR. This analysis showed 
that E-cadherin mRNA level was remarkably decreased 
in the Lv-shMUC1-B16F10 vaccine group than in either 
B16F10 group or scramble vaccine group, but higher than 
in the PBS group (Figure 7A). The mRNA levels of both 
vimentin and N-cadherin were significantly enhanced in the 
Lv-shMUC1-B16F10 vaccine group than in the B16F10 and 
scramble vaccine groups, but decreased than in the PBS 
group (Figure 7B,7C). Altogether, these results indicate 
that MUC1 knockdown blunted the anti-tumor efficiency 
of the B16F10 vaccine.

Down-regulation of MUC1 attenuated the conferred 
effect of the B16F10 vaccine on the cytolytic activity of NK 
cells

To explore whether down-regulation of MUC1 affected 
the cytotoxic immunocyte responses following B16F10 
vaccine inoculation, the cytotoxicity of NK cells was first 
investigated in the vaccinated C57BL/6 mice. The result 
indicated that the cytotoxic responses of NK cells were 
increased in the Lv-shMUC1-B16F10 vaccine group when 
compared to the PBS group, but significantly reduced 
compared with the B16F10 and scramble vaccine groups 
(Figure 8A,8B). Next, analysis of ADCC activity revealed 
that it was markedly impaired in the Lv-shMUC1-B16F10 

Days after B16F10 cell challenge Days after B16F10 cell challenge

Tu
m

or
 v

ol
um

e,
 m

m
3

Tu
m

or
-f

re
e 

m
ic

e

2000

1500 

1000

500 

0

1.0

0.5 

0.0

B16F10
B16F10

B16F10

PBS PBS

PBS

Scramble
Scramble

Scramble

Lv-shMUC1-B16F10
Lv-shMUC1-B16F10

Lv-shMUC1-B16F10

0 5 10 15 20 0 5 10 15 20

*** **** *

Priming Boosting 1 Boosting 2 Challenge

10 days 10 days 10 days

A B

C D



Shi et al. MCU1 influences the effects of melanoma vaccinePage 10 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(24):1361 | https://dx.doi.org/10.21037/atm-22-6170

***
**

** **

** *** *

**

R
el

at
iv

e 
E

-c
ad

he
rin

 m
R

N
A

 e
xp

re
ss

io
n

R
el

at
iv

e 
N

-c
ad

he
rin

 m
R

N
A

 e
xp

re
ss

io
n

R
el

at
iv

e 
vi

m
en

tin
 m

R
N

A
 e

xp
re

ss
io

n

1.5 

1.0 

0.5 

0.0

3

2

1

0

3

2

1

0

B16
F1

0

B16
F1

0

B16
F1

0
PBS

PBS
PBS

Scr
am

ble

Scr
am

ble

Scr
am

ble

Lv
-s

hM
UC1-

B16
F1

0

Lv
-s

hM
UC1-

B16
F1

0

Lv
-s

hM
UC1-

B16
F1

0

A B C

Figure 7 Detection of mRNA levels of invasion related proteins in tumor tissues. (A) Tumor mRNA level of E-cadherin in B16F10 group, scramble 
group, Lv-shMUC1-B16F10 group and PBS group. (B) Tumor mRNA level of N-cadherin in different groups. (C) Tumor mRNA level of vimentin. 
All the mRNA expression levels in various tumor tissues were quantified using RT-qPCR. *P<0.05; **P<0.01; ***P<0.001. mRNA, messenger RNA; 
MUC1, mucin 1; shMUC1, short hairpin MUC1; PBS, phosphate-buffered saline; RT-qPCR, real time quantitative polymerase chain reaction.
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vaccine group compared with the B16F10 and scramble 
vaccine groups but was higher than in the PBS group  
(Figure 8C,8D). Knocking-down MUC1 signif icantly 
decreased the effect of the B16F10 vaccine on enhancing 
ADCC activity. Of all vaccine groups, B16F10 cell vaccine 
triggered the highest cytolytic capacity in immune cells.

MUC1 knockdown impaired the immunoreaction induced 
by B16F10 vaccine in vaccinated mice

Next, analysis of the effect of knocking down MUC1 
on the release of TGF-β1 and IFN-γ, as well as the 
production of anti-MUC1 IgG antibody in the sera of 
vaccinated mice revealed lower serum concentration 
of IFN-γ and ant i-MUC1 IgG ant ibody in the Lv-

shMUC1-B16F10 vaccine group than those of the B16F10 
and scramble vaccine groups (Figure 9A,9B). Moreover, 
the Lv-shMUC1-B16F10 vaccine notably enhanced the 
TGF-β1 level in serum when compared with the B16F10 
and scramble vaccines (Figure 9C ). Additionally, the 
mRNA expression of both perforin and granzyme B in 
tumor tissues was decreased in the Lv-shMUC1-B16F10 
vaccine group in contrast to the B16F10 and scramble 
vaccine groups (Figure 9D,9E ). These results indicate 
that knocking down MUC1 weakened the activity of 
the B16F10 vaccine in inducing the production of anti-
MUC1 antibody and the expression of granzyme B, 
perforin, and IFN-γ, but enhanced the TGF-β1 secretion 
in serum from the mice that were immunized using the 
Lv-shMUC1-B16F10 vaccine.

Figure 9 Detection of the inflammatory factors and antibody production in vaccinated mice. (A-C) Serum IFN-γ, anti-MUC1 antibody, and 
TGF-β1 levels were evaluated using ELISA in different groups. (D,E) RT-qPCR analysis of the levels of granzyme B and perforin in tumor 
tissues from vaccinated mice. *P<0.05; **P<0.01; ***P<0.001. IFN-γ, interferon-γ; MUC1, mucin 1; shMUC1, short hairpin MUC1; TGF-β, 
tumor growth factor-β; OD, optical density; mRNA, messenger RNA; ELISA, enzyme linked immunosorbent assay; RT-qPCR, real time 
quantitative polymerase chain reaction.
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Discussion

Melanoma is a highly aggressive and metastatic cancer 
that affects various tissues, including the skin, eyes, nasal 
cavity, anal tube, rectum, and lymph nodes (14,24). Current 
treatments for metastatic melanoma are limited due to 
adverse reactions, drug resistance, and disease recurrence (25).  
A d v a nc e s  i n  mole c u l a r  b io log y  h ave  promot ed 
establ ishment of immunotherapies for metastat ic 
melanoma treatment, including potential anti-tumor 
vaccines (26-28). MUC1 was ranked the second among 75 
antigen candidates of cancer vaccine in a cancer vaccine 
program of National Cancer Institute, highlighting MUC1 
as a promising anticancer target (29). In recent years, many 

investigations have been carried out for the therapeutic 
application of MUC1 in various cancers, such as prostate, 
colon, and pancreatic malignant tumors (11-14). However, 
its effects in melanoma are unclear. In this study, the 
inf luence of MUC1 downregulation on B16F10 cells in 
vitro, tumor vaccine effects in vivo, as well as the potential 
underlying mechanisms were explored. A lentivirus vector-
based anti-MUC1 shRNA (shMUC1) was used to transfect 
HEK 293T cells and the stable knockdown cells (Lv-
shMUC1-B16F10) were selected.

MUC1, a high molecular weight glycoprotein secreted by 
epithelial cells, is a major component of the mucosal surface 
that lubricates and protects the mucosal epithelium (30).  

MUC1

MUC1 shRNA
B16F10 cells shMUC1-B16F10 cells

Tumor challenging

Vaccination Tumor 

immunity
B16F10 cells

B16F10 vaccine
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perforin, granzyme B

Figure 10 Illustration of MUC1 as a potential candidate for melanoma vaccine development. shMUC1 reduced tumor-inhibitory effects, 
NK cytotoxicity, decreased production of IFN-γ, anti-MUC1 antibodies, perforin, granzyme B, and elevated TGF-β level induced by B16F10 
vaccine. MUC1, mucin 1; shMUC1, short hairpin MUC1; NK, natural killer; ADCC, antibody dependent cell-mediated cytotoxicity; IFN-γ, 
interferon-γ; TGF-β1, tumor growth factor-β1.
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MUC1 is over-expressed in various cancers, including lung, 
pancreatic, prostate, ovarian, and colorectal cancer, where 
it influences key processes like proliferation, apoptosis, 
invasion, migration, metastasis, and angiogenesis (31). As 
demonstrated in the previous study, MUC1-C subunit 
promotes prostate cancer progression and the self-renewal 
ability of cancer stem cells (32). Moreover, blocking 
MUC1 is reported to impair proliferation, vascularization, 
invasion, and metastatic potential in spontaneous mouse 
breast cancer (33). MUC1 silencing in glioblastoma cells 
induced telomerase suppression and the G1 phase arrest 
by modulating cell cycle genes and TGF-β signaling (34). 
MUC1 is also reported to promote tumor infiltration 
and metastasis by enhancing the expression of vimentin, 
N-cadherin, and nuclear β-catenin, while suppressing 
E- cadherin expression in cholangiocarcinoma (35). 
MUC1-C has been shown to induce EMT by activating 
zinc finger E-Box binding homeobox 1 (ZEB1) and nuclear 
factor-κB (NF-κB) p65 signaling (36). Consistent with 
previous studies, the proliferation and clone-forming 
potential of B16F10 cells were reduced following MUC1 
downregulation. Furthermore, the ratio of cells in the 
G0/G1 phase was elevated upon MUC1 downregulation, 
indicating cell cycle arrest and reduced cell division. 
Moreover, the migration ability of Lv-shMUC1-B16F10 
cells was influenced by increased vimentin and N-cadherin, 
and decreased E-cadherin levels. In summary, MUC1 
impaired cell cycle progression, proliferation, migration, 
and the expression of EMT factors in B16F10 cells in 
vitro, indicating that it may have key roles in B16F10 cells 
(Figure 10).

The elevated, non-polar distribution of MUC1 on 
the tumor cells, as well as its aberrant glycosylation 
make it a major antigen candidate for the development 
of tumor vaccines (37). Lots of MUC1-based tumor 
vaccines have been in research and development, including 
DNA vaccines, protein vaccines, and glycopept ide 
vaccines. Furthermore, some of them are under clinical 
invest igat ion. For example, dendrit ic cel l vaccines 
containing the MUC1 glycopeptide were used to treat 17 
non-metastatic prostate cancer patients, whereas autologous 
dendritic cells with the MUC1 glycopeptide have been 
applied in intradermal and intralymphnode dosing (38). 
The MUC1-based dendritic cell vaccines exhibited safety in 
patients and elicited significant CD8+ T cell and CD4+ T cell 
immune responses (39). It has previously been shown that 
downregulating MUC1 expression in colon cancer stem 
cells (CCSCs) may damage the immune effects of CCSC 

vaccines. MUC1 is a multifaceted oncoprotein in the 
development of cancers. Protein structure analysis revealed 
that there were 20–120 variable number tandem repeats 
region abundant of T cell receptor and B cell receptor 
recognition region in the extracellular domain of MUC1 
molecule, which may serve as potential vaccine target (18). 
Therefore, we thought MUC1 could increase the activation 
of CD8+ tumor infiltrated lymphocytes and killing effect. 
To explore if MUC1 is a key antigen in melanoma cells, a 
tumor vaccine was developed by repeated freeze-thawing 
of Lv-shMUC1-B16F10 cells and injected it into C57BL/6 
mice. The result showed that in mice, the Lv-shMUC1-
B16F10 vaccine reduced tumor growth, had a weaker effect 
against B16F10 cell challenge, and poorer antitumor effects 
than those of B16F10 and scramble vaccines. Consistent 
with the previous findings, these results indicated that the 
immunogenicity and immune effects of the Lv-shMUC1-
B16F10 vaccine was attenuated by MUC1 downregulation 
(Figure 10). Mechanistically, the mice vaccinated with the 
Lv-shMUC1-B16F10 vaccine exhibited lessened levels of 
perforin and granzyme B, reduced NK cell cytotoxicity 
against YAC-1 cells, and decreased ADCC activity against 
B16F10 cells when compared with mice inoculated with 
B16F10 or scramble vaccines. Melanoma cells could be 
killed by NK cells through secretion of perforin and 
granzyme B when mice were treated with melanoma 
vaccines. Perforin can damage the outer membrane of 
melanoma cells, allowing granzyme B to be released into 
the cytoplasm of melanoma cells. There, granzyme B 
triggers an enzyme chain reaction leading to cell apoptosis. 
Furthermore, NK cells of the mice immunized with the 
Lv-shMUC1-B16F10 vaccine secreted less IFN-γ and 
more TGF-β (Figure 10). It is known that IFN-γ enhances 
the immune response by regulating the humoral and 
cellular immune functions, and has opposite effects of 
TGF-β on diverse cellular functions that TGF-β regulates 
a variety of key events in the pathogenesis of diseases 
including tissue disorders, fibrosis, and cancer, in especial 
its immunosuppressive role in tumor immunotherapy. 
Overall, these results indicate that MUC1 acts as a key 
antigen candidate for the B16F10 cell vaccine.

Conclusions

A melanoma cell vaccine may exert therapeutic effects 
by inducing immune response in vivo. In mice, the 
MUC1 molecule has high immunogenicity and is a key 
antigen candidate for melanoma vaccine development, 
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which provokes strong immune responses that inhibit 
melanoma growth and enhance survival, whilst the MUC1 
knockdown in B16F10 cell vaccine resulted in reducing 
the NK cytotoxicity, decreasing the levels of IFN-γ, anti-
MUC1 antibody, perforin, granzyme B, and increased 
TGF-β level as well as attenuating the anti-melanoma 
efficacy. These findings highlight MUC1 as an important 
dominant target antigen and offer novel insights into 
melanoma vaccine development. However, further research 
is needed to determine whether upregulating MUC1 
expression in B16F10 cells could improve the tumor-
inhibitory activity of the B16F10 vaccine and to uncover its 
underlying mechanisms. Such studies will offer a reliable 
experimental basis for the B16F10 cell melanoma vaccine.
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