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Abstract

Background: The selenoenzyme thioredoxin reductase 1 has a complex role relating to cell growth. It is induced as a
component of the cellular response to potentially mutagenic oxidants, but also appears to provide growth advantages to
transformed cells by inhibiting apoptosis. In addition, selenocysteine-deficient or alkylated forms of thioredoxin reductase 1
have also demonstrated oxidative, pro-apoptotic activity. Therefore, a greater understanding of the role of thioredoxin
reductase in redox initiated apoptotic processes is warranted.

Methodology: The role of thioredoxin reductase 1 in RKO cells was evaluated by attenuating endogenous thioredoxin
reductase 1 expression with siRNA and then either inducing a selenium-deficient thioredoxin reductase or treatment with
distinct redox challenges including, hydrogen peroxide, an oxidized lipid, 4-hydroxy-2-nonenol, and a nitric oxide donating
prodrug. Thioredoxin redox status, cellular viability, and effector caspase activity were measured.

Conclusions/Significance: In cells with attenuated endogenous thioredoxin reductase 1, a stably integrated selenocysteine-
deficient form of the enzyme was induced but did not alter either the thioredoxin redox status or the cellular growth
kinetics. The oxidized lipid and the nitric oxide donor demonstrated enhanced cytotoxicity when thioredoxin reductase 1
was knocked-down; however, the effect was more pronounced with the nitric oxide prodrug. These results are consistent
with the hypothesis that attenuation of the thioredoxin-system can promote apoptosis in a nitric oxide-dependent manner.
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Introduction

The mammalian thioredoxin system consists of the selenopro-

tein thioredoxin reductase (TR), thioredoxin (Trx), and electron

donor NADPH. The TR-Trx system participates in diverse redox

reactions in cells [1], from supporting DNA synthesis [2] to redox-

dependent cell signaling pathways [3–6]. Trx and TR may

facilitate growth and/or survival of malignant cells as their

expression is elevated in some tumors [7,8]. Thioredoxin reductase

enzymatic activity is not limited to thioredoxin, instead, many

substrates have been identified, including; selenocompounds,

ascorbate, lipoate, and oxidized lipids [9–11]. However, some

oxidized lipids function to inhibit TR1 activity by reacting with the

nucleophilic C-terminus that includes the Sec residue [12–14].

The adjacent selenocysteine (Sec) and cysteine (Cys) residues in

the C-terminus of mammalian TRs are required for reductase

activity when Trx is the substrate; however, Sec-deficient TR1

may have biochemical [15] and biological [16] activities distinct

from Sec-sufficient TR1 that may be relevant in cancer or other

disease. Sec-deficient TR1 has demonstrated pro-apoptotic

activity in studies evaluating the role of TR1 in interferon and

retinoic acid-induced apoptosis [17], as well as more recent

supporting data that has demonstrated Sec-deficient TR1 species

(designated SecTRAPs) are by themselves potent initiators of

apoptosis in human cancer cell lines [16]. Apoptosis in these cases

were hypothesized to be mediated by increased oxidative stress in

the cells. These examples suggest that disruption of the C-terminus

of TR1 results in a gain-of-function protein that might be a useful

pro-apoptotic agent if it could be targeted to malignant cells.

In this study we have examined the effects on colon cancer cells

of two scenarios in which canonical TR1 activity (i.e. the ability to

reduce Trx) has been mitigated either by siRNA treatment or

mutation of the C-terminal Sec and Cys residues. We began by

evaluating the redox status of Trx in RKO colon cancer cells

where endogenous TR1 levels were attenuated with siRNA. In

these same cells deficient in wild-type TR1, we then induced the

expressed a Sec-deficient TR1 and found that this protein altered

neither the Trx redox status nor the cellular growth kinetics. Only
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in cells under oxidative stress from treatment with diamide did we

find differences in TR1-comprimised cells. This led us to examine

the effects of TR1 knockdown on a variety of oxidative stressors

including reactive oxygen species, an electrophilic lipid and a nitric

oxide (NO)-prodrug. The effects of TR1 depletion were most

pronounced in combination with the latter treatment.

NO has a broad spectrum of physiological effects, including

pronounced effects in the vascular and nervous systems [18,19]. It

also is promising as an antineoplastic pharmacological agent due

to its cytotoxicity; however, optimal clinical response requires

novel delivery mechanisms of the NO to the tumor rather than

systemic administration to avoid the vascular adverse effects [20].

O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl]dia-

zen-1-ium-1,2-diolate (JS-K) is a prodrug designed to release

NO intracellularly [21] therefore avoiding generalized effects on

the vasculature. The release of NO from JS-K is dependent on

metabolism by glutathione S-transferases (GSTs) and this

dependency may provide additional neoplastic selectivity since

GSTs are frequently overexpressed in cancer [22]. JS-K has

demonstrated antineoplastic efficacy in both human cancer cell

lines as well as animal model systems [23].

NO can have diverse effects in cells. Functioning as an oxidant,

it can react with metal ions, or directly modify proteins on cysteine

residues forming S-nitrosothiols. This modification can modulate

protein function [24]. The cellular redox management of cysteine

nitrosylation is an active area of research, and the TR-Trx system

has been identified as a regulator of this phenomenon [25]. In

particular, apoptotic proteins have been identified as target

proteins modified by nitrosylation [26]. Indeed, the effector

caspase, caspase-3, is target of nitrosylation that is modulated by

cytosolic and mitochondrial Trx systems [27]. Therefore, NO and

the TR-Trx system are integral components in cellular processes

of programmed cell death. In the current work we extend the

study of this interaction to include the effects of TR1 on the

activity of an important new candidate cancer therapeutic agent,

JS-K.

Results

Mammalian thioredoxin reductase without a Sec was thought

to have minimal activity; however, recent reports suggest that

Sec-deficient thioredoxin reductase might have other redox

activities. Therefore, we constructed an inducible cell line where

we could express a C-terminal mutant of TR1 that was resistant

to siRNA knockdown. We measured the expression of TR1 by

Western blotting and measured the TR activity based on insulin

reduction as well as lipoic acid reduction (Figure 1). The siRNA

effectively knock down the endogenous TR1 by ,70% and the

tetracycline induction of the stably integrated of the C-terminal

mutant was ,75% of the level of the endogenous TR1

(Figure 1A). In addition, the knockdown resulted in ,70%

reduction of TR activity as measured by the biochemical assay of

NADPH oxidation with Trx as the intermediate and insulin

serving at the final electron acceptor (Figure 1B). Since TR1 can

reduce alternative substrates to Trx in vitro, we also evaluated the

ability of the C-terminal mutant of TR1 to reduce lipoic acid in a

cell based assay (Figure 1C). Several cellular enzymes can reduce

lipoate but we did observe an ,40% diminution of lipoate

reduction in the RKO cells with endogenous TR1 attenuated by

the siRNA and in the cells expressing the C-terminal mutant

TR1.

Since Trx is a primary substrate of TR1 and since other Sec-

deficient TR1 have demonstrated oxidative stress, we measured

the Trx redox status to determine if the Sec-deficient C-terminal

Figure 1. Characterization of TR1 levels and activity in RKO
cells. Cells were exposed to siRNA directed against TR1 for a total of
96 hrs, and a Sec-deficient C-terminal mutant TR1 was induced for
the last 24 hrs. A) Immunoblot analysis of TR1 protein expression
following siRNA treatments and induction of the Sec-deficient
mutant TR1. B) TR biochemical activity measured in cell lysates by
monitoring NADPH oxidation in an assay that is dependent on Trx
and uses insulin is the final electron acceptor. The first bar on the left
represent the activity of the control (si-Scramble) without Trx added
to the reaction mix, indicating background signal. C) Cell-based TR
activity as measured by lipoic acid reduction in a colorimetric assay
using Ellman’s reagent. The first bar on the left represent the activity
of the control (si-Scramble) without lipoic acid added to the reaction
mix. The lysates from cells with TR1 knocked down show significant
reductions in activity compared to the control (si-Scramble) in both
assays (***, p,0.001).
doi:10.1371/journal.pone.0008786.g001

TR-Dependence of JS-K Toxicity
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mutant TR1 altered the redox status of Trx. Assessment of Trx

redox status was performed through alkylation with iodoacetic

acid, reduction of oxidized Cys with DTT, and then

iodoacetamide alkylation, as has been described [28]. No

changes in Trx redox status were observed among the cells

with endogenous TR1, cells with TR1 knocked-down, and cells

with endogenous TR1 knocked-down plus induction of the Sec-

deficient C-terminal mutant TR1 (example dataset in Figure 2

and summary of multiple experiments in Table 1). If the cells

were challenged with 1 mM diamide, changes in the redox

status of Trx were observed, and a difference between the si-

TR1 treated cells and the si-Scramble was evident suggesting

that the assay detects alterations in redox status following an

oxidative challenge.

Since Sec-deficient TR1 has demonstrated enhanced cytotoxicity

in other systems and so one possibility was that the cells with the

inducible Sec-deficient TR1 are not proliferating at a similar rate as

cells with endogenous TR1. We measured the rate of cell growth

following siRNA knockdown and induction of expression the Sec

deficient TR1 by counting cell population numbers (Figure 3). The

cellular doubling time for all three conditions was ,24 hrs,

following an initial lag period. Therefore, this Sec-deficient TR1

mutant did not appear to alter the growth kinetics of the RKO cells

as no significant differences in the slopes of the growth curves were

measured (0.3560.004 cells/hr for si-Scramble, 0.3660.006 cells/

hr for si-TR1, and 0.3360.008 cells/hr for si-TR1 plus induction of

the C-terminal mutant TR1).

Since the induced expression of the Sec-deficient C-terminal

mutant TR1 construct did not elicit an alteration in redox status of

Trx, we evaluated the cytotoxic response of RKO cells with

endogenous TR1 as well as cells where the TR1 was attenuated

with siRNA to reactive oxygen and nitrogen in the form of H2O2,

the oxidized lipid 4-HNE, or the NO donor JS-K (Figure 4).

Viability following H2O2 exposure was not different (Figure 4A);

the 4-HNE exposure demonstrated a modest, ,2-fold increased

sensitivity in the cells with TR1 knocked-down with a LC50

difference of 10.660.7 mM in the cells with TR1 knocked down

compared to 2463.4 mM in the cells with endogenous TR1

(Figure 4B); the NO donor, JS-K, demonstrated ,6-fold increased

sensitivity in the cells with TR1 attenuated by siRNA with a LC50

difference of 3.160.5 mM in the cells with TR1 knocked down

compared to 1962 mM in the cells with endogenous TR1, as

measured with a MTT assay (Figure 4C).

Since the NO-donor promoted a more prominent difference in

viability between the RKO cells with endogenous TR1 compared

to the cells with TR1 knocked-down, additional evaluation of

cellular redox status were performed to evaluate the mechanism

of the NO-mediated enhanced cytotoxicity. First, based on the

significant differences in cell viability observed in the MTT assay,

the Trx redox status was evaluated following 5 mM JS-K

incubation. The JS-K treated TR1 knockdown cells displayed a

more oxidized distribution of Trx redox states following 90 min

incubation with the NO prodrug (Table 2). Next, a more

generalized evaluation of the oxidative state of the cells was

evaluated following 5 mM JS-K treatment for 24 hrs by

measuring the ratio of reduced GSH to the total GSH levels.

No significant differences in reduced GSH to total GSH were

observed (Figure 5). These data suggest that a global change in

redox status was not observed but that select proteins might be

targeted.

To determine the mechanism behind the changes in cellular

viability as determined by the MTT assay, immunoblot analysis of

Figure 2. Evaluation of the 6 possible redox states of Trx. In
cells without stimulation (left three lanes), Trx is primarily in the reduced
state, even with TR1 knocked-down and the C-terminal mutant TR1
expressed. With 1 mM diamide stimulation for 30 min (right three
lanes), cells with endogenous TR1 demonstrate more reduced Trx than
cells with endogenous TR1 knocked-down with siRNA.
doi:10.1371/journal.pone.0008786.g002

Table 1. Summary of Trx redox status following TR1 knockdown and Sec-deficient TR1 expression: Percent Trx in each redox state
(% total).

Redox state si-Scramble si-Scramble
+diamide

si-TR1 si-TR1
+diamide

si-TR1+mTR1 si-TR1+mTR1
+diamide

1 (oxidized) 0.760.2 2.961.7 1.660.4 561 360.8 3.660.6

2 0.760.2 1163.2 1.960.6 2263.8 2.460.8 2464.4

3 1.960.4 1661.3 3.561.0 2964 760.7 3662.8

4 7.661.3 4266.1 8.761.1 3263.3 961.9 3464.4

5 1761.9 1462.9 1662.4 960.2 860.7 661.9

6 (reduced) 7562.3 2164.6 6862.8 4.562 7663.2 4.361

Summary of the 6 possible redox states, from the most oxidized (state 1) to the least (state 6) of Trx in RKO cells with endogenous TR1 (si-Scramble), with endogenous
TR1 knocked-down (si-TR1), or endogenous TR1 knocked-down but with induced Sec-deficient mutated TR1 (si-TR1+mTR1). Since the majority of the Trx was found to
be in the reduced state, we stimulated with 1 mM diamide for 30 min to oxidize the cells and those cells without endogenous TR1 display more oxidized Trx than cells
with endogenous TR1.
doi:10.1371/journal.pone.0008786.t001

TR-Dependence of JS-K Toxicity
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caspase 3 and the DNA repair protein poly ADP ribose

polymerase (PARP) were evaluated (Figure 6). Cleaved caspase 3

is consistent with the initiation of apoptosis and the amount of

caspase 3 cleavage appeared to be more extensive when TR1 was

knocked-down. Cleaved PARP was also observed in these

experiments in a dose dependent manner.

Evidence of apoptosis initiation was observed at both 1.5 and

5 mM JS-K in the immunoblot analysis; therefore, the cellular

viability and cytotoxicity where re-evaluated following 1.5 mM JS-

K incubation (where the cells still appear .75% viable, Figure 4)

based on protease activity using the MultiTox assay. This assays

appeared to be more sensitive than the MTT assay, since even at

this low dose, JS-K resulted in significant cytotoxicity and/or loss

of viability in the TR1 knockdown cells (,45% viable) compared

to the cells with endogenous levels of TR1 (,68% viable,

Figure 7A and 7B). Next the relative caspase-3/7 activity was

measured and consistent with the cytotoxicity data, there was a

significant enhancement of caspase activity in the cells with TR1

knocked-down (Figure 7C). In separate experiments, the broad

spectrum competitive caspase inhibitor, Z-Asp-CH2-DCB, was

included during the incubation with JS-K confirming the

enzymatic activity previously observed was caspase-dependent

activity.

Discussion

While selenoprotein levels are generally dependent on selenium

and selenium deficiency appears to result in increased risk of

cancer mortality [29], the TR1-Trx system may be unusual among

selenoenzymes in its ability to promote cancer [8,30]. Indeed, Trx

is frequently over expressed in many tumors, may have anti-

apoptotic properties, and may contribute to some forms of therapy

resistance [7,31–34]. From this perspective, inhibition of TR1 is

an excellent target to inhibit the reduction of thioredoxin in the

presence of additional oxidative stress. Also, several commonly

used therapeutic agents, like cisplatin, cyclophosphamide, and

doxorubicin appear to target thioredoxin reductase as well as

Figure 3. Cell growth kinetics of RKO cells with modulated TR1
levels. A scrambled siRNA was used as a control to measure the basal
growth rate (filled square) TR1 was knocked-down by siRNA (filled
circle) and with induction of the Sec-deficient, C-terminal mutant TR1
(filled triangle). No significant differences in growth rates were observed
as the solid lines used to calculate the growth rates for these conditions
are nearly parallel.
doi:10.1371/journal.pone.0008786.g003

Figure 4. MTT-based viability assays for RKO cells following
increasing concentrations of redox modulators. Cells with
endogenous TR1 (si-Scramble, filled square), and cells with TR1
knocked-down by siRNA (si-TR1, filled circle) were compared at
equivalent doses of the redox modulators. A) RKO cells were treated
with increasing concentrations of H2O2 and the viability was measured
after a 24 hrs exposure. No significant differences were observed. B)
RKO cells were treated with increasing concentrations of 4-HNE and the
viability was measured after a 24 hrs exposure. The si-TR1 cells
displayed ,2-fold increased sensitivity to 4-HNE. C) RKO cells were
treated with increasing concentrations of JS-K and the viability was
measured after a 24 hrs exposure. The si-TR1 cells displayed ,6-fold
increased sensitivity to JS-K.
doi:10.1371/journal.pone.0008786.g004

TR-Dependence of JS-K Toxicity
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DNA [35–39]. Our results suggest that attenuation of TR1 is

insufficient to alter the growth status of cells, but that appropriate

redox stress following attenuation of TR1 may be the most

effective means of attaining a cytotoxic response.

The antiapoptotic activity of Trx has been sited as rationale for

targeting the TR-Trx system in human cancer [40,41]. The recent

observation that the TR-Trx system modulates the activity of

caspase-3 in a nitrosylation-dependent manner [27] suggests a

prominent role for the TR-Trx system in NO-mediated apoptotic

activity. In this work, we also observe that the NO prodrug, JS-K,

increases apoptosis when TR1 is knocked down with siRNA

(Figures 4 and 6). This mechanism is consistent with previous

mechanistic data demonstrating increased caspase activity in acute

myelogenous leukemia cells [42]. In addition, NO-donating

aspirin demonstrated synergistic activity when combined with

gold-containing compounds that are thought to primarily target

the TR-Trx system [43].

The role of TR1 in apoptosis has been the subject of

investigation since it was identified as a ‘‘GRIM’’ gene (i.e.,

genes associated with retinoid-IFN-induced mortality, GRIM 12)

in a screen for genes related to retinoid-IFN-induced apoptosis

[17]. More recently, it has been demonstrated that TR1 protein

without a functional Sec residue due to alkylation or truncation,

when introduced to cells using BioPORTER, induced apoptosis

[16,44]. However, the mechanisms of TR-mediated apoptosis by

TR1 SecTRAPs remain unknown. The mutant TR1 we utilized,

with the C-terminus Gly-Ser-Ser-Gly, was not a functional

thioredoxin reductase as measured by NADPH oxidation/

insulin reduction as well as lipoic acid reduction (Figure 1);

however, it also did not appear to function as a SecTRAP

apoptotic initiator as described by Arnér and colleagues [16].

Similar to a previous report [45], we were unable to identify

basal alterations in Trx or cellular redox status when TR1 was

knocked-down with siRNA (Figure 2, Table 1) but did observe

altered Trx redox status following JS-K treatment (Table 2). In

addition, the expression of this Sec-deficient mutant TR1 did not

alter the oxidative status of Trx. Therefore, it appears that not

all Sec-deficient TR proteins promote oxidative stress and

apoptosis.

Targeting TR1 for cancer therapy may not be without

undesirable adverse effects if it is not targeted at the tumor. For

example, the tumor suppressor, p53, is an important regulator of

cell growth and apoptosis, and TR1 enhances p53 function,

presumably by contributing reducing equivalents through Trx to

the nuclear redox regulator Ref-1 [12,13,46,47]. Several common-

ly used therapeutic agents, like cisplatin, cyclophosphamide, and

doxorubicin appear to target TR1 as well as DNA [35-39], but

perhaps, a cause for some of the adverse effects observed with these

common therapeutics, may be the ‘‘off-target’’ inhibition of TR1.

Another redox modulatory compound that has been evaluated in

Figure 5. RKO cellular redox state following JS-K treatment as
measured by glutathione redox status. GSH measurements were
made following treatment with 5 mM JS-K for 24 hrs., and the ratio of
the reduced GSH to the total GSH was measured. No significant
differences were observed among the treatment groups.
doi:10.1371/journal.pone.0008786.g005

Table 2. Summary of Trx redox status following TR1
knockdown and JS-K treatment: Percent Trx in each redox
state (% total).

Redox state si-Scramble si-Scramble
+JS-K

si-TR1 si-TR1
+JS-K

1 (oxidized) 0.360.3 0.560.5 0.460.6 1.460.2

2 0.660.7 1.961.4 0.460.4 2.462.0

3 1.560.3 7.962.3 2.161.2 1561.8

4 6.461.3 1863.6 9.960.3 3261.1

5 1961.8 3565.6 2362.8 2765.8

6 (reduced) 7263.8 3865 6563.5 2465.4

Summary of the 6 possible redox states of Trx in RKO cells with endogenous
TR1 (si-Scramble) or with endogenous TR1 knocked-down (si-TR1) following
treatment with 5 mM JS-K for 90 min. Trx does show a shift to more oxidized
states in the cells treated with JS-K with TR1 knocked down.
doi:10.1371/journal.pone.0008786.t002

Figure 6. Immunoblot evaluation of cleaved PARP and caspase
3. RKO cells treated with vehicle, 1.5, or 5 mM JS-K for 24 hrs. Protein
was separated by SDS-PAGE and detected with immunoblot analysis. A
dose-dependent increase in cleaved PARP and caspase 3 (CASP3) was
observed with more cleaved material in the TR1 knockdown. GAPDH
was evaluated as a loading control.
doi:10.1371/journal.pone.0008786.g006

TR-Dependence of JS-K Toxicity
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cancer clinical trials, motexafin gadolinium, was thought to

specifically target TR1 [7]. However, motexafin gadolinium

appears to be a substrate for TR1 and generates reactive oxygen

species through this interaction as well as being an inhibitor of

ribonucleotide reductase [48]. If this compound’s clinical activity is

truly due to its interactions with TR1, it is still unclear which

tumors should be targeted since this compound has demonstrated

mixed results in clinical trials to date [49–51], but it appears to

hold particular promise as a radiation sensitizer [52,53].

Even with potential complications of targeting TR1 in cancers,

the results herein suggest that drug combination approaches, like

the NO-donor, JS-K, might be most effective if combined with

agents that target TR1.

Materials and Methods

Materials
Advanced DMEM, Glutamax, 5,59,6,69-tetrachloro-1,19,3,39-

tetraethylbenzimidazolyl-carbocyanine iodide (JC-1, MitoProbe

JC-1 Assay Kit), 3-(4,5-dimethylthiaxol-2-yl)-2,5-diphenyltretrax-

olium bromide (MTT), Hank’s balanced salt solution with Ca and

Mg (HBSS), Tris-glycine 8% gels and bovine serum albumin were

purchased from Invitrogen (Carlsbad, CA). Fetal bovine serum

was purchased from Hyclone (Logan, UT). The RKO cell line was

purchased from American Tissue Type Culture Collection

(Manassas, VA). Monoclonal antibodies directed against thior-

edoxin reductase (B-2, sc-28321, lot# J1304); polyclonal antibod-

ies directed against thioredoxin (FL-105, sc-20146, lot# A1907),

and GAPDH (FL-335, sc-25778); donkey polyclonal anti-mouse

and anti-rabbit antibodies conjugated with horseradish peroxidase

were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).

Additional polyclonal antibodies directed against caspase 3 (9661),

cleaved caspase 3 (9662), and PARP (9532) were purchased from

Cell Signaling Technology (Beverly, MA). Bovine serum albumin

standard and Coomassie Plus Protein Reagent were from Pierce

Biotechnology (Rockford, IL). Protease inhibitor cocktail tablets

(completeH) were purchased from Roche (Indianapolis, IN). PVDF

membrane was purchased from Millipore (Burlington, MA). The

caspase inhibitor, Z-Asp-CH2-DCB, was from Peptides Interna-

tional (Louisville, KY). Western Lighting chemiluminescence

reagents were from PerkinElmer Life Sciences (Boston, MA). JS-

K was synthesized as previously described [54]. Dimethylsulfoxide

(DMSO) and common buffers and salts were purchased from

Sigma-Aldrich (St. Louis, MO).

Cell culture
RKO colon cancer cells were used as a representative colon cell

line and were maintained in Advanced DMEM supplemented

with 1% Glutamax and 2% fetal bovine serum. Previously, we

described the site directed mutagenesis of the C-terminus of TR1

from Gly-Cys-Sec-Gly to Gly-Ser-Ser-Gly plus a silent mutation

into the siRNA identity site to make this construct resistant to

siRNA directed at the endogenous TR1. We subcloned this

mutated TR1 construct into pcDNA5/FRT/TO and then

inserted into the RKO cells with stably integrated pcDNA6/TR

and pFRT/lacZeo, rendering a tetracycline inducible mutant TR1

cell line. These mutations to TR1 as well as the siRNA used to

modulate endogenous TR1 were previously described [13].

Experimentally, the cells were plated at 2–36105 cells/well in 6

well plate and transfected with siRNA directed at TR1 (si-TR1) or

control generated by scrambling the si-TR1 sequence (si-

Scramble) for 72 hrs. Then, the cells were treated or stimulated

with tetracycline for 24 hrs as indicated.

Figure 7. Protease activity as a measure of viability, cytotoxity
and effector caspase activity. RKO cells treated with 1.5 mM JS-K for
24 hrs. were assessed for A) viability, B) cytotoxicity, and C) caspase-3/7
activity. In separate experiments, cells were incubated with Z-Asp-CH2-
DCB, a broad spectrum, competitive caspase inhibitor, to determine
that the caspase assay was indeed demonstrating effector caspase
activity (C). RKO cells with TR1 knocked-down demonstrate significantly
greater losses in viability, increased cytotoxicity, and increased caspase-
3/7 activity following JS-K treatment than RKO cells with endogenous
TR1 (**, p,0.01; ***, p,0.001; {{{, p,0.001).
doi:10.1371/journal.pone.0008786.g007

TR-Dependence of JS-K Toxicity
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Immunoblot analysis
Cells in 6-well plates were placed on ice. Media was aspirated

and cells were then washed with 1 ml of cold 16PBS and the PBS

aspirated. Cell lysates were collected as previously described [13].

Protein concentrations were determined using Coomassie Plus

Protein Reagent (Pierce). Absorbance at 595 nm was measured

using a Perkin-Elmer Victor3V plate reader. Ten to 15 mg of

protein were separated on either 8% Tris-glycine gels (for TR1) or

10% native urea gels (for Trx), transferred to PVDF membrane,

blocked with 10% non-fat dry milk, incubated with primary

antibody (1:200 for TR, 1:250 for Trx, 1:1000 for both caspase 3

and cleaved caspase 3, 1:1000 for PARP, and 1:500 for GAPDH)

overnight at 4uC, washed 36, incubated with secondary antibody

(1:5000) for 45 min at 22uC, washed 36, incubated with

chemiluminesence reagents, and exposed to x-ray film.

Thioredoxin reductase activity assays
Cellular TrxR1 activity was measured as has been previously

described [13]. In addition, we measured lipoic acid reduction

similar to a previously described assay [55]. Briefly, cells were

plated and treated as described. Then the cells were trypsinized,

washed with PBS, and resuspended in a solution of 1 ml

containing 5 mM glucose in PBS, with or without 1 mM lipoic

acid and 0.2 mM DTNB with gently shaking at 37uC for 15 min.

The cells were centrifuged and the supernatant sample was diluted

1:1 with water and the absorbance was measured at 412 nm. The

negative control was medium with no cells. The cell pellet was

washed with PBS, lysed cells in lysis buffer and the protein

measured using the Bradford assay. The reduced lipoate was

normalized by the cellular protein content.

Redox status of Trx
The redox status of Trx was performed as described [28].

Briefly, cells were lysed in 8 M urea buffered with Tris to pH 8.9

containing 30 mM iodoacetic acid, sonicated, and incubated for

15 min at 37uC. Protein was precipated with 10 volumes of ice

cold acetone-1N HCl (98:2, vol/vol), centrifuged at 11,0006g for

5 min at 4uC, washed with cold acetone-HCl, resuspended in

95 ml of buffered urea containing 35 mM DTT, incubated for

30 min at 37uC, 7.5 ml of 200 mM iodoacetamide was add to each

sample, and incubated for 15 min at 37uC. Protein concentration

was estimated using Coomassie Plus Protein Reagent.

MTT assay
Cellular viability was determined using an MTT as previously

described [56], which relies on tetrazolium salt reduction by

NADH in viable cells (Berridge et al., 2005).

Glutathione quantitation
Reduced glutathione (GSH) and total GSH were measured

using GSH-GLO reagents (Promega). Approximately 2.56103

cells that were pre-incubated with siRNA directed at TR1 were

plated in white sided 384 well plates, allowed to adhere, and then

treated with 0 or 5 mM JS-K for 24 hrs. Media was removed by

centrifugation, the reduced GSH was directly measured according

to manufacturing instructions, and the total GSH was measured

by incubating the cells with 1 mM TCEP to reduce oxidized

GSH. This assay is a glutathione-S transferase-dependent assay

that uses GSH to generate luciferin as a substrate for luciferase to

generate light. Luminescence was measured using a Perkin-Elmer

Victor3V plate reader.

MultiTox assay
Viability and cytotoxicity measurements were assessed by

differential protease activities using the MultiTox-Fluor Multiplex

Assay (Promega). This assay uses a GF-AFC substrate that is cell

permeable to assess the viable cells, and a bis-AAF-R110 substrate

that is not cell permeable to assess protease activity from dead

cells. The fluorescence from these substrates were measured using

a Perkin-Elmer Victor3V plate reader; the GF-AFC viability

substrate was measured at 405 nm excitation, 475 nm emission;

and the bis-AAF-R110 cytotoxicity substrate was measured at

485 nm excitation, 535 nm emission.

Caspase activity assay
Effector caspase activity was measured using the Caspase-GLO

3/7 Assay (Promega) according to the manufacturer’s instructions.

This is an assay where a DEVD peptide substrate is cleaved by

active caspases to release aminoluciferin as a substrate for

luciferase to produce light. Luminescence was measured using a

Perkin-Elmer Victor3V plate reader.

Statistical analysis
1-way ANOVA was used to determine statistical significance

among samples (GraphPad InStat Version 3.06). Bonferroni

multiple comparisons post hoc testing was used to establish

significance among the treatment groups with p,0.05 considered

significant.
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