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Abstract. The inducibility of stably transfected a-car- 
diac actin genes differs among L cell clones. We ex- 
amined the ability of muscle-specific factors to induce 
the expression of the human muscle a-cardiac actin 
gene promoter when stably transfected into mouse 
fibroblast L cells. This promoter is transcriptionally 
active in L cells at a low level, 2-5 % of that in trans- 
fected muscle cells. Upon fusion with muscle cells to 
form heterokaryons, expression of the transfected 
a-cardiac actin gene promoter can be induced. How- 
ever, induction is observed with only 10% of trans- 
fected L cell clones and the magnitude of this induc- 
tion varies between 5- and 50-fold. These properties 

of the transfected L cell appear to be stably inherited. 
Our results are consistent with the hypothesis that 
muscle cells contain factors capable of increasing the 
transcription of the transfected gene, but that differ- 
ences among L cell clones, possibly in the site of in- 
tegration in the genome, determine the extent to which 
the gene can respond. By fusion into heterokaryons, 
transfectants with responsive genes can be identified. 
Such clones should prove useful in determining the 
basis for clonal variation. In addition, they provide an 
in vivo system for isolating functionally active tissue- 
specific transcription factors and the genes that encode 
them. 

T 
ISSUE-Specific genes must be regulated by diverse 
mechanisms to accomplish the precise timing, cell 
specificity, and appropriate level of expression charac- 

teristic of development. Genes are often repressed or main- 
tained in a quiescent state by higher orders of chromatin 
structure such as packaging into nucleosomes by histones, in 
particular H-I, and by extensive DNA methylation (Schlissel 
and Brown, 1984; Weintraub, 1984, 1985; Keshet et al., 
1986). For certain genes it appears that once this block is 
released and a gene is rendered active, another level of regu- 
lation comes into play (Robins et al., 1982; Charnay et al., 
1984; Shaw et al., 1985; Minty et al., 1986). This level in- 
volves the interaction of tissue-specific trans-acting factors 
with specific DNA sequences associated with the gene in cis. 
As a result, the transcription of an active gene is markedly 
increased. 

The human a-cardiac actin gene uses several discrete 
DNA segments within a 485-bp region 5' of the start site of 
transcription for accurately initiating tissue-specific expres- 
sion in muscle cells (Gunning et al., 1984; Minty and Kedes, 
1986; Minty et al., 1986; Miwa and Kedes, 1987). A fusion 
gene containing this tissue-specific sequence and the bac- 
terial chloramphenicol acetyl transferase (CAT) t gene is ex- 
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1. Abbreviation used in this paper: CAT, chloramphenicol acetyl trans- 
ferase. 

pressed constitutively after transfection into L cells, but at 
a level 2-5 % that in transfected C2C12 muscle cells (Minty 
et al., 1986). Furthermore, deletion of upstream segments 
within the 485-bp sequence leads to reduced transcriptional 
activity in muscle cells, but has no effect on transcription in 
L cells. These results suggest that the low activity in L cells 
probably does not result from the interaction of these se- 
quences with repressors. Instead, the gene is transcription- 
ally active, but L cells appear to lack the tissue-specific tran- 
scription factors that muscle cells contain. 

Here we examine the inducibility of expression of stably 
transfected a-cardiac actin genes in L cells. The system we 
used involves the formation of heterokaryons, nondividing, 
short-term cell hybrids. Studies with heterokaryons formed 
by fusing mouse muscle cells and human nonmuscle cells 
have previously demonstrated the existence of mouse muscle 
factors that can gain access to and activate previously silent 
endogenous human muscle genes in several cell types in the 
absence of changes in chromatin conformation that require 
DNA replication (Blau et al., 1983, 1985; Chiu and Blau, 
1985; Hardeman et al., 1986a, Pavlath and Blau, 1986; 
Miller et al., 1988). These results have been corroborated 
and extended by others with similar muscle heterokaryons 
(Wright, 1984a, b; Clegg and Hauschka, 1987), and hetero- 
karyons formed with other cell types (Enoch et al., 1986; 
Baron and Maniatis, 1986). 

In this report, we show with heterokaryons that muscle 
cells contain factors that can induce the expression of an ex- 

2. For a preliminary report of these results, see Hardeman et al., 1986b. 
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ogenous muscle gene stably transfected into L cells. 2 The 
degree of induction after heterokaryon formation with pools 
of transfected L cell clones was highly variable. This vari- 
ability proved to be due to differences among transfected 
clones. The basal activity of the a-cardiac actin gene differed 
by as much as 15-fold. Fusion with muscle cells resulted in 
increased expression in only 10 % of the clones analyzed and 
the range of this induction differed by 10-fold. Both the basal 
and inducible CAT activities appeared to be stably heritable 
properties of each L cell clone. As discussed, this novel sys- 
tem is well suited to the study of the basis for the clonal varia- 
tion in the expression of stably transfected genes. 

Our results also suggest that a transfected L cell can be 
used as a test system for characterizing factors that regulate 
a stably introduced, well-defined promoter of a tissue- 
specific gene. However, in contrast to the recent report of 
Lufkin and Bancroft (1987) in which pooled clones were 
used, our results suggest that the success of this approach re- 
lies on first characterizing individual clones of stable trans- 
fectants and identifying those that contain genes capable of 
responding maximally to regulatory factors in hetero- 
karyons. The transcriptionally responsive clones can then be 
used as recipients to assay for trans-acting regulatory factors 
and the genes or templates encoding them. A potential ad- 
vantage of the assay we describe is that it is based on the 
function of the factors in vivo. The need for such an approach 
is underscored by recent findings that some regulatory fac- 
tors may act indirectly and not bind DNA or may function 
poorly in in vitro transcription assays (McKnight and Tjian, 
1986; Jones et al., 1987). 

Materials and Methods 

Cell Cultures 

The mouse muscle cell line, C2C12, is a diploid subclone isolated and 
karyotyped in our laboratory (Blau et al., 1983) from the C2 cell line origi- 
nally isolated from postnatal mouse skeletal muscle after repeated crush in- 
jury (Yaffe and Saxel, 1977). The rat muscle cell line, H9c2, is a clonal 
derivative of cells isolated from embryonic rat heart tissue (Kimes and 
Bran&, 1976) and was obtained from the American Type Culture Collec- 
tion, Rockville, MD. Both types of muscle cells were maintained in a 
mitogen-rich medium containing Dulbecco's modified Eagle's medium 
(DMEM) supplemented with 20% fetal calf serum (FCS) and 0.5 % chick 
embryo extract (CEE) (Gibeo, Grand Island, NY). Muscle cells were al- 
lowed to reach confluence in the mitogen-rich medium and then induced to 
differentiate by exposing them to mitogen-poor fusion medium, DMEM 
supplemented with 2% horse serum. When grown under these conditions, 
which promote in vitro skeletal muscle differentiation, the H9c2 cells fuse 
to form multinucleated myotubes similar to the C2C12 cells. 

The origin and culture conditions of the transfected mouse L(TK-) cell 
line were described previously (Minty et al., 1986). These cells, designated 
L.pHCA485CAT, are stable transfectants which carry a construct containing 
485-bp 5' to the cap site of the human a-cardiac actin gene plus the first 
exon and 24 bp of the first intron ligated at the Fnu DII site at position 68 
to the bacterial CAT gene. The CAT gene is a Hind III-Bam HI fragment 
from pSV2CAT (Gorman et al., 1982) which carries a SV-40 intron and 
polyadenylation site to ensure proper processing of transcripts. The plasmid 
pSV2neo was cotransfected into these cells to allow G418 selection. After 
15 d of selection, *100 of the surviving colonies were pooled and grown 
en masse. Subsequently, this pool of stable transfectants was subcloned by 
serial dilution into 96-well culture dishes. Wells that contained a single cell 
were identified visually and twenty colonies arising from these cells, des- 
ignated L.pHCACAT.X, were passaged and analyzed for CAT activity. 
Clone A is L.pHCA485CAT.4, clone B is L.pHCA485CAT.6, clone C is 
L.pHCA485CAT.I.G2, and clone D is L.pHCA485CAT.1.H9. 

Heterokaryon Formation 

In preparation for heterokaryon formation, H9c2 or C2C12 cultures which 
were maintained in mitogen-poor fusion medium for 2 d and had well- 
established myotubes, were trypsinized and plated onto collagen-coated cul- 
ture dishes (1.4 mg/ml of calf skin collagen; Calbiochem-Behring Corp., 
La Jolla, CA; autoclaved in dH20). After attachment of the muscle cells, 
the transfected L cells were added to the culture dishes and 4 h later the 
co-cultures were treated with polyethylene glycol 1000 (PEG; BDH Chemi- 
cals Ltd., Poole, England) (Blau et al., 1983). Cytosine arabinoside was 
added to the culture medium at 10 -5 M immediately after PEG treatment 
for a total of 48 h to eliminate proliferating myoblasts and unfused L cells. 
The heterokaryon cultures were harvested after 4 d of maintenance in 
mitogen-poor fusion medium. The cultures were either harvested for assays 
of CAT enzymatic activity or stained with Hoechst 33258 (Sigma Chemical 
Co., St. Louis, MO) (Blau et al., 1983) to quantitate the nuclear composi- 
tion of a given heterokaryon culture (Hardeman et al., 1986a). 

CAT Assays 

CAT enzymatic activity was determined using a modification of the proce- 
dure of Gorman et al. (1982). Cells were harvested in Tris-EDTA-NaCI 
buffer (0.04 M Tri-HCI, pH 7.4/1 mM EDTA/0.15 M NaCI). The cell pellet 
was dispersed in 0.25 M Tris HCI, pH 7.8 and lysed by freezing and thawing 
three times in succession. An aliquot was removed from the lysate superna- 
tant and protein concentration determined. A typical enzymatic assay con- 
mined 1-30 ~tl of cell extract, 0.1-0.2 ~tCi of [~4C]chloramphenicol (New 
England Nuclear, Cambridge, MA; 40-50 mCi/mmol), 30 ~tl of 5 mM ace- 
tyl coenzyme A, and 0.25 M Tris HC1, pH 7.8 in a final volume of 150 I.tl. 
The enzymatic reaction was carried out at 37~ from 4 to 10 h with fresh 
acetyl CoA added every 4 h. The labeled chloramphenicol was extracted 
with ethyl acetate and analyzed by thin layer chromatography (chloro- 
form/methanol, 95:5) using Baker-fex, Silica Gel 1B plates (J. T. Baker, 
Phillipsburg, N J). The silica plate was exposed to XAR film and the relative 
levels of CAT enzymatic activity determined by scintillation counting of the 
appropriate region of the silica plate. 

H9c2 Transfections 

Plasmids containing various fragments of the human a-cardiac actin gene 
promoter ligated to the CAT gene were transfected into H9c2 myoblasts that 
were subsequently analyzed at two stages of differentiation: subconfluent, 
dividing myoblasts (B) and well-differentiated cultures exposed to fusion 
medium for 2 d (T). The construction of the plasmids was described in detail 
by Minty and Kedes (1986). Briefly, pHCAOCAT and pHCA485CAT con- 
tain 0 and 485 bp 5' to the cap site of the gene, respectively, Transfections 
were carried out by mixing 5 ~tg of the appropriate DNA in 0.5 ml HEBS 
buffer (42 mM Hepes/274 mM NaCI/10 mM KC1/1.4 mM Na2HPO4/ll 
mM dextrose) with 0.5 ml of 280 mM CaCI2. Precipitation of the 
CaPO4-DNA complex proceeded for 30 min and then 1 ml was overlayed 
on 4 ml of medium per 60-mm dish. The medium was replaced with the 
appropriate fresh medium 20 h later and the cultures harvested for CAT 
analysis 36 h after exposure to DNA. 

Results 

CAT Activity in Transfected L Cells Fused with 
Mouse Muscle Cells in Heterokaryons 

To determine whether mouse muscle-specific transcription 
factors can gain access to the human a-cardiac actin gene 
promoter in stably transfected L cell nuclei, we fused mouse 
muscle cells with transfected L cells to form heterokaryons. 
The skeletal muscle cells, C2C12, are particularly well 
suited to these experiments because they can be induced to 
differentiate rapidly and extensively into multinucleated 
myotubes that accumulate high levels of cardiac actin tran- 
scripts within 24 to 36 h (Bains et al., 1984; Hardeman et 
al., 1986a). The L cells were those previously described by 
Minty et al. (1986), which had been stably cotransfected with 
a DNA fragment (pHCA485CAT) containing 485 bp 5' to 
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Figure 1. Inducible CAT activity in 
pooled clones of transfected L cells 
fused with myotubes to form hetero- 
karyons. Heterokaryons were formed 
by the PEG-mediated fusion of dif- 
ferentiated mouse skeletal muscle 
cells, C2C12, and pools of stable 
L cell transfectants carrying the 
pHCA485CAT construct. As a con- 
trol, a culture of L cells only was 
treated with PEG to form homokary- 
ons. The cultures were harvested 
4 d after PEG treatment. Equivalent 
amounts of protein from cultures of 
L cell homokaryons (A) and from 
C2C12 • L cell heterokaryons (A') 
were assayed for CAT enzymatic ac- 
tivity. The 1- and 3-mono-acetylated 
forms of 14-C-chloramphenicol were 
separated from the unacetylated sub- 
strate by thin layer chromatography 
and the percent conversion to acetyl- 
ated products determined by scin- 
tillation counting (Gorman et al., 
1982). For (A) 0.13% and (A') 2.52%, 
or a relative difference of 19-fold. 
The silica plate was exposed to XAR 
film for 2 wk. 

the transcription initiation site of the human a-cardiac actin 
gene linked to the reporter gene, bacterial CAT, and with 
pSV2neo, which confers resistance to the drug G418. This 
upstream sequence of the human a-cardiac actin gene pro- 
moter is essential to the appropriate initiation and tissue- 
specific transcriptional activity of the gene in muscle cells 
(Minty and Kedes, 1986). 

Pools of stably transfected L cells were used in our initial 

experiments. Heterokaryons were formed by exposing co- 
cultures of mouse muscle C2C12 cells and the transfected L 
cells to PEG, as described by Blau et al. (1983). As a control, 
a culture of  transfected L cells alone was treated with PEG 
to form homokaryons. 4 d after heterokaryon formation the 
cultures were harvested and CAT expression determined as 
described by Gorman et al. (1982). Equivalent amounts of 
protein were assayed from the two cultures. Clearly CAT ex- 
pression is induced in the heterokaryon cultures (Fig. 1, 
right) compared with the expression in homokaryons (Fig. 
1, left). By scintillation counting we determined that the 
magnitude of the induction in this case was ~20-fold over 
the basal level of CAT enzymatic activity in the transfected 
L cells alone. In fact, this constitutes an underestimate of the 
induction, since not all of the L cells fused with the muscle 
cells in heterokaryon cultures. 

We noted that the magnitude of the induction varied 
greatly among four experiments performed with pooled L 
cell clones (data not shown). Nonetheless, the maximal in- 
duction observed in heterokaryons was similar to the differ- 
ence in CAT activity obtained with C2C12 muscle cells and 
with L cells in transient transfection assays using the same 
construct (Minty et al., 1986). We concluded from these ini- 
tial experiments that transcription factors are present in the 
mouse muscle cells that are capable of gaining access to and 
inducing the transcription of the transfected human a-cardi- 
ac actin-CAT fusion gene stably integrated in the genome of 
the L cell nucleus. 

Basal Levels o f  CAT Activity in Clones of  
Transfected L Cells Differ 

We determined whether the variability in inducible CAT ac- 
tivity observed with heterokaryons formed with pooled L 
cells was due to heterogeneity among cells. Possibly the hu- 
man a-cardiac actin gene promoter in individual stably 
transfected L cells differed in its ability to interact with 

Figure 2. Basal CAT activity in in- 
dividual clones of transfected L cells. 
Individual clones of L cells stably 
transfected with pHCA485CAT were 
isolated by serial dilution. An equiv- 
alent amount of protein from each 
clonal culture was assayed for CAT 
enzymatic activity. The results from 
six representative clones are shown 
for which the percent conversion to 
acetylated products was (A) 0.12, (B) 
0.17, (C) 0.11, (D) 0.47, (E) 0.20, and 
(F) 0.06, a range of 8-fold. The silica 
plate was exposed to XAR film for 
1 wk. 
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muscle-specific transcription factors. Individual clones of L 
cells containing pHCA485CAT were isolated by serial dilu- 
tion. Equivalent amounts of cellular protein were assayed 
and the constitutive level of CAT expression in each clonal 
population was determined. A total of 20 clones was ana- 
lyzed and a representative sample of CAT enzymatic activity 
in 6 of these clones is shown in Fig. 2. Enzymatic activity 
could be detected in 18 of the clones, but not in 2, regardless 
of whether the amount of cell lysate assayed was increased 
or the exposure time of the autoradiograph extended to I mo. 
Furthermore, among those clones in which basal enzyme ac- 
tivity could be detected, significant differences were evident. 

The variation in basal levels of CAT activity did not corre- 
late with the number of a-cardiac actin-CAT gene copies in- 
tegrated per cell. For example, by slot blot analysis we deter- 
mined that the clone represented in Fig. 2, lane 2 contained 
10 stably integrated pHCA485CAT constructs, whereas the 
clone represented in lane 5 contained only 5 copies, yet its 
basal CAT activity was higher (data not shown). On average, 
the clones contained between 5 and 10 transfected gene cop- 
ies. This twofold difference in transfected gene copy number 
could not account for the observed eightfold differences in 
CAT activity (Fig. 2, lanes D and F). Since the basal level 
of CAT enzymatic activity in each clone remained constant 
over a 6-mo period, this property of the L cell appeared to 
be stably inherited. 

Rat Muscle Cells (H9c2) Can Regulate the 
Transfected Actin Gene and Be Used in Heterokaryons 

We quantitated the enhanced transcriptional activity of the 
transfected human t~-cardiac actin gene promoter in in- 
dividual L cell clones in response to transcription factors 
contributed by muscle cells in heterokaryons. However, het- 
erokaryon cultures are heterogeneous mixtures of different 
cell types that include not only myotubes containing both 
muscle cell and L cell nuclei, but also myotubes containing 
only muscle nuclei, unfused mononucleated myoblasts, 
fibroblasts, and homokaryons formed by fusion among 
fibroblasts. Consequently, quantitation required determining 
for a given heterokaryon culture, the proportion of total L 
cell nuclei contained in heterokaryons that was responsible 
for the enhanced CAT activity. A simple way to determine 
the nuclear composition of a heterokaryon culture is to take 
advantage of the differential nuclear staining of the fluores- 
cent dye Hoechst 33258 which preferentially stains adenine 
and thymine-rich regions of DNA prevalent in the centro- 
meres of mouse hut not human or rat chromosomes (Weis- 
blum and Haenssler, 1974; Blau et al., 1983). Since both the 
muscle C2C12 cell line and L ceils used in our initial experi- 
ments were derived from mouse, we could not score nuclear 
composition with Hoechst 33258. Muscle cells of another 
species, the rat myogenic cell line H9c2 (Kimes and Brandt, 
1976), proved suitable for heterokaryon formation in this 

Figure 3. Distinction of rat cardiac muscle and trans- 
fected mouse L cell nuclei in heterokaryons. Rat 
cardiac muscle (H9c2) and transfected L cells 
(pHCA485CAT) were fused to form heterokaryons 
and stained with the fluorescent dye, Hoechst 33258. 
A cluster of nuclei contained in a heterokaryon is 
shown in phase-contrast microscopy (A) and in 
fluorescence microscopy (B). The heterokaryon con- 
tains 7 uniformly stained rat muscle nuclei and 13 
punctate mouse L cell nuclei. Bar, l0 ~m. 
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Figure 4. Transcriptional activity of upstream regions of the human 
a-cardiac actin gene in transiently transfected rat cardiac muscle 
cells (H9c2). Plasmid DNAs containing 0 (pHCAOCAT) or 485 bp 
(pHCA485CAT) 5' to the cap site of the human a-cardiac actin gene 
were transfected into rat cardiac muscle H9c2 cells. CAT activity 
was assayed for subconfluent myoblasts (B) and for differentiated 
myotube-containing (T) cultures. Cultures were harvested within 
36 h of exposure to the DNA and CAT activity determined. Control 
cultures included L cells stably carrying the pSV2CAT plasmid 
(L.SV2) and nontransfected, differentiated H9c2 cultures (H9c2). 
Equivalent amounts of protein were assayed. The silica plates were 
exposed to XAR film for 24 h. 

case. This cell line was originally isolated from rat cardiac 
tissue, yet it forms multinucleated myotubes typical of  skele- 
tal, not cardiac, muscle. As shown in Fig. 3, the rat muscle 
H9c2 nuclei appear uniformly stained and are clearly distin- 
guished from the punctate mouse L cell nuclei. 

It was important to show that the H9c2 cells contained 
muscle-specific transcription factors capable of  acting on the 
human a-cardiac actin gene promoter. As shown in Fig. 4, 
the transcriptional activity of H9c2 cultures transfected with 
the pHCA485CAT plasmid is similar in both the myoblast 
(B) and myotube (T) cultures indicating that the muscle tran- 
scription factor(s) for the a-cardiac actin gene exist at both 
the determined as well as the differentiated stage. A simi- 
lar observation was made with the C2C12 cell line (Seiler- 
Tuyns et al., 1984; Minty et al., 1986). In contrast, basal lev- 
els of  CAT activity are observed in cells transfected with 
pHCAOCAT, a plasmid that contains no cardiac actin gene 
sequences. That these factors are muscle specific was shown 
in previous experiments in which the same construct trans- 
fected into fibroblast L cells and pheochromocytoma PC12 
cells yielded only 2-5 % the CAT activity observed in trans- 
fected C2C12 muscle cells (Minty and Kedes, 1986). 

These results show that the factors in the H9c2 muscle cell 
line derived from rat cardiac tissue interact similarly with the 
485-bp upstream promoter sequence as those from skeletal 
muscle C2C12 cells. Since nuclear composition could be de- 
termined with H9c2, this cell line was ideal for the proposed 
quantitative studies of induction of CAT expression in clones 
of transfected L cells in heterokaryons. 

Figure 5. Inducible CAT activity in individual 
clones of transfected L cells fused with myotubes 
to form heterokaryons. CAT activity was assayed 
in heterokaryons of rat muscle (H9c2) and mouse 
L cell clones (pHCA485CAT) and in homokaryons 
of the corresponding L cell clones. The L cell 
clone homokaryons are designated A, B, C, and D. 
The corresponding heterokaryon cultures are 
designated A', B', C', and D'. Note that D' is over- 
exposed in this autoradiogram. From scintillation 
counting, we determined that the increase in CAT 
activity from D to D' was 50-fold. The results 
shown here for clones A and B are representative 
of three independent fusion experiments; the result 
for clone D is representative of two experiments. 
Parallel heterokaryon cultures were stained with 
Hoechst 33258 and the nuclear composition deter- 
mined. The total number of nuclei scored per het- 
erokaryon culture ranged from 1300 to 1,800. To 
determine the proportion of L cell nuclei capable 
of being induced on a dish, for each experiment the 
number of L cell nuclei inside heterokaryons/total 
number of nuclei on a dish was determined. This 

value differed less than twofold among experiments with different clones and ranged between 14 and 25%. To establish the proportion of 
nuclei on a dish capable of contributing CAT activity, the percent of L cell nuclei (inside and outside heterokaryons)/total nuclei (muscle 
and L cell) on a dish was determined. This latter value ranged between 70 and 80% and was used to adjust the amount of protein assayed 
from L cell homokaryons so that it was equivalent to the amount of L cell protein assayed from the corresponding heterokaryon culture. 
The percentage conversion to acetylated products was (,4) 0.t3, (-4') 0.03, (B) 0.13, (B') 0.83, (C) 0.03, (C') 0.03, (D) 0~56, and (D') 32.00. 
The silica plate was exposed to XAR film for 2 wk. 
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Transfected L Cell Clones Differ in Their Response 
to Muscle Transcription Factors 

We quantitated the induction of the or-cardiac actin gene pro- 
moter in individual clones of L cells in response to muscle 
transcription factors. Heterokaryon cultures were formed be- 
tween the rat muscle H9c2 cells and distinct transfected L 
cell clones. As controls, pure cultures of each of the trans- 
fected L cell clones were treated with PEG and fused to 
themselves. 4 d after PEG treatment, replicate cultures were 
either harvested for the CAT assay or stained with Hoechst 
33258 in order to determine nuclear composition. We deter- 
mined that between 14 and 25 % of the nuclei on a dish were 
from L cells, contained inside heterokaryons. Thus, the 
proportion of nuclei capable of responding to trans-acting 
factors differed by less than twofold among experiments with 
different L cell clones and could not account for the differ- 
ences in CAT activity described below. 

To quantitate the transcriptional activity of the human 
Q-cardiac actin gene promoter after exposure to muscle- 
specific factors, similar amounts of L cell protein from in- 
dividual clones of PEG-treated pure L cell homokaryon cul- 
tures (Fig. 5, A-D) and from the corresponding heterokaryon 
cultures (Fig. 5, A'-D') were assayed and the CAT activities 
compared. We determined how much protein to assay using 
the following calculation. First, the protein content of the ex- 
tracts was determined. Then, to account for the proportion 
of cells capable of contributing any CAT activity, the per- 
centage of L cell nuclei (inside and outside heterokaryons) 
relative to the total number of nuclei on the dish was estab- 
lished for a given clone. This value ranged between 70 and 
80% and was used to adjust the amount of protein assayed 
for CAT activity in the corresponding homokaryon culture. 

Using this assay, we discovered that the human a-cardiac 
actin gene promoter in the various L cell clones responded 
differently to muscle transcription factors supplied by the rat 
muscle ceils. The analysis of four clones is shown in Fig. 5. 
Two clones demonstrated no responsiveness (compare A, A' 
and C, C') and the other two displayed increased transcrip- 

tional activity of the human a-cardiac actin promoter as evi- 
denced by increased CAT activity after fusion in hetero- 
karyons (compare B, B' and D, D'). CAT enzymatic activity 
was induced in only 2 of the 20, or 10 %, of the clones ana- 
lyzed in this manner. In this small percentage of cells the de- 
gree of responsiveness, or increase in CAT activity, ranged 
from 5- to 50-fold. Furthermore, the basal activity in un- 
fused L cells was not a predictor of inducibility. For example, 
A and B clones had similar low but detectable basal CAT ac- 
tivities, yet A was not induced at all and B was induced ap- 
proximately fivefold in heterokaryons. Clone D, which had 
a relatively high basal CAT activity, was capable of 50-fold 
induction and expressed the highest levels of CAT activity 
determined by scintillation counting. This finding suggests 
that differences among L cell clones affect the ability of the 
a-cardiac actin CAT promoter to respond to tissue-specific 
transcription factors. 

Inducibility of  the a-Cardiac Actin Promoter 
in L Cells Is a Heritable Property 

To determine the reproducibility of the results obtained with 
different clones, we examined the CAT activity in individual 
transfected L cell clones in three independent series of het- 
erokaryon experiments performed consecutively over a 2-mo 
period. In each experiment, the inducible CAT activity 
proved similar for the cells of a given clone. Examples of the 
results obtained in three separate fusion experiments with 
two clones, A and B, are shown in Fig. 6. Note that clone 
A has a high basal CAT activity and cannot be further in- 
duced, whereas clone B has a low basal activity and can be 
induced fivefold in each experiment. Thus, the inducibility 
of the transfected cardiac actin gene promoter appears to be 
a stably inherited property of a given L cell clone. 

Discussion 

We have developed a generally applicable system for iden- 
tifying tissue-specific factors that enhance transcription 

Figure 6. Basal and inducible CAT activities are stably inherited properties of transfected L cells. CAT activity was assayed in three separate 
fusion experiments with ceils derived from L cell clone A (L.pHCA485CAT.4) and from L cell clone B (L.pHCA485CAT.6). Equivalent 
amounts of L cell protein were assayed for homokaryons of transfected L cells (A, B) and for heterokaryons formed with the same L cell 
clones (A', B'). The data for the third heterokaryon experiment shown here is also shown in Fig. 5, A and B. The percentage conversion 
to acetylated products from left to right was (A) 0.29, (A') 0.25, (A) 0.35, (A') 0.41, (A) 0.13, (A') 0.03, (B) 0.07, (B') 0.27, (B) 0.07, (B') 
0.39, (B) 0.13, and (B') 0.83. The silica plates were exposed to XAR film for 2 wk. 
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based on function in vivo. This system also provides a novel 
approach to the study of clonal variation in the expression 
of stably transfected genes. For this purpose, we used non- 
dividing short-term fusion products known as heterokary- 
ons. In this case, muscle cells were fused with fibroblast L 
cells stably transfected with a muscle-specific gene. The 
transfected gene was a fusion gene containing 5' tissue-spe- 
cific cis-acting regulatory sequences of the human a-cardiac 
actin gene linked to the coding region of the reporter gene, 
bacterial CAT (Minty and Kedes, 1986; Minty et al., 1986). 
With pooled clones of transfected L cells, we found that the 
transcriptional activity of the a-cardiac actin-CAT construct 
could be induced in heterokaryons by more than an order of 
magnitude. However, the results varied greatly from one ex- 
periment to the next. This variability proved to be due to 
differences among transfected L cells. 

Individual clones of transfected L cells were analyzed and 
found to differ markedly, both in their basal and in their in- 
ducible a-cardiac actin-CAT activity. The human a-cardiac 
actin gene promoter was transcriptionally active in most L 
cell clones (90%). However, this basal level of activity 
differed by as much as 50-fold among clones. In the majority 
of clones analyzed, muscle factors were not capable of effec- 
tively inducing the expression of the actin gene promoter and 
no increase in CAT activity was observed in heterokaryons. 
In fact, in only 10 % of the clones analyzed was CAT activity 
induced after fusion and the magnitude of this induction 
ranged between 5- and 50-fold. The basal level of transcrip- 
tional activity in the L cell clone was not a predictor of the 
magnitude of the induction in responsive cells. Indeed, there 
were clones with low but detectable basal activity that could 
not be induced at all (Fig. 5, A and A') and other clones with 
high basal activity that could be further induced 50-fold (Fig. 
5, D and D'). However, both basal and inducible CAT activi- 
ties appeared to be stably heritable properties of individual 
L cell clones. 

The basis for the clonal variation in the ability to activate 
stably transfected muscle genes in heterokaryons is of inher- 
ent interest. It appears that the variability is not due to gene 
copy number, since there was no correlation between the 
level of CAT activity and the number of transfected genes per 
cell. We cannot rule out the possibility that the differences 
among clones resulted from stably heritable differences in L 
cell karyotype. However, the more likely possibility is that 
the range in basal and inducible CAT activity is due to the 
random integration of constructs into chromosomal sites of 
active and inactive chromatin. Sites of integration are known 
to lead to alterations in methylation patterns, packaging into 
inactive chromatin, and gene rearrangements (Sweet et al., 
1981; Christy and Scangos, 1982; Davies et al., 1982; Gebara 
et al., 1987). The apparent "cis variability" observed here 
could result from integration of the constructs in concati- 
nated form such that different numbers of genes were tran- 
scriptionally active in different cells. Possibly the observed 
clonal variation could be overcome by transfecting a different 
gene construct. The role of integration sites in gene activity 
could be tested by determining whether uninducible clones 
can give rise to inducible clones after a second transfection 
with an a-cardiac actin reporter gene construct. On the other 
hand, nonresponsive clones might give rise to responsive 
clones after treatment with the hypomethylating agent, 5-aza- 
cytidine, if methylation levels play a role in the variable ac- 

tivity of transfected genes. In previous studies of endogenous 
gene activation, muscle gene expression was not detected in 
heterokaryons produced with HeLa cells unless the HeLa 
cells had been exposed to 5-azacytidine before fusion (Chiu 
and Blau, 1985). 

The heterokaryon approach described here could be ex- 
tended to other types of studies of regulatory factors that in- 
duce the expression of transfected genes. For example, it pro- 
vides a means for studying the tissue-specific regulation of 
a transfected gene in a cell type that is not itself readily trans- 
fected. That a variety of cell types can be fused to form the 
kind of short-term nondividing heterokaryons described 
for muscle (Blau et al., 1983, 1985; Chiu and Blau, 1984, 
1985; Wright, 1984a, b; Pavlath and Blau, 1986; Hardeman 
et al., 1986a; Clegg and Hauschka, 1987; Miller et al., 1988), 
has been demonstrated by Baron and Maniatis (1986), Enoch 
et al. (1986), and Lufkin and Bancroft (1987). Finally, the 
utility of heterokaryons is not restricted to transcription- 
inducing factors. For example, heterokaryons could be used 
to study the effect of RNA-splicing factors derived from 
different differentiated cell types on the processing of a gene 
transfected into an L cell. 

Our findings suggest that a genetic approach to the identi- 
fication of genes encoding tissue-specific transcription-in- 
ducing factors may now be possible. The aim of this ap- 
proach is to introduce DNA into a cell line containing, but 
not efficiently expressing, a transfected gene of interest, in 
order to assay for a marked increase in the transcriptional ac- 
tivity of that gene (Episkopou et al., 1984). In contrast to the 
recent report of Lufkin and Bancroft (1987), our results indi- 
cate that if a pool of stably transfected cells is used in such 
an assay, highly variable results will be obtained. However, 
both the basal and inducible CAT activities were heritable 
and stable properties of a given L cell clone. Accordingly, 
it would now seem possible to identify the appropriate clone 
of stable transfectants that can respond maximally to the 
tissue-specific factors of interest required for this approach 
to work. Although the analysis would be simplified ifa single 
gene product were involved, multiple factors are not pre- 
cluded. The induction by the transfected gene could be in- 
direct. For example, the gene product could be a factor that 
modifies preexisting factors rendering them muscle specific. 

The need for functional in vivo assays for transcription- 
inducing factors is underscored by some of the problems en- 
countered with the more traditional biochemical purification 
approaches. The most stringent criteria for the identification 
of a transcription factor are that it binds to a specific se- 
quence of DNA and that it alters transcription efficiency in 
an in vitro assay (McKnight and Tjian, 1986). Yet, increasing 
evidence suggests that some regulatory proteins such as SV- 
40 T-antigen or HSV polypeptide 4 can activate transcription 
without binding directly to a particular cis-acting regulatory 
sequence (McKnight and Tjian, 1986). This raises the possi- 
bility that rate-limiting regulatory factors act as modifiers of 
sequence-specific repressors or activators that are synthe- 
sized constitutively. In addition, some well-characterized 
transcription factors such as CCAAT transcription factor, 
which binds to the CCAAT sequence, function poorly in in 
vitro transcription assays (Jones et al., 1987). We suggest 
that a genetic approach using well-characterized transfected 
clones should complement biochemical approaches by pro- 
viding a means for identifying trans-acting transcription 
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regulatory factors or the genes that encode them based on 
their function in vivo. 

Received for publication 4 August 1987, and in revised form 4 November 
1987. 
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