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Aiming at the problem of gene expression profile’s high redundancy and heavy noise, a new feature extraction model based on
nonnegative dual graph regularized latent low-rank representation (NNDGLLRR) is presented on the basis of latent low-rank
representation (Lat-LRR). By introducing dual graphmanifold regularized constraint, theNNDGLLRR can keep the internal spatial
structure of the original data effectively and improve the final clustering accuracy while segmenting the subspace.The introduction
of nonnegative constraints makes the computation with some sparsity, which enhances the robustness of the algorithm. Different
from Lat-LRR, a new solution model is adopted to simplify the computational complexity. The experimental results show that the
proposed algorithm has good feature extraction performance for the heavy redundancy and noise gene expression profile, which,
compared with LRR and Lat-LRR, can achieve better clustering accuracy.

1. Introduction

With the accelerated pace of modern life, the high incidence
of cancer has brought great challenges to human health. How
to detect, prevent, and treat cancer effectively has become an
international hotspot of medical research. Gene expression
profile is a specific cDNA sequence data of cells, which
can describe cells’ current physiological function and state.
Researches show that tumor cells and normal cells could
be identified effectively by analyzing and processing the
original gene expression data. However, the scale of the gene
expression profile is huge and complex due to the diversity
and specificity of the cells; therefore the traditional methods
of data analysis and processing have been unable to adapt to
these extremely large-scale data.

Gene expression profile extracting includes two kinds of
methods: linear and nonlinear. Early linear transformation
methods include principal component analysis [1–3] (PCA),
linear discriminant analysis [4–6] (LDA), and independent
component analysis [7, 8] (ICA). The main methods of non-
linear transformation include kernel method [9], neural net-
work [10, 11], manifold learning [12, 13], and sparse represen-
tation [14, 15]. In recent years, LRR [16–18] and neural

networks have been widely used in feature extraction and
classification of gene expression profile. Reference [19] used
NMF for gene feature extraction and achieved more satis-
factory results. Ref. [20] proposed a gene expression profile
classification means based on ontology perception. Ref.
[21] proposed a subcellular cooccurrence matrix feature
extraction method. Ref. [22] proposed a gene expression
profile classification method by neural network hybrid back-
propagation. Ref. [23] proposed a supervised way of tumor
prediction with multiview.

The size of the gene expression profile is large, and
there are interrelationships between the samples.The internal
spatial structure of the data may be destroyed in the process
of linear transformation. In this paper, a model of feature
extraction based on NNDGLLRR is proposed on the basis of
Lat-LRR, which with low-rank sparse constraint can remove
the redundant components of gene expression and suppress
the noise. Nonnegative constraints make the calculation
with a certain degree of sparsity, in line with the practical
significance of the data, and enhance the robustness of the
algorithm. And the manifold regularized constraint is intro-
duced, so that the result of feature extraction can describe the
spatial structure of the original data more completely.
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2. Related Work

2.1. LRR. LRR is a combination ofmatrix low-rank decompo-
sition and sparse decomposition. In recent years, it has been
widely used in subspace clustering. LRR assumes that the
original data comes from different subspaces and performs
feature extraction by trying to find the lowest rank represen-
tation of the original data. And this low-rank representation
coefficient is the reflection of the original data in the spatial
distribution of structural information. If the original data
X = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑛] ∈ R𝑚×𝑛, each column 𝑥𝑖 represents
a sample, and generally the LRR uses the data itself as a
dictionary. Then the model can be as shown in

𝑂1 = {{{
min ‖Z‖∗ + 𝜆 ‖E‖2,1
s.t. X = XZ + E. (1)

The LRR matrix Z = [𝑧1, 𝑧2, 𝑧3, . . . , 𝑧𝑛] ∈ R𝑛×𝑛, and 𝑧𝑖 is
the linear representation coefficient of the sample 𝑥𝑖 under
the data dictionary X. The original data usually contains a
lot of noise, while the sparse constraint can maintain the
robustness of the algorithm effectively. Ref. [24] shows the
specific solution process of LRR.

LetZ = J; we construct the followingAugmented Lagran-
gian function:

L = ‖J‖∗ + 𝜆 ‖E‖2,1 + ⟨Λ,Z − J⟩ + ⟨Π,X − XZ − E⟩
+ 𝜇2 {‖Z − J‖2𝐹 + ‖X − XZ − E‖2𝐹} . (2)

The specific update algorithm is as follows.
Keep Z = Z𝑘,Λ = Λ𝑘; update J:

J𝑘+1 = argmin
J

J𝑘∗ + 𝜇𝑘2

Λ𝑘𝜇𝑘 + Z𝑘 − J𝑘


2

𝐹

. (3)

Keep J = J𝑘, Λ = Λ𝑘, and Π = Π𝑘; update Z:
Z𝑘+1 = argmin

Z


Λ𝑘𝜇𝑘 + Z𝑘 − J𝑘


2

𝐹

+ 
Π𝑘𝜇𝑘 + X − XZ𝑘 − E𝑘


2

𝐹

.
(4)

Keep Z = Z𝑘,Π = Π𝑘; update E:
E𝑘+1 = argmin

E
𝜆 E𝑘2,1

+ 𝜇𝑘2

Π𝑘𝜇𝑘 + X − XZ𝑘 − E𝑘


2

𝐹

.
(5)

2.2. Lat-LRR. LRRhas two conditions; one is that the original
data X contains enough samples, and the other is that X
contains enough nonpolluting data. However, these two con-
ditions are almost impossible to achieve for gene data. On the
one hand, the available number of gene samples for research

is small because of the high prices of gene sequencing. On the
other hand, due to process, instrument electromagnetic inter-
ference, and other factors, noise pollution will be produced
inevitably in the process of genetic sequencing. To overcome
the limitation of LRR, [25] proposed a method of Lat-LRR
which expressed the original observation data X as a linear
combination of principal featureXZ and latent feature LX for
feature extraction. Considering the characteristics of heavy
noise in gene expression profile, we added sparsity constraints
to the model to construct the following Lat-LRR function:

𝑂2 = {{{
min ‖Z‖∗ + ‖L‖∗ + 𝜆 ‖E‖2,1
s.t. X = XZ + LX + E. (6)

The solution of Lat-LRR is given in [26]. Alternating
direction method (ADM) is adopted to solve the model (6).
Let Z = J1, L = J2; we constructed the following Augmented
Lagrangian function:

L = J1∗ + J2∗ + 𝜆 ‖E‖2,1 + ⟨Λ,Z − J1⟩ + ⟨Π, L
− J2⟩ + ⟨Δ,X − XZ − LX − E⟩ + 𝜇2 {Z − J1

2𝐹
+ L − J2

2𝐹 + ‖X − XZ − LX − E‖2𝐹} .
(7)

Keep Z = Z𝑘 and Λ = Λ𝑘; update J1:
J𝑘+11 = argmin

J1

J𝑘1∗ + 𝜇𝑘2

Λ𝑘𝜇𝑘 + Z𝑘 − J𝑘1


2

𝐹

. (8)

Keep L = L𝑘, Π = Π𝑘; update J2:
J𝑘+12 = argmin

J

J𝑘2∗ + 𝜇𝑘2

Π𝑘𝜇𝑘 + L𝑘 − J𝑘2


2

𝐹

. (9)

Keep J1 = J𝑘1, L = L𝑘, E = E𝑘, Λ = Λ𝑘, and Δ = Δ𝑘;
update Z:

Z𝑘+1 = (I + X𝑇X)−1

⋅ (X𝑇 (X − L𝑘X − E𝑘) + J𝑘1 + (X𝑇Δ𝑘 − Λ𝑘)
𝜇𝑘 ) . (10)

Keep Z = Z𝑘, E = E𝑘, Π = Π𝑘, and Δ = Δ𝑘; update L:
L𝑘+1 = ((X − XZ𝑘 − E𝑘)X𝑇 + J𝑘2 + (Δ𝑘X𝑇 −Π𝑘)

𝜇𝑘 )
⋅ (I + XX𝑇)−1 .

(11)

Keep Z = Z𝑘, L = L𝑘; update E:

E𝑘+1 = argmin
E

𝜆 E𝑘2,1
+ 𝜇𝑘2 X − XZ𝑘 − L𝑘X𝑘 − E𝑘2𝐹 .

(12)
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3. Method

3.1. NNDGLLRR. Lat-LRR overcomes the problem of too
many constraints of LRR dictionary; however, Lat-LRR has
limited ability to recover the subspace, and toomany auxiliary
variables are involved in the process of algorithm solving
that involves a lot of matrix singularity value decomposition
(SVD) and matrix inversion, which will affect the perfor-
mance of the algorithm. Ref. [27] proposed a feature extrac-
tionmethod combiningmanifold constraint and nonnegative

matrix factorization (NMF). In the case of NMF reducing
dimensionality, the internal spatial structure of the data is
maintained by manifold regularized constraint, and good
experimental results are obtained. Ref. [28, 29] proposed an
image clustering method combining manifold regularized
constraint with Lat-LRR. Similar to the image data, the gene
expression profile is also constituted by numerical matrix
with high redundancy and heavy noise. Considering this
characteristic, we constructed a new NNDGLLRR model on
the basis of the original model.

𝑂3 = {{{
min
Z

‖Z‖∗ + ‖L‖∗ + 𝛼2Tr (ZS1Z𝑇) + 𝛽2Tr (LS2L𝑇) + 𝜆 ‖E‖2,1
s.t. X = LXZ + E, Z ≥ 0, L ≥ 0, (13)

where 𝛼, 𝛽, and 𝜆 are nonnegative constants; the model is a
nonnegative latent low-rank representation (NNLLRR) when𝛼 and 𝛽 are equal to zero. Model (13) takes a more general
form. The dual regularized constraint is used to preserve
the internal spatial structure of the original data, and sparse
constraints and nonnegative constraints are used to maintain
and enhance the robustness of the algorithm. S1 and S2 are
Laplacianmatrices, S1 = D1−W1, S2 = D2−W2.W1, andW2
are weight matrix, and there are many ways to solve W, and
here we use Gaussian thermal weight. The specific solution is
as follows:

(W1)𝑖𝑗 = 𝑒−‖𝑥𝑖−𝑥𝑗‖2𝐹/𝜎; 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑛
(W2)𝑖𝑗 = 𝑒−‖(𝑥𝑖)𝑇−(𝑥𝑗)𝑇‖2𝐹/𝜎; 𝑖, 𝑗 = 1, 2, 3, . . . , 𝑚, (14)

where 𝜎 is a constant; 𝑥𝑖 and 𝑥𝑗 represent the 𝑖th column and
𝑗th column of X (𝑖th and 𝑗th sample); 𝑥𝑖 and 𝑥𝑗 represent the𝑖th row and the 𝑗th row of X, D𝑖𝑗=∑𝑗W𝑖𝑗.

ADM is used to solve model (12), and the following
augmented Lagrange function is constructed:

L = ‖Z‖∗ + ‖L‖∗ + 𝛼2Tr (ZS1Z𝑇) + 𝛽2Tr (LS2L𝑇)
+ 𝜆 ‖E‖2,1 + 𝜇2


Λ𝜇 + X − LXZ − E


2

𝐹

,
(15)

whereΛ is a Lagrangian multiplier; 𝜇 is a constant and 𝜇 > 0.
Data in real life is generally nonnegative, and nonnegative

constraints will make the calculation with a certain degree of
sparseness and enhance the robustness of the algorithm. To
maintain the nonnegative of feature extraction, we define the
following operators:

𝑃 (𝑎𝑖𝑗) = {{{
𝑎𝑖𝑗; if 𝑎𝑖𝑗 > 0
0; otherwise. (16)

The solution of model (15) is divided into three subprob-
lems: first, the solution of variable Z, second, the solution of
variables L, and, third, the solution variable of E.

(1) Solving the First Subproblem. Update Z:

Z𝑘+1 = argmin
Z

‖Z‖∗ + 𝛼2Tr (ZS1Z𝑇)

+ 𝜇𝑘2

Λ𝑘𝜇𝑘 + X − L𝑘XZ − E𝑘


2

𝐹

.
(17)

Regarding Taylor second-order expansion to (17), the
approximate solution of Z is as follows:

Z𝑘+1 = argmin
Z

‖Z‖∗ + 𝛼2Tr (ZS1Z𝑇) + 𝜂Z𝜇𝑘2
Z

− Z𝑘 − 1𝜂Z𝜇𝑘X
𝑇 (L𝑘)𝑇Π𝑘

2

𝐹

= argmin
Z

‖Z‖∗
+ 𝜂Z𝜇𝑘 + 𝛼 S12

Z − Z𝑘

− 1𝜂Z𝜇𝑘 + 𝛼 S1 (X
𝑇 (L𝑘)𝑇Π𝑘 − 𝛼Z𝑘S1)


2

𝐹

= D1/𝜔Z (Z𝑘 + 1𝜔Z
(X𝑇 (L𝑘)𝑇Π𝑘 − 𝛼Z𝑘S1)) .

(18)

Nonnegative constraints to Z are as follows:

(Z𝑘+1)
𝑖𝑗
= 𝑃 (Z𝑘+1)

𝑖𝑗
. (19)

Define 𝜂Z = 𝜕2ℎ/𝜕Z2; ℎ = (𝜇𝑘/2)‖Λ𝑘/𝜇𝑘 + X − L𝑘XZ𝑘 −
E𝑘‖2𝐹; 𝜔Z = 𝜂Z𝜇𝑘 + 𝛼‖S1‖; Π𝑘 = Λ𝑘 + 𝜇𝑘(X − L𝑘XZ𝑘 − E𝑘).
Ref. [30] gives the solution of𝐷𝜀(⋅); the solution process is as
follows:

𝐷𝜀 (𝜑) = U𝑆𝜀 (Ω)V𝑇
= argmin

T
𝜀 ‖Τ‖∗ + 12 Τ − 𝜑2𝐹 . (20)
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In (20),UΩV𝑇 is the singular value decomposition (SVD)
of 𝜑, 𝑆𝜀(⋅) is the vector form of the singular value contraction
operator (SVT), and 𝑆𝜀(Ω) is defined as follows:

𝑆𝜀 (Ω) = diag (sgn (Ωii)) (Ωii − 𝜀) . (21)

(2) Solving the Second Subproblem. Similarly, update L:

L𝑘+1 = argmin
L

‖L‖∗ + 𝛽2Tr (LS2L𝑇) + 𝜂L𝜇𝑘2
L − L𝑘

−Π𝑘 (Z𝑘)𝑇X𝑇
2

𝐹
= argmin

L
‖L‖∗

+ 𝜂L𝜇𝑘 + 𝛽 S22
L − L𝑘

− 1𝜂L𝜇𝑘 + 𝛽 S2 (Π
𝑘 (Z𝑘)𝑇X𝑇 − 𝛽L𝑘S2)


2

𝐹

= D1/𝜔L (L𝑘 + 1𝜔L
(Π𝑘 (Z𝑘)𝑇X𝑇 − 𝛽L𝑘S2)) .

(22)

Nonnegative constraints to L are as follows:

(L𝑘+1)
𝑖𝑗
= 𝑃 (L𝑘+1)

𝑖𝑗
. (23)

Define 𝜂L = 𝜕2ℎ/𝜕L2; 𝜔L = 𝜂L𝜇𝑘 + 𝛽‖S2‖.
(3) Solving the Third Subproblem. Update E:

E𝑘+1 = argmin
E

𝜆 ‖E‖2,1 + ⟨Λ𝑘,X − L𝑘XZ𝑘 − E⟩

+ 𝜇𝑘2 X − L𝑘XZ𝑘 − E2𝐹
= 𝜆 ‖E‖2,1 + 𝜇𝑘2


Λ𝑘𝜇𝑘 + X − L𝑘XZ𝑘 − E


2

𝐹

= Θ𝜆/𝜇𝑘 (Λ𝑘𝜇𝑘 + X − L𝑘XZ𝑘) ,

(24)

whereΘ𝜏(⋅) is a soft threshold operator (ST);Θ𝜏(⋅) is defined
as follows:

Θ𝜏 (𝜓) = sgn (𝜓)max (𝜓 − 𝜏, 0) . (25)

The iterative process of each variable of NNDGLLRR
is given above. The concrete updating process is shown in
Algorithm 1.

3.2. Sparse Representation Classifier (SRC). Sparse represen-
tation is a hotspot in the field of pattern recognition in recent
years. SRC has been successfully applied in the field of image
classification and has achieved relatively ideal experimental
results [31]. Similar to the image data, the gene expression
profile is also composed by a series of high redundancy and

Table 1: Test data information.

Data name Size Classes Number
DLBCL 5469 × 77 2 77
MLL 12582 × 72 3 72
LC 12600 × 203 5 203
ALL 12626 × 248 6 248

heavy noise of gene samples. In this paper, the latent features
extracted by NNDGLLRR are regarded as data dictionary to
construct the following SRC model:

𝑂4 = argmin
𝜁

D𝜁 − L∗y2 + 𝛾 ‖𝜁‖1 . (26)

According to the result of SRC, we can get the classifica-
tion result of unknown gene sample y:

𝑖∗ = argmin
𝑖

D𝛿𝑖 (𝜁) − L∗y2 . (27)

The detailed flow of the SRC is shown in Algorithm 2.

3.3. Algorithm Flow. To sumup, the algorithm can be divided
into two parts; one is to use NNDGLLRR to extract latent
features of the original gene expression profile, and the other
is to use SRC to classify the latent features. The overall flow is
as shown in Algorithm 3.

4. Results and Discussion

4.1. Selecting the Test Data. To test the feature extraction
performance of the algorithm, we used diffuse large B-
cell lymphoma [32] (DLBCL), mixed lineage leukemia [33]
(MLL), lung cancer [34] (LC), acute lymphoblastic leukemia
[35] (ALL) gene sequences to make test, and the sample
information of each group of genes as is shown in Table 1.

4.2. Accuracy Test. 𝐾-means and sparse representation clas-
sifier (SRC) are simple and common classifiers. To compare
the clustering results of 𝐾-means and SRC, the two kinds of
classifiers are used to classify the original gene expression
profile. Clustering results are shown in Table 2. It is not
difficult to find that the classification effect of SRC is signifi-
cantly higher than that of𝐾-means, which is due to the small
number of gene expression profiles. To verify the effectiveness
of the algorithm for feature extraction, the extracted features
from LRR, Lat-LRR, and NNDGLLRR are classified by SRC.
Classification results as shown in Table 2.

Table 2 shows that any one of LRR, Lat-LRR, and
NNDGLLRR can achieve feature extraction effectively. How-
ever, the feature extraction effect of NNDGLLRR is better
than that of Lat-LRR. The category and number of samples,
as well as dimension of the gene expression profile, will have
an impact on the final recognition effect.

4.3. The Influence of Graph Regularized Coefficients. Gener-
ally, we set 𝛼 = 𝛽. To verify the influence of graph regularized
coefficients on feature extraction, we have compared the
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Input: X ∈ R𝑚×𝑛, 𝛼 > 0, 𝛽 > 0, 𝛾 > 0
Initialization: Z0 ∈ R𝑛×𝑛, L0 ∈ R𝑚×𝑚, E0 = Λ0 = Π0 = 0, 𝜇0, 𝜇max, 𝜌, 𝜀1, 𝜀2
While: max(‖Z𝑘+1 − Z𝑘‖∞, ‖L𝑘+1 − L𝑘‖∞) > 𝜀1 and ‖X − L𝑘+1XZ𝑘+1 − E𝑘+1‖∞ > 𝜀2 do
(1) updateΠ𝑘:Π𝑘 = Λ𝑘 + 𝜇𝑘(X − L𝑘XZ𝑘 − E𝑘)
(2) update Z𝑘+1: (Z𝑘+1)𝑖𝑗 = 𝑃(Z𝑘+1)𝑖𝑗
(3) update L𝑘+1: (L𝑘+1)𝑖𝑗 = 𝑃(L𝑘+1)𝑖𝑗
(4) update E𝑘+1: E𝑘+1 = Θ𝜆/𝜇𝑘 (Λ𝑘/𝜇𝑘 + X − L𝑘XZ𝑘)
(5) update Λ𝑘+1: Λ𝑘+1 = Λ𝑘 + 𝜇𝑘(X − L𝑘XZ𝑘 − E𝑘)
(6) update 𝜇𝑘+1: 𝜇𝑘+1 = min(𝜇max, 𝜌𝜇𝑘)
End while
Output: L∗

Algorithm 1: Solving NNDGLLRR model with ALM.

Table 2: Algorithm identification accuracy under different data sets.

Dataset Accuracy (%)𝐾-means SRC LRR + SRC Lat-LRR + SRC NNDGLLRR + SRC
DLBCL 46.87 69.79 90.62 89.58 94.79
MLL 50.83 71.43 88.33 90.83 97.50
LC 50.79 73.54 87.83 91.26 98.14
AL 43.33 69.44 83.33 87.22 93.32
Average 47.96 71.05 87.53 89.72 95.94

Input: L∗ ∈ R𝑚×𝑚
(1) ComputeD = L∗X
(2) Compute the sparse representation coefficient

by Eq. (26);
(3) Compute 𝑒𝑖(𝑦) = ‖D𝛿𝑖(𝜁) − L∗y‖2;
(4) 𝑖∗ = argmin

𝑖

𝑒𝑖(𝑦);
Output: 𝑖∗

Algorithm 2: The flow of SRC.

Input: X ∈ R𝑚×𝑛
(1) Compute L∗ by Eq. (13);
(2) classify the gene expression profile Eq. (27)
Output: 𝑖∗

Algorithm 3: Algorithm flow.

recognition results of LRR, Lat-LRR, andNNDGLLRR under
the condition of different 𝛼 (𝛽) values. The results are shown
in Figure 1.

Through the test results of MLL and LC, we can find that
manifold regularized constraint has obvious optimization
effect on the gene expression profile feature extraction when
the values of 𝛼 and 𝛽 are appropriate, and it can significantly
improve the recognition effect of feature extraction.However,𝛼 and 𝛽 should not be too large or too small. The optimal
graph regularized coefficients may be different for different
test data sets.

4.4. The Influence of Sparse Representation Coefficients. Dur-
ing the process of gene sequencing, the resulting gene
expression profile will usually contain heavy noise due to
the sequencing process. To verify the effect of the sparse
constraint on the feature extraction, we tested the classifica-
tion accuracy of LRR, Lat-LRR, and NNDGLLRR for feature
extraction under different sparse constraint coefficients 𝜆.
The test results are shown in Figure 2.

Figure 2 shows that different sparse constraint coefficients
have a considerable effect on the final feature extraction
results. When the value of 𝜆 is appropriate, the performance
of Lat-LRR and NNDGLLRR on feature extraction is better
than that of LRR. In general, the performance ofNNDGLLRR
is better than that of Lat-LRR, which proves the validity of
manifold constraint again.

4.5. Complexity Analysis. Z ∈ R𝑛×𝑛, L ∈ R𝑚×𝑛, and E ∈
R𝑚×𝑛, and we set the lowest ranks of Z and L obtained by
the algorithm as 𝑟1 and 𝑟2. Then the complexity of SVT ope-
ration for Z and L is about O(𝑟1𝑛2) and O(𝑟2𝑚2), and the
complexity of ST operation for E is about O(𝑘𝑚𝑛). The
complexity of construction the Laplacian matrix of Z and
L is about O(𝑚𝑛2) and O(𝑚2𝑛); and the complexity of one
positive operation for Z and L is about 𝑛2 and 𝑚2. If the
iteration of the algorithm is 𝑘, then the overall complexity
of LRR, Lat-LRR, and NNDGLLRR algorithms is shown in
Table 3.

Generally, it is considered that𝑚 ≫ 𝑛 for gene expression
profile. It can be seen from Table 3 that LRR is the simplest
in terms of computational complexity, but the performance
of LRR on feature extraction is less effective than that of
Lat-LRR and NNDGLLRR, and it is difficult to meet the
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Table 3: Algorithm complexity calculation.

Complexity
SVT ST Others Total

LRR 2𝑘𝑟1𝑛2 𝑘𝑚𝑛 0 O(2𝑘𝑟1𝑛2 + 𝑘𝑚𝑛)
Lat-LRR 2𝑘𝑟1𝑛2 + 2𝑘𝑟2𝑚2 𝑘𝑚𝑛 0 O(2𝑘𝑟2𝑚2)
NNDGLLRR 𝑘𝑟1𝑛2 + 𝑘𝑟2𝑚2 𝑘𝑚𝑛 𝑚𝑛2 + 𝑚2𝑛 + 𝑘𝑛2 + 𝑘𝑚2 O(𝑘𝑟2𝑚2)
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Figure 2: Clustering performance of algorithms with different sparse representation coefficients.
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actual demand. The result of Lat-LRR on feature extraction
can be not bad, but the partitioning ability of the subspace
is limited, and the operation speed is slow because of too
many introduced variables. The variable update algorithm of
NNDGLLRR not only reduces the calculated amount, but
also achieves satisfactory results on feature extraction.

5. Conclusion

Aiming at the characteristics of high redundancy and heavy
noise of gene expression profile, a feature extraction model
of NNDGLLRR is proposed in this paper. In the process
of experiment, we extracted the features of different gene
expression profile by LRR, Lat-LRR, and NNDGLLRR and
classified the extracted features by SRC. The experimental
results show that the performance of NNDGLLRR on feature
extraction is better than that of LRR and better than Lat-
LRR slightly, which verified the comparative advantages of
NNDGLRR. At the same time, compared with Lat-LRR,
the overall complexity of NNDGLLRR is reduced through
the improvement of the variable update algorithm. The
experiments using different gene expression data sets for
testing have made comparatively ideal experimental results,
which proves the validity of the dual graph regularized
constraint. In summary, the proposed nonnegative low-
rank sparse constraint and dual graph regularized constraint
are reasonable, and NNDGLLRR has good adaptability to
different gene expression profile with high redundancy and
heavy noise.
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