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Abstract
COVID-19 has caused a pandemic crisis that threatens the world in many areas, especially in public health. For the

diagnosis of COVID-19, computed tomography has a prognostic role in the early diagnosis of COVID-19 as it provides

both rapid and accurate results. This is crucial to assist clinicians in making decisions for rapid isolation and appropriate

patient treatment. Therefore, many researchers have shown that the accuracy of COVID-19 patient detection from chest CT

images using various deep learning systems is extremely optimistic. Deep learning networks such as convolutional neural

networks (CNNs) require substantial training data. One of the biggest problems for researchers is accessing a significant

amount of training data. In this work, we combine methods such as segmentation, data augmentation and generative

adversarial network (GAN) to increase the effectiveness of deep learning models. We propose a method that generates

synthetic chest CT images using the GAN method from a limited number of CT images. We test the performance of

experiments (with and without GAN) on internal and external dataset. When the CNN is trained on real images and

synthetic images, a slight increase in accuracy and other results are observed in the internal dataset, but between 3% and

9% in the external dataset. It is promising according to the performance results that the proposed method will accelerate the

detection of COVID-19 and lead to more robust systems.

Keywords COVID-19 � Computed tomography � Deep learning � Generative adversarial network � Lung segmentation �
Data augmentation

1 Introduction

COVID-19 is an infectious disease with a high mortality

rate caused by the mutant SARS-CoV-2 virus. Following

the identification of the first case in Wuhan, China, in

December 2019, it quickly spread all over the world and

was declared a pandemic by WHO on March 11, 2020.

COVID-19 has caused major public health problems in the

international community due to its rapid spread all over the

world [1].

It is extremely important to be able to diagnose COVID-

19 in an infected patient during the pandemic process.

Although polymerase chain reaction (PCR) testing is the

standard for confirming COVID-19 positive patients,

medical imaging such as X-ray and non-contrast computed

tomography (CT) plays an important role in the detection

of COVID-19. Since COVID-19 can be detected in the

early stages with the presence of lung ground-glass opac-

ities in CT images, which are clearer and more accurate

than X-ray images, the diagnosis of COVID-19 from CT

will help clinicians make quick decisions for rapid isolation

and appropriate patient treatment [2].

Recently, computer vision has led to extraordinary

developments with the advancement of artificial intelli-

gence technology and especially the development of con-

volutional neural networks (CNN). It is widely used in the

medical field and provides support for medical diagnosis

[3–5]. Additionally, due to the heavy workload of large

numbers of infected patients and healthcare professionals
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during the pandemic crisis, the AI-based computer-aided

system could speed up the diagnostic process. These sys-

tems can provide effective diagnosis of the disease in a

shorter time in cases such as radiologist insufficiency and

deficiency. It can also reduce the need for human surveil-

lance and identify details invisible to the human eye. In this

context, many deep learning models have also begun to be

developed for the diagnosis of COVID-19.

There is currently a great deal of interest in data-driven

approaches to diagnosing COVID-19. Many researchers

have used deep convolutional neural networks (CNN) such

as VGG, ResNet, Inception, Xception and DenseNet, with

well-known and proven performance, to diagnose COVID-

19. However, deep learning networks such as convolutional

neural networks require large amounts of training data. In

addition, because CNNs have a large number of parame-

ters, overfitting can easily occur in small datasets. How-

ever, medical imaging data are scarce, expensive and

fraught with legal concerns over patient privacy, so data-

sets are small in size. A quick and easy method, data

augmentation, can be used to overcome this problem [6].

The dataset is artificially expanded using techniques such

as image rotation, transformation, scaling, brightness or

contrast enhancement. However, it cannot be said that

completely different images are produced since the same

data are displayed differently with this method. In addition,

the dataset can be enlarged by generating unique data by

producing synthetic data with GAN, which is an advanced

technique [7, 8].

The main contributions of this article can be summa-

rized as follows:

• It is difficult to identify COVID-19 as findings on CT

images differ in both position and shape in different

patients due to infections caused by COVID-19. In

addition, we present a method for generating synthetic

CT images by developing a GAN-based model to

overcome the problem of overfitting in CNNs. In

addition, we demonstrate the effectiveness of GAN-

generated synthetic images in improving CNN’s gen-

eralization ability for COVID-19 detection in the

context of performance criteria in internal and external

datasets.

• We use a segmentation model based on ConvLSTMU-

Net architecture and graph-cut image processing for

segmentation of the relevant lung region from CT

images.

• We use data enlargement techniques such as random

distortion, rotation, flip and zoom with an in-place / on-

the-fly augmentation approach to increase the effec-

tiveness of the model during model training.

The rest of the paper is organized as follows. In Sect. 2,

brief information about the studies related to our study is

given. The materials and methods used in the study are

presented in Sect. 3. Section 4 presents the results of dif-

ferent analyzes for different deep learning algorithms in the

proposed frameworks on internal and external datasets. The

comparisons with the other related studies and the discus-

sion of the results are given in Sect. 5. Section 6 presents

the conclusion of this study.

2 Related works

Recently, many studies have been conducted to perform

data augmentation on medical images. Zhoe et al. [9]

developed the forward and backward GAN (F&BGAN)

method to create synthetic images of lung nodules in lung

cancer and used the VGG16 network for benign and

malignant classification. Chuquicusma et al. [10] produced

realistic lung nodules using DCGAN for the training of

radiologists. Frid-Adar et al. [11] proposed a magnification

scheme for advanced liver lesion classification based on a

combination of standard image perturbation and synthetic

liver lesion generation using GAN. Guibas et al. [12]

proposed a two-stage pipeline for generating synthetic

medical images from a pair of GANs, which was tested in

practice on retinal fundi images. Shin et al. [13] proposed a

method to generate synthetic abnormal MRI images with

brain tumors by training a GAN using two publicly avail-

able datasets of brain MRI.

Nowadays, there is intense interest in diagnosing

COVID-19 using deep learning methods. Wu et al. [14]

aimed to diagnose COVID-19 cases with the concept of

multi-view fusion using the ResNet50 architecture. The

datasets they used in their studies included 622 CT images

collected from two different hospitals in China. They

resized their images in the datasets to 256� 256. The

system they developed achieved 76% accuracy, 81:1%
sensitivity and 61:5% specificity. Xu et al. [15] collected

the data they used in their study from 3 different hospitals

in China. It achieved 86:7% accuracy, 81:5% sensitivity,

80:8% accuracy and 81:1% F1-score with pretrained

ResNet18 architecture using 618 CT images. Jin et al. [16]

used pretrained CNN models such as DPN-92, Inceptionv3,

ResNet50 and Attention ResNet50 with 3D U-Net?? for

the diagnosis of COVID-19. The datasets contain 850

COVID-19 positives and 541 negative COVID-19 images

and were collected from 5 different hospitals in China.

According to the performance criteria, their system

accepted the 3D U-Net??ResNet50 model as the best

model with 97:4% accuracy, 92:2% sensitivity and 99:1%

AUC values. Yousefzadeh et al. [17] introduced a deep

learning framework using different CNN architectures

DenseNet, ResNet, Xception and EfficientNetB0. The

datasets contain a total of 2124 CT images. The system
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they proposed resulted in 96:4% accuracy, 92:4% sensi-

tivity, 98:3% specificity, 95:3% F1 score and 98:9% AUC.

Ardakani et al. [18] proposed a system for detecting

COVID-19 using CNN architectures such as AlexNet,

VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNetv2,

ResNet18, ResNet50, ResNet101 and Xception. The data-

set they use contains 1020 CT images in total. Among the

10 networks, ResNet101 and Xception performed better

than the others according to their performance values. Chen

et al. [19] used the U-Net?? segmentation model together

with the ResNet50 model to diagnose COVID-19 using a

very large and non-public dataset of 106 patients from the

Renmin Hospital of Wuhan University. The results of

COVID-19 classification are 95:2% accuracy, 100% sen-

sitivity and 93:6% specificity. The U-Net and 3D CNN

models are used for lung segmentation and diagnosing of

COVID-19, respectively, in Ref. [20]. The results of the

model are 90:7% sensitivity, 91:1% specificity and 95:9%

AUC. Most of the previous works on COVID-19 are given

in Refs. [21–23].

3 Material and methods

3.1 Dataset

We use two different datasets in our study:

1. The dataset, which was collected from different open

sources [24], contains 1607 COVID-19 and 1667

normal CT images. We randomly allocate 80% of the

dataset for training and 20% for testing. We will refer

to this dataset as the internal dataset throughout the

study.

2. The external dataset in Ref. [25] contains 4001

COVID-19 and 9575 normal CT images. We use this

dataset to evaluate the performance of the trained

models.

3.2 Preprocessing

Since the internal dataset is collected from different sour-

ces, it contains CT images with a resolution of min 220�
200 - max 623� 421. For these reasons, the images in the

internal dataset were resized to 224� 224 resolution. In the

external dataset, all CT images are 512� 512 high-reso-

lution images. We also reduce the size of the CT images in

this dataset to 224� 224 to be standard and perform cen-

tral zooming.

3.3 Lung segmentation

Since distinctive information is in the lungs on CT images,

we apply lung segmentation to obtain only the lung area.

For segmentation, we applied a similar approach to Bidi-

rectionalConvLSTMU-Net (BDCU-Net) [26] architecture.

A total of 1667 normal CT data and masks in the internal

dataset were used for training the lung segmentation

architecture. We reserve 80% of the dataset for training and

20% of the dataset for validation.

We initially started with 1e� 4 learning rate and

training epochs of 30. We dynamically reduced the learn-

ing rate when there was no improvement in validation error

for 4 consecutive training periods. When there is no

improvement in validation error for 8 consecutive training

epochs, it is taken as the criterion for early stopping of

training. The Adam stochastic optimization algorithm,

which was developed as a solution to the disappearing

gradient problem, was used for parameter optimization. At

the end of the 26th epoch, an early stop occurs, and

accuracy: 0.9675 is obtained. The architecture of obtaining

the mask images from the CT images by using lung seg-

mentation model is given in Fig. 1. The sample images and

obtained mask images by using the lung segmentation

model are given in Fig. 2. The example images for the

relevant region obtained as a result of Graphcut image

processing [27] are given in Fig. 3.

3.4 Generating synthetic images

3.4.1 Generative adversarial network (GAN)

The GAN framework is a widely used modern method for

generating synthetic data from many domains [28, 29].

Examples of data generation with GANs include text-to-

image synthesis, superimage resolution, style transfer and

symbolic music production [30].

The working principle of GANs is simply; GAN is a

min-max game between two hostile networks, generator

G(z) and discriminator D(x). The generator tries to convert

the random noise into observations that appear to be

sampled from the original dataset, and the discriminator

tries to guess whether an observation comes from the

original dataset or is one of the generator’s fakes. At the

start of the process, generator G(z) takes a z-point (random

noise) from a latent space and outputs noisy images and

tries to fool the discriminator D(x). If the discriminator is

D(x), the generator tries to distinguish whether the images

from GðzÞ ¼ x are real or fake. The key of GANs lies in

how we change the training of the two networks so that as

the generator becomes more adept at deceiving the dis-

criminator, the discriminator must adapt to maintain its
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ability to accurately identify which observations are fake.

Thus, the generator tries to find new ways to fool the dis-

criminator so that the loop continues between the two

networks. The purpose of G(z) is to minimize the cost

function V(D, G) and to maximize the D(x) by training

both G(z) and D(x) at the same time:

min
G

max
D

VðD;GÞ ¼Ex� pdataðxÞ logDðxÞ½ �

þ Ez� pzðzÞ log 1� DðGðzÞÞð Þ½ �
ð1Þ

The architecture of GAN applied in the study is given in

Fig. 4

3.4.2 GAN Train Procedure

Initially, the parameters of the discriminator network are

set to non-trainable. The output of the generator network

feeds the discriminator and the generator is updated

through the discriminator, so the generator is stacked on

the discriminator. The hyperparameter of LeakyReLu

Fig. 1 The architecture of obtaining the mask images from the CT images by using BDCU-Net model

Fig. 2 Sample CT images and

mask images obtained as a

result of BDCU-Net
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layers used in discriminator and generator networks is

alpha ¼ 0:2, and momentum value of batch normalization

layer used in generator is 0.8. The detailed designs of the

discriminator and generator network used in the study are

given in Fig. 5.

80% of the internal dataset reserved for training iz used

in GAN training, i.e., 1286 COVID-19 and 1333 normal

CT images. Test data are not included in the training. The

pixel values of the CT images are normalized from [0, 255]

to ½�1; 1� as a preprocessing. In the training of both net-

works, Adam optimization algorithm with learning rate ¼
0:0001 and momentum value beta ¼ 0:9 is used as

hyperparameters. The least-squares function is used as the

loss function. In addition, the number of training periods is

determined as 40000 and the batch size is 64. The latent

space dimension where the generator is fed, is taken as 100.

A total of 2314 normal and 2267 COVID-19 synthetic

images are generated by GAN. The samples of the COVID-

19 and normal synthetic images produced after the GAN

training are given in Fig. 6.

3.5 CNN architectures

Deep CNN architectures pretrained on 9 well-known

ImageNet [31] datasets were used in this study: VGG16,

VGG19, Xception, ResNet50, ResNet50v2, Inceptionv3,

InceptionResNetv2, DenseNet121 and DenseNet169.

Fig. 3 Sample images for the

region of interest obtained after

applying Graphcut image

processing

Fig. 4 The framework of GAN
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VGG16 was developed to win the ILSVRC2014 (Large

Scale Visual Recognition Challenge 2014) in 2014 [32].

VGG16 is a convolutional neural network architecture

named after the Visual Geometry Group of Oxford devel-

oped. VGG-16 is a convolutional neural network with a

depth of 16 layers. The model loads a pretrained set of

weights on ImageNet and reaches 90% accuracy on Ima-

geNet, a dataset of more than 14 million images belonging

to 1000 classes. VGG-19 is the version of VGG with a

depth of 19 layers. VGG16 has 138, 357, 544 parameters

while VGG19 has 143, 667, 240 parameters.

He et al. [33] developed the architecture called residual

network (ResNet) to solve the vanishing/exploding gradi-

ent problem. ResNet is created by adding the blocks that

feed the residual values to the next layers into the model.

This is also called residual learning. ResNet-50 has 16

residual blocks. The main difference between ResNet50

and ResNet50v2 is now the arrangement of layers in

blocks. ResNet50 and ResNet50v2 achieved 92:1% and

93% accuracy on the ImageNet dataset, respectively.

Inception [34] and InceptionResNet [35] are developed

by Google. The concept of Inception represents Inception

modules within the network. This is a simple and powerful

architectural unit that also allows the model to learn par-

allel filters of different sizes and multiple scales. The main

difference between Inception and InceptionResNet is that

InceptionResNet uses residual layers. Inceptionv3 using

the Inception modules has 23, 851, 784 while Incep-

tionResNet has 55, 873, 736. Inceptionv3 and Incep-

tionResNetv2 achieved 93:7% and 95:3% accuracy on the

ImageNet dataset, respectively.

Fig. 5 The detailed designs of the discriminator and generator network used in the study

Fig. 6 a The samples of the

COVID-19 synthetic images

produced after the training with

GAN b The samples of the

normal synthetic images

produced after the training with

GAN
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Xception [36] is a deep convolutional neural network

architecture that includes deeply separable convolutions

and developed by Google researchers. Google presented an

interpretation of the Initiation modules in convolutional

neural networks as an intermediate step between regular

convolution and deeply separable convolution processing.

Xception has 22, 910, 480 parameters and achieved 94:5%

accuracy on the ImageNet dataset.

DenseNet [37] is a type of convolutional neural network

that uses dense connections between layers through dense

blocks that connect all layers directly. Each layer receives

additional inputs from all previous layers and transmits its

own feature maps to all subsequent layers. The difference

between DenseNet121 and DenseNet169 is the number of

layers. DenseNet121 has 8, 062, 504 parameters while

DenseNet169 has 14, 307, 880 parameters. DenseNet121

and DenseNet169 achieved 92:3% and 93:2% accuracy on

the ImageNet dataset, respectively.

3.6 Training of models and implementation
details

In this study, two types of experimental studies (with GAN

and without GAN) are conducted using the real images

from the internal dataset and incorporating synthetic ima-

ges generated by the GAN into the internal dataset. Details

of the dataset used in the two studies are given in Table 1.

The 1667 normal class images in the internal dataset used

in the training of models are the same as the images used in

the BConvLSTM U-Net training.

All networks in both frameworks, the pixel values of the

CT images, were normalized from [0, 255] to [0, 1] as a

preprocessing. In both experiments, Adam optimization

algorithm with learning rate ¼ 0:001 and momentum value

beta ¼ 0:9 was used as hyperparameter. Binary cross-en-

tropy function is used as loss function. In addition, the

number of training epochs is determined as 40 and the

batch size was 16. The learning rate is reduced when there

is no improvement in validation error for 5 consecutive

training periods. It was taken as the criterion for early

discontinuation of training when there is no improvement

in validation error for 10 consecutive training periods. A

fivefold cross-validation is performed and tested on a

randomly selected 20% of the internal dataset and the

external dataset.

In both experiments, pretrained deep CNN models

VGG16, VGG19, Xception, ResNet50, ResNet50V2,

DenseNet121, DenseNet169, InceptionV3 and Incep-

tionResNetV2 were used and fine-tuned. Dense(512, relu),

BatchNormalization (0.9), Dense(256, relu), Dense (1,

Sigmoid) layers are used, respectively, in the fully con-

nected layer for classification. The working principle of

this study is given in Fig. 7.

3.6.1 Data augmentation

The performance of deep learning neural networks is

generally directly proportional to the amount of data

available. Data augmentation is referred to as a technique

of artificially deriving data from existing training data

through much more image processing such as rotating,

panning, zooming, flipping [6]. The aim is to increase the

generalization performance of the model while expanding

the training dataset with new examples. Thus, the trained

model constantly sees new, different versions of the input

data, and the model can learn more robust features.

There are three types of data augmentation methods:

first, expanding the existing dataset. The problem with this

approach is that it does not fully increase the generalization

ability of the model. The second is in-place/on-the-fly data

augmentation. The network is trained to see new variations

of the data in each epoch by using this type of data aug-

mentation. This method increases the generalization ability

of the model. Finally, a hybrid approach combines the first

and the second approaches.

In our study, we use only in-place/on-the-fly augmen-

tation approach in models trained with real data; in the

second experiment, we increase the size of the dataset with

synthetic data produced with GAN, and we adopt a hybrid

approach with in-place/on-the-fly augmentation during the

training of models. The applied data augmentation pro-

cesses and sample images are given in Table 2 and Fig. 8,

respectively. Random distortion allows you to distort the

image while maintaining elastically the image aspect ratio.

The magnitude parameter determines how much it

degrades. Flip left-right acts as a mirror on images. Rota-

tion was used to rotate left and right a certain degree. Zoom

was used to enlarge and reduce the image centrally.

Table 1 The numbers of the real images without GAN and the

real?synthetic images produced with GAN in training and test sets

Framework Types Training size Test size

Real images COVID-19 1286 321

Without GAN Normal 1333 334

Real?synthetic images COVID-19 3600 321

Produced with GAN Normal 3600 334
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4 Results

All training and testing processes are performed using

AMD Ryzen 3970X CPU with 128GB RAM and Nvidia

RTX 3080 GPU with 10GB memory. The Keras [38] deep

learning library is used for processes.

Estimation performances of the methods in this study

are measured with metrics such as accuracy, precision,

recall and F1-score. The confusion matrix used to explain

the performance of the classification model consists of true

positive (TP), true negative (TN), false positive (FP) and

false negatives (FN).

Dividing the number of correctly classified cases into

the total number of test images shows the accuracy and is

calculated as follows.

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð2Þ

where TP is the number of instances that correctly pre-

dicted, TP is the number of instances that incorrectly pre-

dicted, TN is the number of negative instances that

correctly predicted, TN is the number of negative instances

that incorrectly predicted.

The recall is used to measure correctly classified

COVID-19 cases. Recall is calculated as follows.

Recall ¼ TP
TP þ FN

ð3Þ

The percentage of correctly classified labels in truly posi-

tive patients is defined as the precision and is calculated as

follows.

Precision ¼ TP
TP þ FP

ð4Þ

Specificity is the proportion of people who test negatively

among those who actually do not have the disease and is

defined as:

Fig. 7 The flow chart of both experiments is given in Fig. 5

Table 2 Types of data augmentation

Types Parameters

Random distortion probability=0.5

Grid width=4

Grid height=4

Magnitude=10

Flip (left, right) Probability=0.5

Rotate Probability=0.5

Max left rotation=10

Max right rotation=10

Zoom Probability=0.5

Min factor=0.9

Max factor=1.20
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Specificity ¼ TN
TN þ FP

ð5Þ

The F1-score is defined as the weighted average of preci-

sion and recall combining both precision and recall and is

calculated as follows.

F1� score ¼ 2� Recall� Precision

Recallþ Precision
ð6Þ

The same real images are used in the tests of the both

experiments on both internal and external datasets. Infor-

mation on test sets size is given in Table 3. The compar-

ison of performance results in internal and external datasets

for both experiments is given in Tables 4 and 5, respec-

tively. Confusion values and performance results for each

model are given in Section Appendix.

5 Discussion

In this paper, two experiments with and without GAN were

tested on two different datasets (655 internal and 14545

external) with different deep learning methods.

Table 4 analyzes the performance results of models with

and without GAN on internal dataset. We clearly see that in

all deep learning models with GAN, a slightly better

performance ratio is achieved in all of the accuracy, pre-

cision, recall, specificity and F1-score values compared to

the models without GAN. The best detection accuracy rate

obtained in the InceptionV3 model with GAN on the

internal dataset is 99:51% and the F1-score rate is 99:5%.

Table 5 analyzes the performance results of models with

and without GAN on different external dataset that the

system has never seen before. We clearly see that in all

deep learning models with GAN, a better performance rate

of 3% to 9% is achieved in all of the accuracy, precision,

recall, specificity and F1-score values compared to the

models without GAN. The best detection accuracy rate

obtained in the InceptionV3 model with GAN on the

external dataset is 94:98% and the F1-score rate is 91:73%.

The results of this study reveal that synthetic augments

produced with GAN make an important contribution to the

improvement of generalization performance, especially in

external dataset.

6 Conclusion

In this research, we developed a GAN-based model to

overcome the overfitting problem in CNNs and improve

their generalization performance and proposed a model in

which the dataset can be artificially amplified with syn-

thetic CT images.

An internal dataset containing 3274 CT images was used

for training two different experiments (with and without

GAN). The improvement in the generalization ability of

CNN models was investigated using synthetic data aug-

mentation technique with GAN on this limited dataset.

Both experiments were tested on an external dataset.

Fig. 8 a Original image b result

of the flip left-right c result of

the right rotation d result of the

left rotation e result of a 0.9 rate

zoom f result of a 1.20 rate

zoom. g and h results of random

distortion

Table 3 Information on the size of the test sets

Dataset Types Testing set

Internal COVID-19 321

Normal 334

External COVID-19 9545

Normal 4001
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This study uses two classes (COVID-19 and normal) for

classification. Synthetic data augmentation with GAN

expands the dataset, providing more variability. When the

CNN is trained on real images and synthetic images, a

slight increase in accuracy and the other results is observed

in the internal dataset, but between 3% and 9% in the

external dataset. Performance results show that synthetic

images produced with GAN make a significant contribution

to the detection of COVID-19, especially in external

dataset that the system has not seen before.

In conclusion, we proposed a method to increase the

accuracy of COVID-19 detection with minimal dataset by

producing synthetic images of CT images. The proposed

method will improve the generalization performance of

CNNs and lead to more robust systems.

Table 4 Comparison

performance results of models

without GAN and with GAN on

internal dataset

Model Method Accuracy Precision Recall Specificity F1-score

VGG16 without GAN 0.9814 0.9898 0.9720 0.9904 0.9808

with GAN 0.9872 0.9949 0.9788 0.9952 0.9868

VGG19 without GAN 0.9841 0.9924 0.9751 0.9928 0.9837

with GAN 0.9875 0.9894 0.9850 0.9898 0.9872

Xception without GAN 0.9902 0.9900 0.9900 0.9904 0.9900

with GAN 0.9927 0.9913 0.9938 0.9916 0.9925

ResNet50 without GAN 0.9798 0.9819 0.9769 0.9826 0.9794

with GAN 0.9911 0.9969 0.9850 0.9970 0.9909

ResNet50v2 without GAN 0.9860 0.9931 0.9782 0.9934 0.9856

with GAN 0.9942 0.9975 0.9907 0.9976 0.9941

InceptionV3 without GAN 0.9881 0.9949 0.9807 0.9952 0.9878

with GAN 0.9951 0.9949 0.9913 0.9952 0.9950

InceptionResNetV2 without GAN 0.9893 0.9931 0.9850 0.9934 0.9890

with GAN 0.9893 0.9962 0.9913 0.9964 0.9938

DenseNet121 without GAN 0.9893 0.9919 0.9863 0.9922 0.9891

with GAN 0.9921 0.9919 0.9919 0.9922 0.9919

DenseNet169 withoutGAN 0.9911 0.9944 0.9875 0.9946 0.9909

with GAN 0.9927 0.9956 0.9894 0.9958 0.9925

Table 5 Comparison

performance results of models

without GAN and with GAN on

external dataset

Model Method Accuracy Precision Recall Specificity F1-score

VGG16 without GAN 0.8670 0.7447 0.8364 0.8799 0.7879

with GAN 0.9023 0.8024 0.8877 0.9083 0.8429

VGG19 without GAN 0.8836 0.7646 0.8758 0.8868 0.8194

with GAN 0.9086 0.8086 0.9048 0.9102 0.8540

Xception without GAN 0.9145 0.8039 0.9399 0.9039 0.8666

with GAN 0.9486 0.8779 0.9593 0.9440 0.9168

ResNet50 without GAN 0.8978 0.7900 0.8906 0.9007 0.8373

with GAN 0.9303 0.8644 0.9061 0.9404 0.8847

ResNet50v2 without GAN 0.8914 0.7755 0.8902 0.8919 0.8289

with GAN 0.9167 0.8272 0.9077 0.9205 0.8656

InceptionV3 without GAN 0.9061 0.8075 0.8955 0.9105 0.8492

with GAN 0.9498 0.8936 0.9423 0.9530 0.9173

InceptionResNetV2 without GAN 0.8983 0.7928 0.8875 0.9028 0.8374

with GAN 0.9373 0.8682 0.9287 0.9409 0.8974

DenseNet121 without GAN 0.9000 0.7953 0.8907 0.9039 0.8403

with GAN 0.9346 0.8673 0.9203 0.9407 0.8930

DenseNet169 withoutGAN 0.9032 0.7982 0.8997 0.9046 0.8459

with GAN 0.9319 0.8624 0.9156 0.9388 0.8882
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Confusion values and performance results
for each model

Confusion values and performance results for each model

are given in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40 and 41.

Table 6 Confusion values of VGG16 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 311 10 331 3

Fold2 314 7 332 2

Fold3 313 8 330 4

Fold4 310 11 331 3

Fold5 312 9 331 3

With GAN Fold1 315 6 331 3

Fold2 314 7 332 2

Fold3 313 7 332 1

Fold4 312 7 332 1

Fold5 312 7 331 1

Table 7 Performance results of

VGG16 on internal dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9787 0.9873 0.9688 0.9881 0.9780

Fold2 0.9863 0.9937 0.9782 0.9940 0.9859

Fold3 0.9817 0.9874 0.9751 0.9880 0.9812

Fold4 0.9789 0.9904 0.9657 0.9910 0.9779

Fold5 0.9817 0.9905 0.9720 0.9910 0.9811

Overall 0.9844 0.9898 0.9720 0.9904 0.9808

With GAN Fold1 0.9863 0.9906 0.9813 0.9910 0.9859

Fold2 0.9863 0.9937 0.9782 0.9940 0.9859

Fold3 0.9878 0.9968 0.9782 0.9970 0.9874

Fold4 0.9878 0.9968 0.9782 0.9970 0.9874

Fold5 0.9878 0.9968 0.9782 0.9970 0.9874

Overall 0.9872 0.9949 0.9788 0.9952 0.9868

Table 8 Confusion values of VGG19 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 312 9 333 1

Fold2 313 8 332 2

Fold3 314 7 332 2

Fold4 316 5 331 3

Fold5 315 6 332 2

With GAN Fold1 315 6 330 4

Fold2 315 6 330 4

Fold3 317 4 331 3

Fold4 317 4 331 3

Fold5 317 4 331 3

Table 9 Performance results of VGG19 on internal dataset

KFold Accuracy Precision Recall Specificity F1-

score

Without
GAN

Fold1 0.9847 0.9968 0.9720 0.9970 0.9842

Fold2 0.9847 0.9937 0.9751 0.9940 0.9843

Fold3 0.9863 0.9937 0.9782 0.9940 0.9859

Fold4 0.9878 0.9906 0.9844 0.9910 0.9875

Fold5 0.9878 0.9937 0.9813 0.9940 0.9875

Overall 0.9863 0.9937 0.9782 0.9940 0.9859

With
GAN

Fold1 0.9847 0.9875 0.9813 0.9880 0.9844

Fold2 0.9847 0.9875 0.9813 0.9880 0.9844

Fold3 0.9893 0.9906 0.9875 0.9910 0.9891

Fold4 0.9893 0.9906 0.9875 0.9910 0.9891

Fold5 0.9893 0.9906 0.9875 0.9910 0.9891

Overall 0.9875 0.9894 0.9850 0.9898 0.9872

Table 10 Confusion values of Xception on internal dataset

KFold TP FN TN FP

Without GAN Fold1 317 4 332 2

Fold2 318 3 331 3

Fold3 318 3 330 4

Fold4 318 3 330 4

Fold5 318 3 331 3

With GAN Fold1 319 2 332 2

Fold2 319 2 331 3

Fold3 319 2 331 3

Fold4 319 2 331 3

Fold5 319 2 331 3
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Table 11 Performance results of

Xception without GAN on

internal dataset

KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9908 0.9937 0.9875 0.9940 0.9906

Fold2 0.9908 0.9907 0.9907 0.9910 0.9907

Fold3 0.9893 0.9876 0.9907 0.9880 0.9891

Fold4 0.9893 0.9876 0.9907 0.9880 0.9891

Fold5 0.9908 0.9907 0.9907 0.9910 0.9907

Overall 0.9902 0.9900 0.9900 0.9904 0.9900

With GAN Fold1 0.9939 0.9938 0.9938 0.9940 0.9938

Fold2 0.9924 0.9907 0.9938 0.9910 0.9922

Fold3 0.9924 0.9907 0.9938 0.9910 0.9922

Fold4 0.9924 0.9907 0.9938 0.9910 0.9922

Fold5 0.9924 0.9907 0.9938 0.9910 0.9922

Overall 0.9927 0.9913 0.9938 0.9916 0.9925

Table 12 Confusion values of ResNet50 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 311 10 325 9

Fold2 314 7 326 8

Fold3 315 6 329 5

Fold4 313 8 330 4

Fold5 315 6 331 3

With GAN Fold1 317 4 332 2

Fold2 317 4 333 1

Fold3 317 4 334 0

Fold4 315 6 333 1

Fold5 315 6 333 1

Table 13 Performance results of

ResNet50 on internal dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9710 0.9719 0.9688 0.9731 0.9704

Fold2 0.9771 0.9752 0.9782 0.9760 0.9767

Fold3 0.9832 0.9844 0.9813 0.9850 0.9828

Fold4 0.9817 0.9874 0.9751 0.9880 0.9812

Fold5 0.9863 0.9906 0.9813 0.9910 0.9859

Overall 0.9798 0.9819 0.9769 0.9826 0.9794

With GAN Fold1 0.9908 0.9937 0.9875 0.9940 0.9906

Fold2 0.9924 0.9969 0.9875 0.9970 0.9922

Fold3 0.9939 1.0000 0.9875 1.0000 0.9937

Fold4 0.9893 0.9968 0.9813 0.9970 0.9890

Fold5 0.9893 0.9968 0.9813 0.9970 0.9890

Overall 0.9911 0.9969 0.9850 0.9970 0.9909

Table 14 Confusion values of ResNet50v2 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 312 9 333 1

Fold2 312 9 333 1

Fold3 315 6 331 3

Fold4 314 7 331 3

Fold5 317 4 331 3

With GAN Fold1 317 4 332 2

Fold2 317 4 333 1

Fold3 319 2 333 1

Fold4 318 3 334 0

Fold5 319 2 334 0
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Table 15 Performance results of

ResNet50v2 on internal dataset
KFold Accuracy Precision Recall (Sensitivity) Specificity F1-score

Without GAN Fold1 0.9847 0.9968 0.9720 0.9970 0.9842

Fold2 0.9847 0.9968 0.9720 0.9970 0.9842

Fold3 0.9863 0.9906 0.9813 0.9910 0.9859

Fold4 0.9847 0.9905 0.9782 0.9910 0.9843

Fold5 0.9893 0.9906 0.9875 0.9910 0.9891

Overall 0.9860 0.9931 0.9782 0.9934 0.9856

With GAN Fold1 0.9908 0.9937 0.9875 0.9940 0.9906

Fold2 0.9924 0.9969 0.9875 0.9970 0.9922

Fold3 0.9954 0.9969 0.9938 0.9970 0.9953

Fold4 0.9954 1.0000 0.9907 1.0000 0.9953

Fold5 0.9969 1.0000 0.9938 1.0000 0.9969

Overall 0.9942 0.9975 0.9907 0.9976 0.9941

Table 16 Confusion values of InceptionV3 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 315 6 334 0

Fold2 315 6 332 2

Fold3 315 6 332 2

Fold4 315 6 332 2

Fold5 314 7 332 2

With GAN Fold1 321 0 333 1

Fold2 318 3 333 1

Fold3 318 3 334 0

Fold4 316 5 334 0

Fold5 318 3 334 0

Table 17 Performance results of

InceptionV3 on internal dataset
KFold Accuracy Precision Recall (Sensitivity) Specificity F1-score

Without GAN Fold1 0.9908 1.0000 0.9813 1.0000 0.9906

Fold2 0.9878 0.9937 0.9813 0.9940 0.9875

Fold3 0.9878 0.9937 0.9813 0.9940 0.9875

Fold4 0.9878 0.9937 0.9813 0.9940 0.9875

Fold5 0.9863 0.9937 0.9782 0.9940 0.9859

Overall 0.9881 0.9949 0.9807 0.9952 0.9878

With GAN Fold1 0.9985 0.9969 1.0000 0.9970 0.9984

Fold2 0.9939 0.9969 0.9907 0.9970 0.9938

Fold3 0.9954 1.0000 0.9907 1.0000 0.9953

Fold4 0.9924 1.0000 0.9844 1.0000 0.9922

Fold5 0.9954 1.0000 0.9907 1.0000 0.9953

Overall 0.9951 0.9949 0.9913 0.9952 0.9950

Table 18 Confusion values of InceptionResNetV2 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 313 8 334 0

Fold2 318 3 331 3

Fold3 317 4 332 2

Fold4 316 5 331 3

Fold5 317 4 331 3

With GAN Fold1 319 2 332 2

Fold2 318 3 333 1

Fold3 318 3 333 1

Fold4 318 3 333 1

Fold5 318 3 333 1
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Table 19 Performance results of

InceptionResNetV2 on internal

dataset

KFold Accuracy Precision Recall (Sensitivity) Specificity F1-score

Without GAN Fold1 0.9878 1.0000 0.9751 1.0000 0.9874

Fold2 0.9908 0.9907 0.9907 0.9910 0.9907

Fold3 0.9908 0.9937 0.9875 0.9940 0.9906

Fold4 0.9878 0.9906 0.9844 0.9910 0.9875

Fold5 0.9893 0.9906 0.9875 0.9910 0.9891

Overall 0.9893 0.9931 0.9850 0.9934 0.9890

With GAN Fold1 0.9939 0.9938 0.9938 0.9940 0.9938

Fold2 0.9939 0.9969 0.9907 0.9970 0.9938

Fold3 0.9939 0.9969 0.9907 0.9970 0.9938

Fold4 0.9939 0.9969 0.9907 0.9970 0.9938

Fold5 0.9939 0.9969 0.9907 0.9970 0.9938

Overall 0.9893 0.9962 0.9913 0.9964 0.9938

Table 20 Confusion values of DenseNet121 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 316 5 331 3

Fold2 317 4 332 2

Fold3 317 4 332 2

Fold4 317 4 331 3

Fold5 316 5 331 3

With GAN Fold1 318 3 331 3

Fold2 317 4 331 3

Fold3 319 2 332 2

Fold4 319 2 331 3

Fold5 319 2 332 2

Table 21 Performance results of

DenseNet121 on internal dataset
KFold Accuracy Precision Recall (Sensitivity) Specificity F1-score

Without GAN Fold1 0.9878 0.9906 0.9844 0.9910 0.9875

Fold2 0.9908 0.9937 0.9875 0.9940 0.9906

Fold3 0.9908 0.9937 0.9875 0.9940 0.9906

Fold4 0.9893 0.9906 0.9875 0.9910 0.9891

Fold5 0.9878 0.9906 0.9844 0.9910 0.9875

Overall 0.9893 0.9919 0.9863 0.9922 0.9891

With GAN Fold1 0.9908 0.9907 0.9907 0.9910 0.9907

Fold2 0.9893 0.9906 0.9875 0.9910 0.9891

Fold3 0.9939 0.9938 0.9938 0.9940 0.9938

Fold4 0.9924 0.9907 0.9938 0.9910 0.9922

Fold5 0.9939 0.9938 0.9938 0.9940 0.9938

Overall 0.9921 0.9919 0.9919 0.9922 0.9919

Table 22 Confusion values of DenseNet169 on internal dataset

KFold TP FN TN FP

Without GAN Fold1 317 4 334 0

Fold2 318 3 332 2

Fold3 317 4 333 1

Fold4 317 4 331 3

Fold5 316 5 331 3

With GAN Fold1 317 4 334 0

Fold2 319 2 332 2

Fold3 318 3 333 1

Fold4 318 3 333 1

Fold5 317 4 332 2
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Table 23 Performance results of

DenseNet169 on internal dataset
KFold Accuracy Precision Recall (Sensitivity) Specificity F1-score

Without GAN Fold1 0.9939 1.0000 0.9875 1.0000 0.9937

Fold2 0.9924 0.9938 0.9907 0.9940 0.9922

Fold3 0.9924 0.9969 0.9875 0.9970 0.9922

Fold4 0.9893 0.9906 0.9875 0.9910 0.9891

Fold5 0.9878 0.9906 0.9844 0.9910 0.9875

Overall 0.9911 0.9944 0.9875 0.9946 0.9909

With GAN Fold1 0.9939 1.000 0.9875 1.000 0.9937

Fold2 0.9939 0.9938 0.9938 0.9940 0.9938

Fold3 0.9939 0.9969 0.9907 0.9970 0.9938

Fold4 0.9939 0.9969 0.9907 0.9970 0.9938

Fold5 0.9908 0.9937 0.9875 0.9940 0.9906

Overall 0.9933 0.9962 0.9900 0.9964 0.9931

Table 24 Confusion values of VGG16 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3396 605 8467 1108

Fold2 3323 678 8366 1179

Fold3 3296 705 8443 1102

Fold4 3412 589 8316 1229

Fold5 3305 696 8427 1118

With GAN Fold1 3555 446 8703 842

Fold2 3581 420 8640 905

Fold3 3499 502 8650 895

Fold4 3588 413 8629 916

Fold5 3536 465 8729 916

Table 25 Performance results of

VGG16 on external dataset
KFold Accuracy Precision Recall Specificity F1-score

Withput GAN Fold1 0.8738 0.7540 0.8488 0.8843 0.7986

Fold2 0.8629 0.7381 0.8305 0.8765 0.7816

Fold3 0.8666 0.7494 0.8238 0.8845 0.7849

Fold4 0.8658 0.7352 0.8528 0.8712 0.7896

Fold5 0.8661 0.7472 0.8260 0. 0.7847

Overall 0.8670 0.7448 0.8364 0.8799 0.7879

With GAN Fold1 0.9049 0.8085 0.8885 0.9118 0.8466

Fold2 0.9022 0.7983 0.8950 0.9052 0.8439

Fold3 0.8969 0.7963 0.8745 0.9062 0.8336

Fold4 0.9019 0.7966 0.8968 0.9040 0.8437

Fold5 0.9054 0.8125 0.8838 0.9145 0.8466

Overall 0.9023 0.8024 0.8877 0.9083 0.8429

Table 26 Confusion values VGG19 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3489 512 8348 1197

Fold2 3506 495 8502 1042

Fold3 3501 500 8581 964

Fold4 3505 496 8392 1153

Fold5 3520 481 8498 1047

With GAN Fold1 3599 402 8658 887

Fold2 3612 389 8669 876

Fold3 3627 374 8721 824

Fold4 3653 348 8749 796

Fold5 3609 392 8642 903
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Table 27 Performance results of

VGG19 on external dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.8738 0.7446 0.8720 0.8746 0.8033

Fold2 0.8865 0.7709 0.8763 0.8908 0.8202

Fold3 0.8919 0.7841 0.8750 0.8990 0.8271

Fold4 0.8783 0.7525 0.8760 0.8792 0.8096

Fold5 0.8872 0.7707 0.8798 0.8903 0.8217

Overall 0.8836 0.7646 0.8758 0.8868 0.8164

With GAN Fold1 0.9048 0.8023 0.8995 0.9071 0.8401

Fold2 0.9066 0.8048 0.9028 0.9082 0.8510

Fold3 0.9116 0.8149 0.9065 0.9137 0.8583

Fold4 0.9155 0.8211 0.9130 0.9166 0.8646

Fold5 0.9044 0.7999 0.9020 0.9054 0.8479

Overall 0.9086 0.8086 0.9048 0.9102 0.8540

Table 28 Confusion values of Xception on external dataset

KFold TP FN TN FP

Without GAN Fold1 3757 244 8575 970

Fold2 3786 215 8522 912

Fold3 3773 228 8684 861

Fold4 3725 276 8616 929

Fold5 3761 240 8631 914

With GAN Fold1 3828 173 8989 556

Fold2 3836 165 9033 512

Fold3 3829 172 9008 537

Fold4 3853 148 9026 513

Fold5 3845 156 8993 552

Table 29 Performance results of

Xception on external dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9104 0.7948 0.9390 0.8984 0.8609

Fold2 0.9168 0.8059 0.9463 0.9045 0.8704

Fold3 0.9196 0.8142 0.9430 0.9094 0.8739

Fold4 0.9110 0.8004 0.9310 0.9027 0.8608

Fold5 0.9148 0.8045 0.9400 0.9042 0.8670

Overall 0.9145 0.8039 0.9399 0.9039 0.8666

With GAN Fold1 0.9462 0.8732 0.9568 0.9417 0.9131

Fold2 0.9500 0.8822 0.9588 0.9464 0.9189

Fold3 0.9477 0.8770 0.9570 0.9437 0.9153

Fold4 0.9512 0.8825 0.9630 0.9462 0.9210

Fold5 0.9477 0.8745 0.9610 0.9422 0.9157

Overall 0.9486 0.8779 0.9593 0.9440 0.9168

Table 30 Confusion values of ResNet50 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3557 444 8639 906

Fold2 3578 423 8600 945

Fold3 3611 390 8570 975

Fold4 3507 494 8578 967

Fold5 3564 437 8601 944

With GAN Fold1 3651 350 9026 519

Fold2 3612 389 9009 536

Fold3 3623 378 8925 620

Fold4 3602 399 8953 592

Fold5 3639 362 8966 579
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Table 31 Performance results of

ResNet50 on external dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9003 0.7970 0.8890 0.9051 0.9404

Fold2 0.8990 0.7911 0.8943 0.9010 0.8395

Fold3 0.8992 0.7874 0.9025 0.8979 0.8410

Fold4 0.8921 0.7839 0.8765 0.8987 0.8276

Fold5 0.8981 0.7906 0.8908 0.9011 0.8377

Overall 0.8978 0.7900 0.8906 0.9007 0.8373

With GAN Fold1 0.9358 0.8755 0.9125 0.9456 0.8936

Fold2 0.9317 0.8708 0.9028 0.9438 0.8865

Fold3 0.9263 0.8539 0.9055 0.9350 0.8789

Fold4 0.9268 0.8588 0.9003 0.9380 0.8791

Fold5 0.9305 0.8627 0.9095 0.9393 0.8855

Overall 0.9303 0.8644 0.9061 0.9404 0.8847

Table 32 Confusion values of ResNet50v2 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3548 453 8508 1037

Fold2 3584 417 8523 1022

Fold3 3559 442 8581 964

Fold4 3540 461 8459 1086

Fold5 3578 423 8497 1048

With GAN Fold1 3626 375 8822 723

Fold2 3656 342 8797 748

Fold3 3612 389 8756 789

Fold4 3642 359 8787 758

Fold5 3619 382 8771 774

Table 33 Performance results of

ResNet50v2 on external dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.8900 0.7738 0.8868 0.8914 0.8265

Fold2 0.8938 0.7781 0.8958 0.8929 0.8328

Fold3 0.8962 0.7869 0.8895 0.8990 0.8351

Fold4 0.8858 0.7652 0.8848 0.8862 0.8207

Fold5 0.8914 0.7735 0.8943 0.8902 0.8295

Overall 0.8914 0.7735 0.8902 0.8919 0.8289

With GAN Fold1 0.9189 0.8338 0.9063 0.9243 0.8685

Fold2 0.9195 0.8302 0.9145 0.9216 0.8703

Fold3 0.9130 0.8207 0.9028 0.9173 0.8598

Fold4 0.9175 0.8277 0.9103 0.9206 0.8670

Fold5 0.9147 0.8238 0.9045 0.9189 0.8623

Overall 0.9167 0.8272 0.9077 0.9205 0.8656

Table 34 Confusion values of Inceptionv3 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3601 400 8691 854

Fold2 3533 468 8699 846

Fold3 3570 431 8697 848

Fold4 3598 403 8651 894

Fold5 3613 388 8716 829

With GAN Fold1 3800 201 9093 452

Fold2 3769 232 9102 443

Fold3 3793 208 9096 449

Fold4 3776 225 9083 462

Fold5 3712 285 9106 439
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Table 35 Performance results of

Inceptionv3 on external dataset
KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9074 0.8083 0.9000 0.9105 0.8517

Fold2 0.9030 0.8068 0.8830 0.9114 0.8432

Fold3 0.9056 0.8061 0.8923 0.9112 0.8481

Fold4 0.9043 0.8010 0.8993 0.9063 0.8473

Fold5 0.9102 0.8134 0.9030 0.9131 0.8559

Overall 0.9061 0.8075 0.8955 0.9105 0.8492

With GAN Fold1 0.9518 0.8937 0.9498 0.9526 0.9209

Fold2 0.9502 0.8948 0.9420 0.9536 0.9178

Fold3 0.9515 0.8942 0.9480 0.9530 0.9203

Fold4 0.9493 0.8910 0.9438 0.9516 0.9166

Fold5 0.9493 0.8942 0.9278 0.9540 0.9107

Overall 0.9494 0.8936 0.9423 0.9530 0.9173

Table 36 Confusion values of InceptionResNetv2 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3414 587 8589 956

Fold2 3505 496 8572 973

Fold3 3669 332 8656 889

Fold4 3545 456 8596 949

Fold5 3621 380 8674 871

With GAN Fold1 3713 288 9017 528

Fold2 3709 292 8935 610

Fold3 3725 276 8952 593

Fold4 3732 269 9046 599

Fold5 3700 301 8953 592

Table 37 Performance results of

InceptionResNetv2 on external

dataset

KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.8861 0.7812 0.8533 0.8998 0.8157

Fold2 0.8916 0.7827 0.8760 0.8981 0.8267

Fold3 0.9099 0.8050 0.9170 0.9069 0.8573

Fold4 0.8963 0.7888 0.8860 0.9006 0.8346

Fold5 0.9076 0.8061 0.9050 0.9087 0.8527

Overall 0.8983 0.7928 0.8875 0.9028 0.8374

With GAN Fold1 0.9398 0.8755 0.9280 0.9447 0.9010

Fold2 0.9334 0.8588 0.9270 0.9361 0.8916

Fold3 0.9358 0.8627 0.9310 0.9379 0.8955

Fold4 0.9433 0.8821 0.9328 0.9477 0.9067

Fold5 0.9341 0.8621 0.9248 0.9380 0.8923

Overall 0.9373 0.8682 0.9287 0.9409 0.8974

Table 38 Confusion values of DenseNet121 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3544 457 8649 896

Fold2 3533 468 8643 902

Fold3 3587 414 8588 957

Fold4 3581 420 8658 887

Fold5 3573 428 8600 945

With GAN Fold1 3700 301 8767 579

Fold2 3712 289 8983 562

Fold3 3677 324 9002 543

Fold4 3659 342 8958 587

Fold5 3662 339 8997 548
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Table 39 Performance results of

DenseNet121 on external

dataset

KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9001 0.7982 0.8858 0.9061 0.8397

Fold2 0.8989 0.7966 0.8830 0.9055 0.8376

Fold3 0.8988 0.7894 0.8965 0.8997 0.8396

Fold4 0.9035 0.8015 0.8950 0.9071 0.8457

Fold5 0.8986 0.7908 0.8930 0.9010 0.8388

Overall 0.9000 0.7953 0.8907 0.9039 0.8403

With GAN Fold1 0.9341 0.8649 0.9248 0.9381 0.8938
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Overall 0.9346 0.8673 0.9203 0.9407 0.8930

Table 40 Confusion values of DenseNet169 on external dataset

KFold TP FN TN FP

Without GAN Fold1 3667 334 8621 924

Fold2 3650 351 8656 886

Fold3 3585 416 8628 917

Fold4 3542 459 8603 942

Fold5 3555 446 8666 879

With GAN Fold1 3704 297 8951 594

Fold2 3710 291 8973 572

Fold3 3653 348 8953 592

Fold4 3644 357 8956 589

Fold5 3606 395 8969 576

Table 41 Performance results of

DenseNet169 without GAN on

external dataset

KFold Accuracy Precision Recall Specificity F1-score

Without GAN Fold1 0.9071 0.7987 0.9165 0.9032 0.8536

Fold2 0.9085 0.8041 0.9123 0.9069 0.8548

Fold3 0.9016 0.7963 0.8960 0.9039 0.8432

Fold4 0.8966 0.7899 0.8853 0.9013 0.8349

Fold5 0.9022 0.8018 0.8885 0.9079 0.8429

Overall 0.9032 0.7982 0.8997 0.9046 0.8459

With GAN Fold1 0.9342 0.8618 0.9258 0.9378 0.8926

Fold2 0.9363 0.8664 0.9273 0.9401 0.8958

Fold3 0.9306 0.8605 0.9130 0.9380 0.8860

Fold4 0.9302 0.8609 0.9108 0.9383 0.8851

Fold5 0.9283 0.8623 0.9013 0.9397 0.8813

Overall 0.9319 0.8624 0.9156 0.9388 0.8882
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