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Abstract: One of the most challenging aspects of treating disorders of the central nervous system
(CNS) is the efficient delivery of drugs to their targets within the brain. Only a small fraction of drugs
is able to cross the blood–brain barrier (BBB) under physiological conditions, and this observation has
prompted investigation into the routes of administration that may potentially bypass the BBB and
deliver drugs directly to the CNS. One such route is the intranasal (IN) route. Increasing evidence
has suggested that intranasally-administered drugs are able to bypass the BBB and access the brain
through anatomical pathways connecting the nasal cavity to the CNS. Though the exact mechanisms
regulating the delivery of therapeutics following IN administration are not fully understood, current
evidence suggests that the perineural and perivascular spaces of the olfactory and trigeminal nerves
are involved in brain delivery and cerebral perivascular spaces are involved in widespread brain
distribution. Here, we review evidence for these delivery and distribution pathways, and we address
questions that should be resolved in order to optimize the IN route of administration as a viable
strategy to treat CNS disease states.

Keywords: intranasal; drug delivery; olfactory nerve; trigeminal nerve; perineural space; perivascular
space

1. Introduction

The effective delivery of neurotherapeutics is hindered by the low permeability of the vasculature
in the central nervous system (CNS). The blood–brain barrier (BBB) is comprised of tight junctions
of integral proteins between endothelial cells that form a high transendothelial electrical resistance
(TEER) and limit the passage of most substances through the paracellular route [1–4]. In addition to
forming tight junctions, cerebral endothelial cells express a number of key drug transporters at the
luminal plasma membrane that restrict the transendothelial passage of many drugs from the blood
into the CNS [5,6]. Molecules able to cross the BBB under physiological conditions are typically small
(<600 Da) and lipophilic. Indeed, it has been estimated that up to 98% of all small molecules are unable
to cross the BBB [7]. These obstacles have led some to propose routes of drug administration that can
potentially bypass the blood–CNS barriers and deliver drugs directly to their targets in the CNS.

Intraparenchymal and intrathecal infusions are able to deliver drugs directly into the brain
parenchyma or cerebrospinal fluid (CSF), respectively, but these routes of administration are highly
invasive, expensive, and not practical for chronic administration. Though the intranasal (IN) route of
administration has long been used to deliver drugs to the systemic circulation, increasing evidence
has suggested that intranasally-administered drugs may bypass the BBB and rapidly target drugs
to the CNS in a simple, non-invasive manner. A number of studies have now been conducted that
compare the brain and blood levels of drugs after IN administration and other routes of administration.
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A higher AUCbrain/AUCplasma through the IN route vs. other parenteral routes suggests that a portion
of the drug is reaching the CNS through pathways that do not involve the systemic circulation and
transport across the BBB. For example, peptides can be found in the CSF of humans within 10 min
after IN administration with no change in serum levels, suggesting that peptides can access the CNS
through pathways that do not require absorption into the bloodstream [8]. In mice, the AUCbrain/

AUCplasma of insulin is nearly 2000-fold higher after IN administration when compared to subcutaneous
administration [9]. Even proteins as large as immunoglobulin G (IgG; 150 kDa) have significantly higher
AUCbrain/AUCplasma after IN administration when compared to intra-arterial administration [10].

Intranasally-administered therapeutics have effectively treated many animal models of CNS
diseases, and clinical trials are currently underway to deliver peptides such as insulin or oxytocin to
treat a number of different neurological disorders. In this review, we examine the evidence for direct
brain delivery through the IN route, pathways that substances utilize to reach the brain from the nasal
passages, and distribution within the CNS after entry.

2. Transport across the Nasal Epithelium

There are four distinct types of epithelium in the nasal passages of mammals: squamous,
transitional, respiratory, and olfactory [11]. The respiratory epithelium represents nearly 50% of the
total nasal cavity surface area in rodents and over 90% in primates, while the olfactory epithelium
represents ~50% in rodents and <10% in primates [11]. The lamina propria, located under the basement
membrane of the epithelial surface, contains components of the trigeminal and olfactory nerves that
provide anatomical connections between the CNS and the nasal passages [12,13]. Pathways connecting
these two cranial nerves to the CNS are the likely routes that intranasally-administered drugs utilize
to reach the brain [14–17]. The first step for drug transport to the CNS after IN administration is
to cross the surface of the epithelium, where it can then access these two potential pathways in the
lamina propria.

The surface of the olfactory epithelium consists of sustentacular or supporting cells and olfactory
sensory neurons (OSN) that send axonal projections to the olfactory bulb through the cribriform
plate. Between OSNs and sustentacular cells are tight junction proteins that restrict the paracellular
permeability of the epithelium (Figure 1) [18,19]. For example, the olfactory epithelium is less
permeable to 10 kDa of dextran than it is to a 3 kDa of dextran [20]. The pre-administration of matrix
metalloproteinase-9, which degrades the components of tight junctions and the extracellular matrix,
has been shown to increase the permeability of the 10 kDa of dextran and suggests modifying the
permeability of the nasal epithelium may allow delivery of larger drugs [20].

Molecules that cannot reach the lamina propria through the paracellular route may potentially be
transported across the olfactory epithelium by transcytosis. Substances as large as mesenchymal stem
cells have been found in the lamina propria after IN administration, but the mechanisms they use to
cross the epithelial surface are not well understood [21]. Recently, it has been shown that holes between
5 and 20 µm in diameter can occasionally be observed at the surface of the nasal epithelium [22]. While
it has been suggested that these holes may provide a route for IN prion transmission, the spaces at the
epithelial surface may also provide access of large therapeutics or stem cells to the lamina propria.
The addition of hyaluronidase to the cell suspension may also facilitate passage of cells across the
epithelium by degrading hyaluronic acid in the extracellular matrix [21].

After transport to the lamina propria from the olfactory epithelium, intranasally-administered
drugs may be absorbed into the systemic circulation or into the nasal lymphatic vessels that drain
into the cervical lymph nodes [10,16,17,23,24]. The proportion of drugs in the lamina propria that
are not absorbed into the blood or cervical lymph nodes may then potentially reach the brain
through anatomical pathways (i.e., olfactory and trigeminal) connecting the nasal passages to the
CNS. The trigeminal nerve innervates both the respiratory and olfactory regions, suggesting that both
regions may be important for IN drug targeting to the brain [14–17]. There is some evidence, however,
suggesting that targeting the olfactory region may more efficiently deliver drugs to the CNS. The brain
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levels of the small molecules mannitol, nelfinavir, morphine, and fentanyl have been shown to be
significantly higher after targeted administration to the olfactory region with a pressurized olfactory
device when compared to nose drops deposited primarily on the respiratory epithelium [25,26]. There
are also differences in the number and permeability of blood vessels in the respiratory and olfactory
regions. Both the number and permeability of blood vessels in the respiratory region are greater than
the olfactory region, thus suggesting that drugs targeting the respiratory region are more likely to be
absorbed into the systemic circulation than drugs targeting the olfactory region [10]. The absorption of
drug into the bloodstream decreases the amount of drug that may reach the brain along the olfactory
or trigeminal routes. Additionally, the respiratory epithelium is less permeable to 3 kDa of dextran
than the olfactory epithelium [27]. A lower epithelial permeability combined with higher endothelial
permeability and vascular density suggests the respiratory epithelium may be a site that is more
appropriate to systemically deliver small molecules rather than macromolecules to the CNS.
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Figure 1. Substances must reach the lamina propria (LP) of the nasal epithelium through paracellular
or transcellular routes to access direct pathways to the brain after intranasal (IN) administration. Tight
junctions (TJ) located at the epithelial surface present a barrier for IN drug delivery to the central nervous
system (CNS). At the olfactory epithelium, TJ are labeled with an antibody to zonula occludens-1 (ZO-1)
and nuclei are labeled with 4′,6-diamidino-2-phenylindole (DAPI).

It should be noted that a variety of substances such as proteins, viruses, and bacteria have
been shown to be transported from the nasal passages to the olfactory bulb or brainstem by
intracellular uptake and transport within the olfactory nerve or trigeminal nerve, respectively [28–32].
Intracellular transport within axons is a very slow process, however, and is unlikely to describe
the pharmacokinetics/pharmacodynamics (PK/PD) observed after intranasal administration [15].
Furthermore, it is unclear how drugs intracellularly transported to the olfactory bulb or brainstem
would then distribute to other regions of the brain. Both the rapid delivery and widespread brain
distribution of intranasally-administered molecules suggest that extracellular pathways rather than
intracellular pathways are more important for the effective brain delivery of drugs.

3. Transport into the Brain

Both the olfactory and trigeminal nerves provide anatomical connections between the CNS and
the nasal passages. The axons of OSNs form bundles that travel through foramina in the cribriform
plate and synapse on glomeruli in the olfactory bulb [33]. There are also vascular connections between
the brain and the nasal passages. The nasal-olfactory artery (a branch of the anterior cerebral artery),
for example, sends branches from the olfactory bulb into the olfactory lamina propria [34]. Potential
connections between the brainstem and the nasal lamina propria also exist along the trigeminal
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pathway, as branches V1 (ophthalmic) and V2 (maxillary) of the trigeminal nerve innervate both the
respiratory and olfactory regions of the nasal passages [13,35,36].

Previous studies with radiolabeled tracers have shown the widespread brain distribution of
[125I]-insulin-like growth factor I (IGF-I) or [125I]-interferon-β1b in rats and monkeys, respectively,
within 30–60 min following IN administration [16,17]. High levels of each tracer were found in the
olfactory bulbs, trigeminal nerves, and brainstem, suggesting that components of the olfactory and
trigeminal nerves are involved in the delivery of macromolecules to the brain from the nasal cavity.

It has previously been shown that substances injected into the brain or CSF drain along cranial
nerves in addition to drainage through the arachnoid villi or meningeal lymphatic vessels [33,37–44].
Interestingly, there is some evidence suggesting that pathways involving extracellular fluid movement
from the brain along cranial nerves may be bidirectional. For example, when the distribution of
potassium ferrocyanide and iron ammonium citrate solutions were compared following either injection
into the subarachnoid space or IN administration in rabbits, both routes of administration showed dye
located in the perineural spaces of olfactory nerve bundles [45]. Within minutes after IN administration,
fluorescent tracers such as dextran (3 kDa), insulin, and IgG can be found associated with olfactory nerve
bundles traversing the cribriform plate and in the olfactory nerve layer of the olfactory bulb [10,27,46].
The observation that substances can be found associated with olfactory nerve bundles whether they
are administered intranasally or directly into the CNS suggests that extracellular fluid movement
across the cribriform plate is bidirectional. Blood vessels that traverse the cribriform plate from the
nasal lamina propria also exist [33]. The perivascular spaces (PVS) of these blood vessels are another
potential extracellular pathway that drugs may use to enter the CNS, although the mechanisms that
regulate fluid dynamics in PVS are controversial and not completely understood [47–49].

Immune cells such as monocytes, dendritic cells, and T cells have previously been shown to traffic
from the CNS, through the cribriform plate, and to the deep cervical lymph nodes as part of the afferent
limb of the CNS immune response [50–52]. Recently, it was shown that mesenchymal stem cells can be
found crossing the cribriform plate adjacent to the olfactory nerve bundles and in the olfactory nerve
layer of the olfactory bulb two hours after IN administration [21]. These observations suggest that cells
may be able to both leave and enter the CNS across the cribriform plate.

Substances injected into the CNS or intranasally-administered can be found in the deep cervical
lymph nodes [10,17,37,38,40,42,43]. Lymphatic vessels can also be found traversing the cribriform
plate [33,53]. Currently, evidence linking lymphatic vessels to the transport of substances to the CNS
after IN administration is lacking. Whether lymphatic vessels near the cribriform plate are involved in
the IN delivery of drugs to the CNS is an area that warrants further investigation.

In addition to the olfactory pathway, there is evidence that intranasally-administered drugs can
reach the CNS along the trigeminal pathway. Fluorescently-labeled insulin or IgG can be detected in the
perivascular and perineural spaces of the trigeminal nerve within 30 min after IN administration [10,54].
These potential therapeutics can be found associated with the epineurium, perineurium, and, to a lesser
extent, the endoneurium of the trigeminal nerve as well as in PVS. Transport along these extracellular
components of the trigeminal nerve as it enters the pons from the nasal passages is likely involved
in the brain delivery of drugs to the CNS. Tracers injected into the CSF can also be found associated
with the trigeminal nerve, suggesting that the trigeminal pathway may also be involved in both the
brain entry and exit of substances [43]. The bulk flow rate within cranial nerves has not been well
investigated, but the appearance of tracers in the brainstem within 20 min after IN administration
in rats suggests that the bulk flow rate along the trigeminal nerve must be at least 1.0 mm/min [15].
The elucidation of extracellular fluid flow rates within cranial nerves and PVS will be needed to
more completely understand the mechanisms regulating IN drug delivery to the CNS. Taken together,
the data currently suggest that perineural and/or PVS associated with the cribriform plate and the
trigeminal nerves are the pathways that intranasally-administered macromolecules utilize to enter the
CNS from the nasal lamina propria (Figure 2).
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Figure 2. Intranasally-administered therapeutics may reach the brain from the nasal lamina propria
through the olfactory or trigeminal pathways. Perineural spaces associated with olfactory nerve
bundles (ONB) and perivascular spaces associated with blood vessels (BV) traversing the cribriform
plate (A) provide anatomical connections between the olfactory bulb and lamina propria. Perivascular
spaces and perineural spaces (i.e., in the endoneurium, perineurium, or epineurium) of the trigeminal
nerve (B,C) provide anatomical connections between the brainstem and lamina propria. Blood vessels
were labeled with anti-platelet endothelial cell adhesion molecule-1 (PECAM-1) or tomato lectin, ONB
were labeled with anti-olfactory marker protein (OMP), axons in the trigeminal nerve were labeled
with the Neuro-Chrom (NC) antibody, and nuclei were labeled with DAPI.

4. Distribution within Brain

Intranasally-administered drugs and tracer molecules typically exhibit widespread brain
distribution within minutes. When estimating whether intracellular transport, diffusion, or convective
(bulk) flow is the mechanism likeliest to explain the brain pharmacokinetics after IN administration,
the data best fit convective flow as the predominant mechanism [15]. In the CNS, convective flow has
been shown to occur within the CSF and the extracellular fluid of PVS [49]. Evidence suggests arterial
pulsations caused by the cardiac cycle provide the driving force for fluid movement within PVS [55–57].
The delivery of intranasally-administered drugs to either the CSF or PVS may allow for widespread
brain distribution similar to what has been observed after administration into the cisterna magna.

Though several groups have reported tracer distribution along cerebral PVS after central injections,
controversy exists as to whether perivascular fluid flows in the same direction as blood flow, in the
opposite direction, or bidirectionally [47,56–61]. Ichimura et al. observed that the movement of
rhodamine-labeled albumin after injection into a cerebral PVS was “slow and variable” in direction,
although these studies were done with an open cranial window that may have influenced intracerebral
pressure gradients [58]. It has been suggested that discrepancies in the direction of perivascular fluid
flow between groups may be due to tracer moving down its concentration gradient, and this direction
appears to be with blood flow when injected into the CSF and against blood flow when injected into
the parenchyma [48,62–64]. In this scenario, arterial pulsations lead to convective stirring or mixing
within PVS rather than unidirectional flow, either with or against the direction of blood flow [49].
Another scenario that has been suggested is that fluid flows with the direction of blood flow in cerebral
arteries and against the direction of blood flow in cerebral veins [49,59]. Further complicating the
interpretation of the experimental data is the observation that both the presence and type of anesthesia
as well as whether the animal is awake or alive during observation can alter the kinetics and location
of tracer within cerebral PVS after CSF injection [43,65]. While fluid dynamics within PVS are not fully
understood, we feel it is likely bidirectional in nature due to convective mixing, and this possibility
suggests that the IN delivery of drugs into the cerebral PVS may allow for distribution throughout
the brain.

There is some evidence that intranasally-administered tracers are able to access and distribute
within the cerebral PVS (Figure 3). High levels of radioactive tracers associated with the arteries
of the Circle of Willis have been measured after IN administration and perfusion-fixation in rats
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and monkeys [10,16,17]. Fluorescently-labeled dextrans have also been observed in PVS of cerebral
arteries on the pial surface of the brain as well as vessels within the brain parenchyma shortly
after IN administration [20]. These observations suggest that intranasally-administered tracers
may distribute along cerebral PVS in a similar manner to tracers administered into the brain
parenchyma or CSF. Estimates of bulk flow velocity within cerebral PVS vary widely from 0.01
to 1.1 mm/min [49,57,58,66]. The movement of drugs from PVS to targets in the surrounding brain
parenchyma is likely size-dependent (i.e., larger molecules are less able to access the parenchyma from
PVS) [59,60]. The possibility that larger drugs may not be able to access targets within the parenchyma
from PVS should be taken into consideration when utilizing PVS to deliver drugs through either the
IN or intrathecal routes.
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Figure 3. Cerebral perivascular spaces (PVS) provide potential pathways for brain distribution of
intranasally-administered therapeutics. A cross-section (A) and side view (B) of a cortical blood vessel
with endothelial cells labeled with lectin (magenta), astrocyte end feet labeled with an anti-glial fibrillary
acidic protein (GFAP; red), mural cells labeled with anti-alpha smooth muscle actin (α-SMA) and nuclei
labeled with DAPI (blue). A high magnification view (C) of the inset in (B) shows the PVS located
between astrocyte end feet and mural cells ensheathing the blood vessel.

Interestingly, entry into the CSF does not seem to precede the brain delivery of intranasally-
administered drugs in all instances. For example, [125I]-IGF-I, [125I]-vascular endothelial growth
factor, and [125I]-transforming growth factor β1 have all been detected in widespread brain regions
but not CSF following IN administration [16,17,24,44]. In these instances, it is possible that the
intranasally-administered compound entered the PVS of arteries in the nasal lamina propria that are
also continuous with arteries of the olfactory bulb and/or trigeminal nerves. Transport within the
PVS of these arteries that branch off other cerebral arteries could then provide a transport network
along major arteries and their branches throughout the brain. Though the mechanisms involved in the
rapid, widespread brain distribution of intranasally-administered tracers are not fully understood,
the evidence to date has suggested that cerebral PVS are prominently involved.

5. Conclusions

The IN route of administration has the potential to non-invasively target drugs to the central
compartment through direct pathways connecting the nasal passages to the CNS (Figure 4). These
characteristics suggest that the IN route may allow patients to easily self-administer potent, non-BBB
permeable drugs (e.g., biologics) to the brain while minimizing unwanted systemic side effects. Though
therapeutics ranging in size from small molecules to stem cells have successfully been delivered
intranasally to treat CNS diseases in pre-clinical models, there are still a number of unresolved questions
regarding the pathways and mechanisms regulating IN delivery to the brain.
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A better understanding of the permeability characteristics of the olfactory epithelium and the
mechanisms involved in transporting substances from the epithelial surface to the lamina propria will
allow one to better select/design therapeutics for brain targeting through the IN route. For example,
large substances may exhibit a low permeability across the epithelium, while small molecules may
easily cross the epithelium but also be more readily absorbed into the systemic circulation. Further
research is needed to characterize how perivascular and perineural fluids flow across the cribriform
plate, within the trigeminal nerve, and along cerebral PVS. If extracellular fluids in these locations
indeed flow in a bidirectional manner, this observation would have important physiological and
pharmacological implications. Understanding the anatomical, physiological, and physicochemical
limitations of IN drug delivery may ultimately lead to significant advances in drug delivery and the
treatment of CNS disorders. The promise of delivering improved and effective therapies to treat the
significant number of CNS disease states may well be centered on a future that involves intranasal
drug delivery.
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delivery and the treatment of CNS disorders. The promise of delivering improved and effective 
therapies to treat the significant number of CNS disease states may well be centered on a future that 
involves intranasal drug delivery.  

 

Figure 4. Intranasally-administered drugs may reach the CNS from the nasal passages along perivascular and/or 
perineural spaces of the olfactory and trigeminal nerves. Once in the CNS, widespread brain distribution may 
occur along cerebral perivascular spaces (PVS). Figure modified from Lochhead et al. [20]. 
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