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Abstract

Genetic alterations in human cancers and murine models indicate that Rb and p53 have critical 

tumor suppressive functions in retinoblastoma, a tumor of neural origin, and neuroendocrine 

tumors including small cell lung cancer and medullary thyroid cancer (MTC). Rb inactivation is 

the initiating lesion in retinoblastoma and current models propose that induction of apoptosis is a 

key p53 tumor suppressive function. Genetic studies in mice, however, indicate that other 

undefined p53 tumor suppressive functions are operative in vivo. How p53 loss cooperates with 

Rb inactivation to promote carcinogenesis is also not fully understood. In the current study, 

genetically engineered mice were generated to determine the role of Rb and p53 in MTC 

pathogenesis and test the hypothesis that p53 suppresses carcinogenesis by inhibiting mTOR 

signaling. Conditional Rb ablation resulted in thyroid tumors mimicking human MTC, and 

additional p53 loss led to rapid tumor progression. p53 suppressed tumorigenesis by inhibiting cell 

cycle progression, but did not induce apoptosis. On the contrary, p53 loss led to increased 

apoptosis that had to be overcome for tumor progression. mTOR activity was markedly increased 

in p53 deficient tumors and rapamycin treatment suppressed tumor cell growth identifying mTOR 

inhibition as a critical p53 tumor suppressive function. Rapamycin treatment did not result in 

AKT/MAPK activation providing evidence that this feedback mechanism operative in other 

cancers is not a general response to mTORC1 inhibition. Together, these studies provide 

mechanistic links between genetic alterations and aberrant signaling pathways critical in 

carcinogenesis, and identify essential Rb and p53 tumor suppressive functions in vivo.
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INTRODUCTION

The tumor suppressive pathways centered on p53 and the retinoblastoma (Rb) protein are 

deregulated in the vast majority of human cancers providing strong evidence that Rb and 

p53 cooperate to suppress carcinogenesis. p53 mutations are the most common genetic event 

in human cancer but the critical p53 tumor suppressive functions operative in vivo are still 

not entirely defined (1). Additionally, how p53 loss cooperates with Rb inactivation to 

promote carcinogenesis is not fully understood. Activation of p53 occurs in response to a 

wide variety of stress signals and drives several potential cellular outcomes including cell 

cycle arrest, senescence, differentiation and apoptosis (2, 3). Current models propose that 

apoptosis is a key mechanism by which p53 eliminates cancer cells. Challenging this notion 

is the observation that mice expressing p53 mutant proteins deficient in driving apoptosis are 

protected from tumor development, indicating that p53 has other in vivo functions critical 

for suppressing tumorigenesis (4). Studies in cultured cells demonstrate that p53 is capable 

of inhibiting mTOR signaling to shut down growth of cells under stress, thus identifying 

mTOR inhibition as a potential novel mechanism by which p53 suppresses cancer (5, 6).

Genetic alterations in human cancers and murine models indicate that Rb and p53 have 

critical roles in suppressing retinoblastoma, a tumor of neural origin, and the neuroendocrine 

tumors small cell lung cancers (SCLC) and medullary thyroid cancers (MTC). Rb 

inactivation is the initiating genetic lesion in human retinoblastoma and p53 suppresses 

retinoblastoma development in mice (7, 8). Although the p53 gene is intact in human 

retinoblastomas, molecular studies reveal that the p53 tumor surveillance pathway is 

activated in human retinogenesis after Rb loss leading to apoptosis and cell cycle exit (7, 8). 

This p53 dependent response is suppressed during retinoblastoma progression by several 

mechanisms including CDKN2A gene deletions and increased MDM2 or MDMX 

expression. Strong evidence supporting cooperative roles for Rb and p53 in suppressing 

SCLC also exists in both mice and humans. Rb and p53 gene mutations are detected in 

>80% of human SCLC providing evidence that loss of these tumor suppressors is critical, if 

not essential, for SCLC development (9). Moreover, persons with Rb germline mutations 

have a 15 fold increased risk for developing SCLC. In mice, combined Rb and p53 loss 

targeted to the lung epithelium results in metastatic SCLC (10). Finally, genetic Rb ablation 

in multiple murine models results in MTC. It remains unclear, however, if p53 cooperates 

with Rb to suppress MTC pathogenesis (11-13). p53 loss was reported to cooperate with Rb 

loss in MTC development based upon increased MTC incidence in combined germline 

Rb+/−/p53+/− as compared to Rb+/− mice (11). In contrast, Williams, et al. reported no 

additional effect of germline p53 loss on MTC development in Rb+/− mice (13). Genetic 

backgrounds were similar in the two studies and therefore strain does not account for the 

differing results.

MTC are aggressive radiation and chemotherapy resistant neuroendocrine tumors (14-17). 

Surgery offers the only curative approach and no effective therapy exists for distant 

metastatic disease. The observed poor outcomes in this disease are thus largely due to 

frequent presentation with metastatic disease and persistent or relapsing disease after surgery 

(15, 16). The tyrosine kinase inhibitor, vandetanib, was recently shown to prolong 
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progression free survival in progressive MTC (18). Despite this advancement, no treatment 

has been shown to improve overall survival, stressing the need for novel therapies. The 

discovery of vandetanib as an effective targeted therapy provides proof of principle that 

defining molecular mechanisms driving MTC pathogenesis holds promise for developing 

effective treatments. Determining cause-effect relationships between genetic alterations and 

aberrant molecular signaling also hold promise for developing biomarkers and patient 

stratification algorithms to optimize therapy response.

Germline oncogenic RET mutations occur in nearly all patients with hereditary MTC; 

however, tumors in these patients are monoclonal suggesting that additional somatic 

alterations are required to promote tumorigenesis (14). In support of this notion, expression 

of the frequently detected RET M918T mutation in murine models leads to C-cell 

hyperplasia but not MTC indicating that RET deregulation is not sufficient for MTC 

development (19). The secondary events and the genetic alterations promoting sporadic 

MTC that comprise ~75% of cases remain unknown. The incidence of RET mutations in 

sporadic MTC varies greatly among reported series leaving the pathogenesis of up to two 

thirds of cases unclear (14-18, 20). Studies exploring other molecules in the RET signaling 

cascade have likewise yielded varying mutation rates further highlighting the need to 

identify causative genetic events in MTC (14, 20-22). Despite the knowledge void in MTC 

genetics, it is of clinical significance that mTOR signaling is functionally activated in 

50-100% of cases (21, 23, 24). Oncogenic RET can induce mTOR activation explaining the 

positive correlation between RET mutations and mTOR activation in hereditary MTC. 

mTOR activation however is also detected in sporadic MTC lacking RET mutations 

indicating alternate, as yet undefined, mechanisms to induce mTOR signaling. In the current 

study, mouse models were used to demonstrate that Rb and p53 have distinct and 

cooperative roles in MTC pathogenesis. Mechanistic studies reveal that p53 suppresses 

MTC progression by inhibiting cell cycle progression and mTOR activation. Surprisingly, 

p53 loss resulted in increased apoptosis that needed to be overcome for tumor progression. 

Pharmacological inhibition of mTORC1 signaling decreased MTC cell growth in the 

absence of feedback AKT or MAPK activation shown to limit rapamycin effectiveness in 

other cancers (25) providing rationale for exploring mTOR pathway inhibition as a 

therapeutic strategy for MTC.

RESULTS

Rb ablation targeted to the thyroid results in a uniformly penetrant model of human MTC

A genetically engineered mouse model was developed to target Cre recombinase mediated 

Rb gene ablation under control of the surfactant protein C (SPC) promoted reverse 

tetracycline transactivator (Fig. 1a; (26)). Treatment with doxycycline throughout gestation 

resulted in Rb ablation throughout the lung epithelium as well as in a subset of thymic and 

thyroid cells, consistent with previous reports (27). Double transgenic mice homozygous for 

floxed Rb alleles (designated Rb ablated) developed pulmonary neuroendocrine hyperplasia 

as previously described and uniformly developed thyroid tumors (Fig. 1b, n=29) (26). No 

thyroid tumors were detected in littermate controls lacking the Cre transgene (designated 

control; n=11) indicating that Rb loss was required for thyroid tumor initiation. Epithelial 
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cell hyperplasia and/or microscopic nodules were detected in all Rb ablated thyroids 

analyzed at 4 months of age (n=10) with subsequent growth resulting in tumors with an 

average maximum dimension of 6.0 mm by 7-10 months of age (n=22; Fig. 2e). The thyroid 

tumors were phenotypically indistinguishable from human MTC being comprised of 

malignant cells with fine to moderately coarse nuclear chromatin; a characteristic and 

diagnostic feature of neuroendocrine tumors (Fig. 1b). The tumors expressed calcitonin 

similar to that seen in human MTC (Fig. 1b). Rb gene recombination was confirmed 

demonstrating that the tumors arose from Rb deficient cells (Fig. 1c). These studies 

demonstrate that Rb loss is sufficient to induce thyroid tumors that phenotypically mimic 

human MTC. Moreover, the thyroid phenotype is fully penetrant by four months of age 

making this a valuable model to study Rb mediated tumorigenesis.

p53 loss promotes Rb deficient tumor progression

Activated p53 was detected in Rb deficient thyroid tumors leading to the hypothesis that the 

oncogenic stimulus induced by Rb loss leads to a p53 response that suppresses carcinoma 

progression (Figs. 1d and 2c). To directly test this hypothesis, p53 was conditionally ablated 

in Rb deficient thyroids by generating double transgenic mice with floxed Rb and p53 

alleles (designated Rb/p53 ablated). Tumors were detected in 15/16 (93%) Rb/p53 ablated 

thyroids but not in littermate controls lacking the Cre transgene (n=13). The mice also 

developed pulmonary neuroendocrine carcinomas (data not shown). p53 ablation in Rb 

deficient thyroid tumors resulted in dramatic MTC progression and a median survival of 4 

months (Fig. 2a, c). The tumor promoting effect of p53 loss was evident by 9 weeks of age 

(Fig. 2d) with the effect being even more dramatic at 4 months when Rb/p53 deficient 

thyroids were five times larger than Rb deficient thyroids (Fig. 2e). Rb/p53 ablated tumors 

were comprised of cells with recombined Rb and p53 alleles, and were phenotypically 

similar to Rb deficient MTC including staining positive for calcitonin and no identifiable 

histopathologic evidence of differences in tumor grade (Fig. 2b-c). These data directly 

demonstrate that although p53 loss is not sufficient to initiate neuroendocrine tumorigenesis, 

p53 plays a critical role in suppressing Rb deficient cancer progression.

p53 loss enhances Rb deficient tumor progression by promoting cell growth despite 
increased cell death

Cell proliferation and death were compared between Rb and Rb/p53 ablated thyroid tumors 

to determine mechanisms accounting for the dramatic p53 dependent suppression of MTC 

progression. p53 loss resulted in a significant increase in cell cycle progression (Fig 3a). 

Notably, p53 loss did not promote cell survival but rather led to increased apoptotic cell 

death as indicated by a significant increase in cleaved caspase-3 positive tumor cells in 

Rb/p53 as compared to Rb ablated tumors (Fig. 3b). Additionally, cleaved PARP levels 

were higher in combined Rb/p53 deficient tumors as compared to Rb loss alone (Fig. 3c). 

These data identify enhanced cellular proliferation as an underlying mechanism promoting 

MTC progression after p53 loss. Moreover, the data directly demonstrate that the established 

apoptotic function of p53 is not responsible for p53 mediated suppression of MTC 

progression. In contrast, increased cell death resulting from p53 loss must be overcome to 

result in the dramatic p53 dependent tumor progression seen in Rb deficient tumors.
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p53 loss results in mTOR pathway activation

p53 mediated suppression of the IGF-1/AKT/mTOR pathway was recently identified as a 

novel mechanism to negatively regulate cell growth in culture (5, 6). To determine whether 

p53 suppressed this growth stimulatory pathway in vivo, expression of activated signaling 

molecules was determined in Rb and Rb/p53 ablated thyroid tumors. p53 loss resulted in 

marked mTOR pathway activation as indicated by increased expression of the downstream 

mTORC1 target, phosphorylated S6 kinase (p-S6K) (Fig. 4a). In contrast, phosphorylated 

AKT (p-AKT) levels were similar in Rb and Rb/p53 ablated tumors and p53 loss resulted in 

decreased phosphorylated MEK (p-MEK) levels (Fig. 4b-c). These data demonstrate that 

p53 loss results in mTOR pathway activation during tumor progression in vivo in the 

absence of increased AKT signaling and coincident with downregulated MAPK signaling.

p53 transcriptionally induces multiple genes that repress IGF-1/AKT/mTOR pathway 

signaling (Fig. 4d) (5, 28). Examination of these p53 targets in Rb and Rb/p53 deficient 

MTC revealed that p53 loss was associated with decreased expression of the mTOR 

pathway inhibitors, sestrin 2 (Sesn2), tuberous sclerosis 2 (Tsc2), polo-like kinase 2 (Plk2), 

insulin-like growth factor binding protein 3 (Igfbp3) and phosphatase and tensin homolog 

(Pten) (Fig. 4d). In contrast, the p53 target genes DNA-damage-inducible transcript 4 

(Ddit4) and protein kinase AMP-activated, beta 1 non-catalytic subunit (Prkab1) were not 

significantly changed in Rb/p53 as compared to Rb ablated tumors demonstrating that p53 

loss led to selective downregulation of a subset of p53 target genes. mTOR activation in 

Rb/p53 deficient MTC was present in the absence of AKT activation indicating that 

physiologically relevant p53 targets critical for suppressing MTC progression are likely 

downstream of AKT. Sestrin 2, TSC2 and PLK2 inhibit mTOR signaling downstream of 

AKT identifying these molecules as potential mediators of p53 dependent tumor suppression 

in vivo. These data provide evidence that p53 positively regulates mTOR pathway inhibitors 

in vivo, and directly demonstrate that p53 suppresses mTOR pathway signaling in the 

context of tumor progression.

p53 loss is required for establishing Rb deficient MTC cells in culture and p53 expression 
in Rb/p53 deficient MTC cells suppresses cell growth and mTOR pathway activity

Rb and Rb/p53 ablated thyroid tumors were explanted to propagate tumor cells in culture 

(Supplemental Table and Fig. S1). MTC cell cultures were efficiently established from 

Rb/p53 ablated explanted tumors after 1.5-2.3 months in culture. Rb and p53 gene 

recombination was detected in all cell cultures demonstrating that the cultured cells were 

derived from MTC (Fig. S1). In contrast to Rb/p53 ablated tumors, only one of 13 Rb 

ablated explanted tumors resulted in an established MTC cell culture and this occurred after 

an extended culture period of 9.4 months. Cells grew from four additional Rb ablated tumors 

after 8-11 months in culture but no or partial Rb gene recombination was detected in the 

resultant cells despite uniform Rb recombination in the original explanted tumors indicating 

that the cultures were not pure MTC tumor cells (Supplemental Table and Fig. S1). 

Interestingly, cells established from the one Rb ablated tumor had p53 allelic loss (Fig. S2). 

These data provide evidence that p53 loss is required for establishing Rb deficient MTC cell 

cultures and support the in vivo results showing that p53 loss in Rb deficient tumors results 

in a more aggressive phenotype.
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Rb and p53 are established regulators of cellular differentiation, and differentiation control 

was identified as a key p53 family tumor suppressor activity (2). Thus, the effects of Rb and 

combined Rb/p53 loss on MTC differentiation were assessed in thyroid tumors and cultured 

cells. High calcitonin and synaptophysin expression was detected in Rb deficient tumors 

(Fig. S1). Additional loss of p53 was associated with a significant decrease in calcitonin 

expression but no change in expression of the more general neuroendocrine marker, 

synaptophysin. Minimal or no calcitonin and synaptophysin expression was detected in 

combined Rb/p53 deficient MTC cultured cells. These data indicate that MTC propagation 

in culture and p53 loss is associated with decreased cellular differentiation.

Expression of p53 in three independently derived Rb/p53 deficient MTC cell cultures from 

tumors that developed in three different mice inhibited cell growth (Fig. 5a). Moreover, p53 

expression suppressed mTOR pathway activation and resulted in increased expression of 

mTOR pathway inhibitors, including Sesn2, Plk2 and Pten identified as candidate mediators 

linking p53 and mTOR in vivo (Figs. 5b-c and 4d). These data provide further evidence that 

p53 suppression of mTOR signaling is critical for inhibiting tumor cell growth.

mTOR pathway inhibition by rapamycin suppresses Rb/p53 deficient tumor cell growth

Rapamycin treatment of MTC cells resulted in dramatic inhibition of p-S6K and inhibited 

cell growth in a dose-dependent manner in all three independently derived Rb/p53 deficient 

MTC cell cultures (Fig. 6a-b). Time course experiments demonstrated statistically 

significant decreases in cell growth by 48 and 72 hours after rapamycin treatment in all three 

cell cultures by both cell counts and WST-1 assays (Fig. 6c and data not shown). No 

evidence of rapamycin induced apoptosis was detected by cleaved-PARP expression (Fig. 

6d). These studies demonstrate that mTOR pathway activation resulting from p53 loss 

functions to stimulate tumor cell growth. Moreover, rapamycin is effective in suppressing 

p53 dependent mTOR pathway activation resulting in decreased tumor cell growth.

mTOR pathway inhibition in MTC tumor cells does not induce MAPK or AKT pathway 
activation

mTORC1 inhibition was previously shown to induce MAPK pathway activation leading to 

the conclusion that tumor cells evade a therapeutic response to rapamycin by upregulating 

AKT and MAPK signaling (25). To determine whether feedback induction of kinase 

pathway signaling is tumor type specific or represents a general response, rapamycin treated 

MTC cells were assessed for MAPK and AKT pathway activation. In contrast to prior 

reports, MAPK activation was not detected in MTC cells as assessed by p-ERK levels (Fig. 

7). In fact, rapamycin treatment resulted in a significant decrease in MAPK signaling in all 

three cell cultures. AKT pathway signaling was more variable with one culture showing a 

significant decrease in p-AKT levels and the other two cultures showing no significant 

change (Fig. 7). Importantly, however, AKT activation was not increased after rapamycin 

treatment in any of the three independently derived cell cultures. Thus, rapamycin treatment 

of MTC tumor cells is not associated with MAPK or AKT pathway activation. Instead, 

inhibition of mTORC1 pathway signaling led to MAPK downregulation. These data indicate 

that MAPK pathway activation after mTORC1 inhibition is tumor cell type specific and 

does not represent a general tumor response.
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DISCUSSION

Rb and p53 have distinct and cooperative evolutionarily conserved roles in suppressing 

carcinogenesis in mice and humans. The critical role for Rb in neuroendocrine cell function 

and tumorigenesis is striking. A major defect in germline Rb-/- mice is ectopic cell 

proliferation and death in neural tissues. In addition, Rb+/− and conditional Rb ablated mice 

develop a remarkable spectrum of neuroendocrine tumors in multiple organs (11-13). The 

neuroendocrine tumor spectrum is extended to additional organs with combined Rb/p53 loss 

(11, 13). The current studies extend these reports by demonstrating that Rb loss induces a 

p53 dependent response critical for suppressing tumor progression. Rb ablation resulted in 

consistent MTC development with uniform latency providing evidence that Rb loss is 

sufficient for tumor initiation. In contrast, p53 loss is not sufficient for tumor initiation ((13) 

and data not shown) but data herein directly demonstrate that p53 plays a critical and 

prominent role in suppressing tumor progression by inhibiting cell cycle progression and 

suppressing mTORC1 activity. The critical and selective role for Rb and p53 in suppressing 

neuroendocrine carcinogenesis is further demonstrated in the lung epithelium which is 

comprised of neuroendocrine as well as multiple non-neuroendocrine cell types. Rb loss is 

sufficient to selectively induce neuroendocrine hyperplasia and additional loss of p53 results 

in highly aggressive SCLC (10, 26, 29). These findings in mice recapitulate the genetics in 

human disease. Together, these data provide robust evidence that Rb and p53 play critical 

evolutionally conserved roles in suppressing neuroendocrine carcinogenesis.

The data presented herein directly demonstrate that Rb and p53 cooperate to suppress the 

aggressive neuroendocrine thyroid carcinoma, MTC. The prevalence of Rb and p53 

alterations in human MTC is unclear. The Rb gene has not been directly assessed in MTC; 

however comparative genomic hybridization detected losses of chromosome 13q wherein 

the Rb gene resides (30-32). Immunohistochemical analyses resulted in varying results. 

Holm, et al. detected Rb expression in 46 MTC whereas more recent smaller case series 

reported loss of Rb staining in 20-50% of cases (33-35). Genetic assessment of the p53 gene 

in MTC resulted in no detected mutations in earlier reports (36-38), whereas more recent 

studies report p53 mutations and deletions in up to 44% of cases (39, 40). Given the 

differing published results, a systematic analysis of Rb and p53 status in MTC is necessary 

to clarify their role in human MTC. Regardless of the genetic alteration, however, the 

mTOR pathway is functionally activated in the vast majority of cases (21, 23, 24). mTOR 

pathway activation drives cancer growth by activating lipid and protein biosynthesis needed 

for robust tumor expansion (41). mTOR is a serine/threonine protein kinase that functions in 

two distinct complexes, mTORC1 and mTORC2, that regulate discrete sets of cellular 

responses. Protein synthesis is the best characterized process controlled by mTORC1 (42). 

Phosphorylated S6, a primary mTORC1 effector, was detected in 49/51 (96%) of human 

MTC (24). Some of the pS6 positive tumors did not express p-AKT and did not have RET 

mutations indicating that mTOR activation was induced by other mechanisms (21, 24). The 

current studies identify p53 loss as an alternate mechanism to activate mTOR signaling in 

vivo. Moreover, the data demonstrate that p53 loss and mTOR activation are associated with 

dramatic tumor progression. Interesting, pS6 was upregulated in 22/23 (96%) lymph node 
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metastases as compared with autologous matched primary MTC supporting a similar role for 

mTOR activation in human MTC progression (24).

p53 suppresses tumor progression by inhibiting cellular proliferation and mTOR pathway 

signaling. Mechanistic studies underlying p53 dependent phenotypes in the current studies 

reveal that p53 suppresses MTC progression by inhibiting cell cycle progression. Similarly, 

p53 loss results in increased proliferation in murine models of retinoblastoma and activation 

of the p53 tumor surveillance pathway in human retinogenesis after Rb loss leads to cell 

cycle exit (7, 8). Surprisingly, p53 induction did not induce an apoptotic response in the 

current studies but rather p53 loss was associated with increased apoptosis. This finding is in 

contrast to the lack of effect of p53 loss on apoptosis in murine retinoblastoma and the 

promotion of apoptosis induced by activation of the p53 tumor surveillance pathway in 

human retinogenesis (7, 8).

The discovery that p53 loss promotes tumor cell growth by enhancing mTOR pathway 

signaling has therapeutic implications. Reactivation of wild type p53 in p53 null or mutant 

tumors is sufficient to induce tumor stasis or regression: however, targeting p53 

therapeutically has been challenging and has not yet impacted patient care (43). An alternate 

approach is to identify mechanisms by which p53 loss promotes tumor growth and target 

these downstream pathways. The mTOR pathway represents one such downstream pathway. 

The current studies demonstrate that targeting mTORC1 in p53 deficient MTC suppresses 

tumor cell growth. Similarly, inhibition of mTOR signaling in human MTC cell lines 

suppresses proliferation, motility and tumorigenicity (21, 24, 44, 45). Moreover, tumor 

responses were seen in two patients with progressive metastatic MTC treated with the 

mTOR inhibitor, everolimus (44). Tumor cell growth was suppressed by cell cycle 

inhibition in the absence of apoptosis consistent with mTORC1 inhibitors being primarily 

cytostatic, rather than cytotoxic, and thus inducing disease stabilization as opposed to 

regression (24, 41, 44, 45). Clinical successes resulting from mTORC1 targeting drugs 

include substantial benefit in treatment of renal cell carcinoma, mantle cell lymphoma, 

pancreatic neuroendocrine tumors and benign tumors arising from TSC1 and TSC2 

mutations (41, 46). In other instances, rapalogs have shown only modest efficacy in tumors 

wherein benefits were expected based upon insights into mTOR pathway signaling. The 

effectiveness of rapamycin treatment was shown to be impaired by the unintended activation 

of feedback loops that drive mitogenic signaling through AKT, RAS/MAPK and mTORC2 

activation (41, 42). This discovery provided rationale for ongoing clinical trials combining 

mTOR, PI3K, AKT and MEK inhibitors (47). Interestingly, mTORC1 inhibition by 

rapamycin in the current studies did not result in feedback activation of AKT or MAPK 

signaling. These results highlight the need to carefully consider tumor specific crosstalk 

interactions in the mTOR pathway in order to design the most effective combination 

therapies while avoiding unnecessary toxicities.

In summary, the current studies demonstrate that Rb and p53 have distinct roles in 

suppressing MTC. Conditional Rb, but not p53, loss in the thyroid is sufficient for tumor 

initiation with a long latency, whereas combined Rb and p53 ablation results in highly 

penetrant MTC with consistent, rapid tumor progression. The oncogenic stimulus provided 

by Rb loss leads to a p53 tumor suppressive response that inhibits cellular proliferation and 
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mTOR dependent cell growth. Inhibition of mTORC1 signaling suppressed tumor cell 

growth demonstrating that mTOR pathway inhibition is a critical p53 tumor suppressive 

function. Notably, rapamycin induced mTORC1 inhibition did not result in MAPK or AKT 

pathway activation as was seen in other carcinomas providing evidence that this feedback 

mechanism is tumor type specific and not a general response to blocking mTORC1 

signaling. Together, these studies provide mechanistic links between genetic alterations and 

aberrant signaling pathways critical in Rb and p53 dependent cancer initiation and 

progression in vivo. The established role for Rb and p53 pathways in suppressing 

neuroendocrine carcinomas coupled with the growth inhibitory response of drugs targeting 

mTOR signaling in human pancreatic neuroendocrine tumors support common regulatory 

mechanisms operative in mice and humans (46). Thus, in addition to providing mechanistic 

insights, the generated mouse models provide robust preclinical platforms to explore novel 

therapeutic strategies as well as define mechanisms underlying treatment response and 

resistance.

MATERIALS AND METHODS

Mouse strains and genotyping

Surfactant protein C (SPC)-rtTA; tet-Cre mice with floxed Rb or Rb and p53 (FVB;129-

Trp53tm1Brn obtained from NCI Mouse Repository) alleles were treated with doxycycline 

throughout gestation (26, 48). Genotypes were determined by PCR analysis of tail DNA 

using previously established primers (NCI Mouse Repository and (26)).

Establishment of MTC cell cultures and culture conditions

Thyroid tumors were minced and cultured in HITES medium supplemented with 2% fetal 

bovine serum (FBS) and penicillin/streptomycin (49). All explanted tumors were 

morphologically confirmed as MTC. NIH3T3 cells were obtained from ATCC and 

maintained in Dulbecco's Modified Eagle's Medium supplemented with 10% FBS and 

penicillin/streptomycin.

PCR analysis for Rb and p53 gene recombination

Genomic DNA was subjected to 30 PCR cycles (30 sec at 94 °C, 30 sec at 58 °C, and 30 sec 

at 72 °C) using the Rb primers Rb212, Rb18 and Rb19E (29) and p53 primers p53-T008 (5’-

CACAAAAACAGGTTAAACCCA-3’) and p53-T011 (5’-GAAGACAGAAAAGGG-3’).

Histology and immunohistochemistry

Tissues were fixed in 10% formalin, paraffin embedded and analyzed on hematoxylin and 

eosin (H&E) stained sections. Immunohistochemistry was performed using Vectastain Elite 

ABC and DAB Substrate kits (Vector Laboratories). Methanol/hydrogen peroxide 

pretreatment, microwave 10 mmol/L citrate antigen retrieval, and serum blocking was 

performed. Antibodies were incubated at 4°C overnight: Calcitonin (1:8000; Bachem), p53 

(1:500; (CM5) Leica Microsystems), phosphorylated histone H3 (1:1000; US Biological) 

and cleaved caspase-3 (Asp 175) (1:150, Cell Signaling). Slides were counterstained with 

nuclear fast red. Cell proliferation and apoptosis was quantified by determining percentage 

positive cells with 303-534 cells analyzed per group.
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Western blot analysis

Tissues and cultured cells were homogenized in lysis buffer supplemented with protease and 

phosphatase inhibitors (Thermo Scientific), and 50 μg of total protein was resolved by SDS-

polyacrylamide electrophoresis under reducing conditions. Proteins transferred to 

nitrocellulose membranes were probed with antibodies: phosphop53 (Ser15) (1:1000; Cell 

Signaling), p53 (1:2000; (CM5) Leica Microsystems and 1:1000; (1C12) Cell signaling), 

PARP (1:1000; Cell Signaling), phospho-p70 S6 Kinase (Thr 389) (1:1000; (108D2) Cell 

Signaling), p70 S6 Kinase (1:500; (C19) Santa Cruz Biotechnology), p70 S6 Kinase 

(1:2000; (H-9) Santa Cruz Biotechnology), phospho-AKT (Ser 473) (1:2000; (193H12) Cell 

Signaling), AKT (1:2000; Cell Signaling), phosph-MEK1/2 (Ser 217/221) (1:2000; Cell 

Signaling), MEK-1 (1:2000; (C-18) Santa Cruz Biotechnology), phospho-ERK (1:2000; 

(E-4) Santa Cruz Biotechnology), ERK1 (1:2000; (K-23) Santa Cruz Biotechnology), 

tubulin (1:4000; (DM 1A) Sigma), actin (1:2000; (20-33) Sigma) and GAPDH (1:10,000; 

(D16H11) Cell Signaling). Detection was performed with horseradish peroxidase–

conjugated secondary antibodies and ECL Plus Western blotting Detection System (GE 

Healthcare). Data quantification was determined by relative densitometric values of scanned 

radiographic films.

Quantitative real-time PCR analysis

Total RNA was isolated using SV total RNA isolation system (Promega) and cDNA 

generated with SuperScript III RT (Invitrogen). Quantitative real-time PCR (qRT-PCR) was 

performed using the TaqMan Real-Time PCR Gene Expression System (Applied 

Biosystems) and TaqMan primer/probe sets specific for Calca (assay ID: Mm00801463_g1), 

Syp (assay ID: Mm00436850_m1), Sesn2 (assay ID: Mm00460679_m1), Tsc2 (assay ID: 

Mm00442004), Plk2 (assay ID: Mm00446917_m1), Igfbp3 (assay ID: M 00515156_m1), 

Pten (assau ID: Mm00477208_m1), Prkab1 (assay ID: Mm01201921_m1), Ddit4 (assay ID: 

Mm00512504) and Actb (catalog number: 4352933E) as an internal control. PCR reactions, 

quantifications and data analysis of triplicate samples was performed using the 7300 Real-

Time PCR system and software.

Adenovirus infection, rapamycin treatment and cell growth assays

Cells were seeded into 96-well plates and were infected after media change the following 

day with Ad-p53-GFP or control Ad-GFP adenoviruses generously provided by Susanne I. 

Wells (50) Infection efficiency for p53 and control virus were similar as determined by GFP 

positive cells, ranging between 13-39% for the three MTC cell cultures. Cell growth was 

determined by WST-1 assays (Millipore). For rapamycin treatments, cells were seeded in 

12-well plates at 1×105 cells/well for cell counting or 96-well plates at 5×103 cells/well for 

WST-1 assays and treated the following day with 1, 10, 20 and 50nM rapamycin for 72 

hours or 20 nM rapamycin for 24, 48 and 72 hours. Cells treated with DMSO vehicle served 

as controls. Cell growth was determined by hemocytometer cell counts and WST-1 assays. 

Data is representative of triplicate or sextuplicate samples and two or three independent 

experiments.
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Statistical analysis

GraphPad Prism (ver. 5.0d) was used for all statistical analyses. Symptom free survival was 

analyzed by the Kaplan Meier log-rank test. One-way Anova followed by Tukey’s multiple 

comparison was used to analyze thyroid/body weight and thyroid tumor size, and 

Bonferroni’s multiple comparison to analyze calcitonin and synaptophysin expression. p53 

target gene expression and protein expression was analyzed using unpaired Student's t-tests 

assuming equal or unequal variance. Statistical significance was defined as p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Conditional Rb ablation in the thyroid results in medullary thyroid carcinoma (MTC)
(a) Rb ablation was targeted to the lung and a subset of thyroid cells by generating mice 

containing 1) the reverse tetracycline transactivator (rtTA) under control of the human 

surfactant protein C (SPC) promoter, 2) Cre recombinase under control of the tet operator 

and minimal CMV promoter, and 3) floxed (LoxP) Rb alleles. Doxycycline treatment 

(circles) activates rtTA (arches) which induces Cre recombinase expression resulting in 

floxed Rb gene recombination. (b) Mice with conditional Rb ablation developed thyroid 

tumors (T) that mimic human MTC by morphology (H&E staining) and calcitonin 

expression as assessed by immunohistochemistry. An arrow indicates normal thyroid tissue 

surrounding the tumor. Representative images from 8-9 month old Rb ablated mice. (c) Rb 

recombination (RbRec) was detected in MTC derived DNA by PCR analysis. Floxed 

(RbLoxP), RbRec and wild type Rb (RbWt) bands are indicated. C and Ø represent positive 

and negative no DNA controls, respectively. (d) Activated, phosphorylated p53 and total 

p53 protein were detected in Rb ablated tumors by Western blot analysis. Blots were 

reprobed for actin as a loading control.
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Figure 2. p53 loss promotes Rb deficient MTC progression
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(a) p53 loss was associated with a marked reduction in symptom free survival of Rb ablated 

mice as indicated by curves showing the percentage of Rb ablated and Rb/p53 ablated mice 

that had MTC at the time of death, when moribund, or after losing ≥ 10% body weight. 

Median survival for Rb and Rb/p53 ablated mice was 9.6 and 4.1 months, respectively. (b) 
Rb (RbRec) and p53 (p53Rec) recombination was detected in MTC derived DNA by PCR 

analysis. RbLoxP, RbRec. RbWt and p53Rec bands are indicated. C and Ø represent positive 

and negative no DNA controls, respectively. (c) Mice with combined Rb/p53 ablated 

thyroids developed tumors similar to that seen after Rb ablation alone. The thyroid tumors 

mimicked human MTC by morphology (H&E stained low and high power images are 

shown) and calcitonin expression as assessed by immunohistochemistry. p53 was detected 

by immunohistochemistry in all Rb ablated tumors tested (n=3 and 16 at 4 and 7-9 months, 

respectively) with variable numbers of p53 positive cells in individual tumors. No p53 was 

detected in Rb/p53 ablated tumors (n=5). Arrows indicate tumors. (d) Thyroid to body 

weight ratios in 9 week old mice were significantly increased after combined Rb/p53 

ablation as compared to Rb ablation alone and Rb/p53 proficient controls. (e) Rb/p53 

ablated tumors were significantly larger than Rb ablated tumors in mice at 4 months and 

7-10 months of age. Data are represented as mean ± SD. ***p<0.001.
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Figure 3. p53 loss stimulates MTC cell proliferation and apoptosis
(a) Cell proliferation was determined by percentage of tumor cells positive for the mitotic 

marker, phosphorylated histone H3 (p-HH3) by immunohistochemistry. The percentage of 

p-HH3 positive cells was significantly increased in Rb/p53 as compared to Rb ablated 

tumors. Apoptotic cell death was assessed by immunohistchemistry for cleaved caspase-3 

(CC3) (b) and Western blot analysis for cleaved PARP (c). Both CC3 positive cells and 

cleaved PARP were significantly increased in Rb/p53 compared to Rb ablated tumors. 

Western blots were reprobed for actin as a loading control. Quantification of cleaved PARP 

is represented as relative densitometric values of cleaved PARP normalized to actin. Data 

are represented as mean ± SD. *p<0.05, **p<0.01 and ***p<0.001.
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Figure 4. p53 loss results in mTOR pathway activation in Rb deficient MTC
Activated, phosphorylated forms of S6 kinase (p-S6K), AKT (p-AKT) and MEK (p-

MEK1/2) as well as corresponding total protein levels (S6K, AKT and MEK-1) were 

compared between Rb and Rb/p53 ablated thyroid tumors by Western blot analysis. (a) p-

S6K was significantly increased in Rb/p53 as compared to Rb ablated tumors despite similar 

total S6K levels. (b) p-AKT and total AKT levels were similar in Rb and Rb/p53 ablated 

tumors. (c) p-MEK was significantly decreased in Rb/p53 as compared to Rb ablated tumors 

despite similar total MEK levels. Quantification is represented as relative densitometric 

values of phosphorylated:total protein ratios. (d) p53 loss in Rb deficient MTC results in 

decreased expression of mTOR pathway inhibitors. Schematic diagram illustrating 

previously identified p53 target genes (blue outlined boxes) known to repress mTOR 

signaling. Activation is indicated in blue and suppression in red. Quantitative RT-PCR 

showed significantly reduced expression of Sesn2, Tsc2, Plk2, Igfbp3 and Pten (blue shaded 

boxes), but not Ddit4 and Prkab1 (unshaded boxes), in Rb/p53 as compared to Rb ablated 

MTC. Data are represented as mean ± SD. *p<0.05, **p<0.01.

Akeno et al. Page 20

Oncogene. Author manuscript; available in PMC 2015 July 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
p53 expression inhibits cell growth and decreases mTOR pathway activity in Rb/p53 

deficient MTC cells

(a) Cell growth was significantly decreased by 24 hours and sustained to 72 hours after 

infection with p53 adenovirus (Ad-p53) as compared to control virus in three independently 

derived MTC cell cultures (#1, #2, #3) derived from three different mice as assessed by 

WST-1 assays. Results are representative of two independent experiments. Data are 

represented as mean ± SD (n=4 wells/group). (b) Expression of activated p53 

phosphorylated at serine 15 (p-p53) and total p53 (p53) protein was associated with 

decreased p-S6K protein levels as compared to cells infected with control adenovirus (C) 24 

hours after infection of cell culture #2. No change was detected in total S6K levels. Blots 

were reprobed for actin or GAPDH as loading controls. Results are representative of two 

independent experiments. (c) p53 expression in Rb/p53 deficient MTC cells resulted in 

increased expression of mTOR pathway inhibitors. Quantitative RT-PCR showed 

significantly increased expression of Sesn2, Plk2, Pten and Ddit4, no change in Tsc2 and 

Prkab1 expression, and decreased expression of Igfbp3 in p53 expressing MTC culture #2 

cells as compared to cells infected with control virus (C). Data are represented as mean ± SD 

(n=3 wells/group). *p<0.05, **p<0.01 and ***p<0.001.
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Figure 6. mTOR pathway inhibition by rapamycin suppresses Rb/p53 deficient MTC cell growth
The effect of rapamycin on Rb/p53 deficient MTC cell growth was assessed in three 

independently derived MTC cell cultures (#1, #2 and #3) generated from three different 

mice. (a) Western blot analysis for S6K phosphorylation demonstrated dramatic mTOR 

signaling inhibition by 0.5 hours (h) after 20 nM rapamycin treatment that was sustained at 

24 hours in all three cell cultures. Total S6K levels were similar at all time points. Blots 

were reprobed for actin as a loading control. Results are representative of three independent 

experiments. (b) MTC cell cultures were inhibited by rapamycin in a dose dependent 

manner as assessed by WST-1 assays performed after 72 hours of rapamycin treatment. 

Results are representative of three independent experiments. Data are represented as mean ± 

SD (n=6 wells/group). (c) MTC cell growth was significantly decreased by 48 hours after 

treatment with 20 nM rapamycin (20 nM) as compared to vehicle controls (0 nM) in all 

three cell cultures as assessed by cell counts in time-course experiments. Results are 

representative of two independent experiments. Data are represented as mean ± SD (n=3 

wells/group). (d) Cleaved PARP levels were similar in cultured MTC cells treated for 24 

hours with 20 nM rapamycin and vehicle controls by Western blot analysis. Results are 

representative of three independent experiments. Quantification of cleaved PARP is 

represented as relative densitometric values of cleaved PARP normalized to actin. Data are 

represented as mean ± SD. *p<0.05, **p<0.01 and ***p<0.001.
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Figure 7. Rapamycin inhibition of mTOR signaling in Rb/p53 deficient MTC cells does not lead 
to MAPK or AKT pathway activation
p-AKT was decreased or unchanged in three independently derived MTC cell cultures 

treated with 20 nM rapamycin (20 nM) for 24 hours compared to vehicle controls (0 nM) as 

assessed by Western blot analysis. p-ERK1/2 levels were significantly decreased in all three 

cell cultures. Total AKT (AKT) and ERK (ERK1/2) levels were similar in rapamycin treated 

and controls. Western blots were reprobed with tubulin as a loading control. Quantification 

is represented as relative densitometric values of phosphorylated:total protein ratios. Results 

are representative of three independent experiments. Data are represented as mean ± SD. 

*p<0.05, **p<0.01 and ***p<0.001.
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