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Identification and impact of 
discoverers in online social systems
Matúš Medo1, Manuel S. Mariani1, An Zeng1,2 & Yi-Cheng Zhang1

Understanding the behavior of users in online systems is of essential importance for sociology, system 
design, e-commerce, and beyond. Most existing models assume that individuals in diverse systems, 
ranging from social networks to e-commerce platforms, tend to what is already popular. We propose 
a statistical time-aware framework to identify the users who differ from the usual behavior by being 
repeatedly and persistently among the first to collect the items that later become hugely popular. 
Since these users effectively discover future hits, we refer them as discoverers. We use the proposed 
framework to demonstrate that discoverers are present in a wide range of real systems. Once identified, 
discoverers can be used to predict the future success of new items. We finally introduce a simple 
network model which reproduces the discovery patterns observed in the real data. Our results open the 
door to quantitative study of detailed temporal patterns in social systems.

The digital age provides us with unprecedented amounts of information about our society1. The collected data are 
increasingly available at fine temporal resolution which permits us to progress from rudimentary mechanisms 
in complex systems, such as preferential attachment2–4, to their refined versions where the fitness of individual 
nodes and aging play a fundamental role5,6. We focus here on data produced by various online systems where 
users acquire items: buy products, borrow DVDs, or watch videos, for example. This kind of data is at the center 
of attention of the recommender systems community which aims at predicting items that an individual user 
might appreciate7–10. The user-item data can be represented and modeled by a growing network where users are 
connected with the collected items11,12. Preferential attachment assumes that the rate at which items attract new 
connections from users is proportional to the number of connections that items already have. Models based on 
preferential attachment have been applied in a wide range of systems13. However, all models to date consider a 
homogeneous population composed of users driven by item popularity which is modulated by item fitness, aging, 
or similarity in more elaborate models5,14–16.

We develop here a statistical framework based on data with time information and use it to show that users 
in social systems are essentially heterogeneous in their collection patterns. While the majority of users obey 
preferential attachment and usually collect popular items, some users persistently collect little popular items that 
later become hugely popular. We introduce a statistical criterion to individuate the users that belong to the latter 
group—they are referred as discoverers here. We use our framework to demonstrate the presence of discoverers 
in data from a number of real systems and discuss the relation between discoverers and other related concepts 
such as opinion leaders17–21, and innovators22–24. Besides none of these concepts providing a full explanation for 
the behavior of discoverers, the main strength of our contribution lies in a well-defined quantitative method to 
identify the users that do not follow the omnipresent preferential attachment rule.

We illustrate that identifying the discoverers is of potential use by showing that they can be used to predict 
the future popular items. Motivated by the fact that the current network growth models cannot reproduce the 
behavior of discoverers, we generalize a recent model5,25 by assuming that there are two kinds of users: those who 
are driven by item popularity and those who are driven by item fitness (fitness of a node is a measure of the node’s 
attractiveness to a given system26). We grow model networks and show that they exhibit similar discovery patterns 
as those observed in the real data.

Results
Identifying discoverers: The statistical procedure.  We assume that the input data have a bipartite 
structure where there are U users, I items, and L links that always connect a user and an item. We label the users 
with Latin letters (i, j, …​) and the items with Greek letters (α, β, …​) to make the notation transparent. To find 
the users who act as discoverers of highly popular content, we devise a simple yet effective procedure. We choose 
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a small fraction fD of the most popular items and track the users who are among the first ND users connecting 
with them; here ND is a small parameter. We label these early links as discoveries of the eventually popular con-
tent. The number of links created by user i and the number of thus-achieved discoveries are denoted by ki and di, 
respectively.

To evaluate whether a user under- or outperforms in making discoveries, we formulate the null hypothesis H0 
that all users are equally likely to make a discovery by each collected item. Denoting the total number of discov-
eries and links as = ∑D di i and = ∑L ki i, respectively, the probability of discovery for each individual link 
under H0 is pD(H0) =​ D/L. Under the null hypothesis, discoveries are independent and equally likely—their num-
ber for any given user is thus driven by the simple binomial distribution. This allows us to compute the probability 
that user i makes at least di discoveries as
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By summing up over di discoveries or more, we make sure that the probability P0 can become very small only if 
the user makes too many discoveries in comparison with the user’s degree ki (di =​ 0 results in P0 =​ 1). Note that the 
expected number of discoveries of user i is 〈​di〉​ =​ pDki and the total expected number of discoveries is therefore
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The binomial distribution for the number of discoveries by individual users and the real number of discoveries 
are thus compatible with each other. Note that the null hypothesis effectively decouples the users whose discov-
eries are assumed to be independent of the discoveries made by the others. While this is not strictly true on a 
link-by-link basis—a user sometimes creates a link at a moment when there are no discoveries possible—it still 
holds for each user overall because every user makes several links and, moreover, users are free to choose the time 
when they create links.

To quantify the extent to which is the behavior of user i incompatible with the null hypothesis, we introduce 
user surprisal27 (also referred to as self-information28)

= − .s P d k p H: ln ( , , ) (3)i i i D
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0

A high surprisal value indicates that the user’s success is unlikely under H0 (in principle, si is the logarithm of the 
hypothesis p-value computed for an individual user). The lowest possible surprisal value Si =​ 0 and the highest 
possible surprisal value Si =​ −​ki ln pD are achieved when Di =​ 0 and Di =​ ki, respectively. To evaluate whether a 
user’s discovery behavior is compatible with the null hypothesis, we compare it with the average largest surprisal 
value in bootstrap realizations of the system29 (see Materials and Methods for details). Any user whose real sur-
prisal is higher than this value is referred to as discoverer; the number of discoverers is labeled as UD.

Discoverers in real data.  Figure 1 shows the discovery patterns and user surprisal in the datasets on DVD 
purchases at Amazon.com and personal bookmark collections at Delicious.com (see Materials and Methods for 
description of the datasets). Panels 1A and 1B compare the linking patterns of two Amazon users of different 
surprisal. The “ordinary user” either collects popular items late or collects unpopular items and thus achieves no 
discoveries. By contrast, the “user with many discoveries”, though only active later during the dataset’s timespan, 
is frequently among the first to collect eventually popular items and achieves 59 discoveries in 283 links whereas 
the overall discovery probability is pD ≈​ 0.5% which for the given number of links corresponds to 1.4 discoveries 
on average. Panels 1C and 1D further show the degree and surprisal values in the analyzed data. While the max-
imal possible surprisal value of an individual user grows linearly with user degree (depicted with dashed lines), 
user activity alone is no guarantee of high surprisal and top surprisal values are achieved by some moderately 
active users. One can see here that when the number of discoveries is fixed, the surprisal value decreases with user 
degree. Note that the highest observed surprisal values correspond to particularly low P0 probabilities of 10−131 
and 10−56 for the Amazon and Delicious data, respectively.

Results of the bootstrap analysis in Fig. 2 show that the largest surprisal values in bootstrap realizations sam-
pled under H0 are never as high as the largest surprisal in all six analyzed datasets. For fD =​ 1% and ND =​ 5, there 
are 49 and 525 identified discoverers in the Amazon and Delicious data, respectively (0.01% and 0.49% of all 
users, respectively). Figures in Supplementary Materials (SM) further demonstrate that there is no particular 
time bias in the discovery patterns (e.g., discoverers are not those who happen to be active earlier or longer than 
the others) and the discoveries are made continuously during the system’s lifetime (Figures S1 and S2, respec-
tively). In other words, discoverers are persistent in their behavior. While numerical values of surprisal depend 
on parameters fD and ND, the resulting ranking of users by their surprisal is rather stable (see Figure S3). Figure 
S4 finally demonstrates that the ranking of users by their surprisal does not change considerably when part of 
the data is taken into account. We can conclude that the null hypothesis of user homogeneity needs to be rejected 
because some users are indeed significantly more successful than the others in early collecting eventually popular 
items. This phenomenon is not restricted to particular conditions and consistently emerges in systems where 
individuals are free to choose from many heterogeneous items.

Using user surprisal to choose the future popular items.  We next investigate whether the presence of 
users who make discoveries more often than the others is of some practical significance. To this end, we generate 
multiple data subsets and in each of them define young items with exactly one link as the target items whose 
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future popularity is to be predicted (see SI for details). Since the information on these items is extremely limited 
(only one link from one user is attached with them) and the social network of users as well as item metadata are 
either absent in the studied systems or not known to us, traditional methods for prediction of popularity of online 
content cannot be used here30–32. We divide users in each subset into three groups: zero, low, and high surprisal 
users (the threshold between low and high surprisal is set to 10 which is close to the average highest surprisal 
value in bootstrap in both data sets). The data that come after a given subset are then used to evaluate the future 
degree evolution for the target items collected by users from different groups. Figure 3 shows that the target items 
chosen by users of high surprisal become significantly more popular than those chosen by users of zero or low 
surprisal. This demonstrates that surprisal not only quantifies users’ past behavior but, thanks to the persistence 
of the discovery behavior, it also has predictive power.

Figure 1.  Discoveries and user surprisal in real data. (A,B) A comparison of the linking patterns of an 
ordinary user and a “discoverer” in the Amazon data. Each bar here corresponds to a collected object where 
the red and blue part show item popularity at the time when the user collected it and the final popularity, 
respectively. Green circles mark those collected items that are eventually identified as discoveries (see the 
definition in text). (C,D) Scatter plots of user degree and user surprisal in the Amazon and Delicious data. Users 
are color-coded according to their number of discoveries. The dashed lines mark the maximal achievable user 
surprisal at a given user degree. All results are for fD =​ 1% and ND =​ 5.

Figure 2.  User surprisal in real data and in bootstrap. All results are for fD =​ 1% and ND =​ 5.
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What makes a discoverer.  Are there some user features that directly contribute to the user appearing as a 
discoverer in the above-described analysis? As shown in Fig. 1 (panels C and D), user degree is little correlated 
with surprisal. Collecting the items that eventually become popular also does not contribute to user surprisal in 
the Amazon dataset: no discoverer is found among the 1000 users with the highest average final degree of the 
collected items. The same is true for collecting little popular items in the Amazon dataset: among the 1000 users 
with the lowest average current degree of the collected items at the time when they have collected them, there 
are again no discoverers. In the Amazon data, we have the information on the number of users who find a review 
useful, which allows us to study the possible correlation between the average level of usefulness of a user’s reviews 
and the user’s surprisal value. However, we find no significant correlation which suggests that well-written and 
informative reviews do not contribute to the success of discoverers.

Another possible explanation lies in the discoverers being more influential than other users (see refs 19–21 
for recent research of influential users) and the items they collect are thus likely to become popular. However, 
most of the systems that we analyze here lack any explicit mechanism for users to exert influence over the others, 
especially on such short time scales as we speak of here (we use ND =​ 5 through the paper, which means that only 
the first five users are awarded a discovery for collecting a relevant item). This agrees with the finding that easily 
influenced individuals contribute to the rise of exceptionally popular items more than so-called influentials19. The 
situation is different in the Amazon dataset because of the Amazon’s Vine program which gives a small number 
of users advance access to not-yet-released products—those users are then in an obviously privileged position to 
write an early review and be awarded a discovery. Nevertheless, less than 30% of the identified discoverers are 
marked as members of the program and, conversely, many program members are not identified as discoverers.

To study the issue of potential user influence more closely, we turn to the dataset from the Yelp academic chal-
lenge, round 4 (see http://www.yelp.com/academic-dataset for more information). The advantage of this dataset 
is that unlike the datasets analyzed here, Yelp data feature both the bipartite user-item network as well as the 
social user-user network (the Delicious web site also allowed the users to form friendship links but unfortunately 
we do not possess the social network data). The input data contains 252,898 users, 42,153 items (which in this 
case represent businesses), 955,999 friendship links, and 1,125,458 reviews in the integer scale from 1 to 5; the 
time stamps run from 0 to 3558 (measured in days). We only keep the users who have at least one friend and one 
authored at least one review. As for the other datasets, we use the rating threshold of four to obtain an unweighted 
bipartite network and focus on a subset of the data (in this case the the evaluations from days 1000 until 3499; 
we thus ignore the rather long initial period of 1000 days which aims at avoiding the notorious items that existed 
before day 0 and awarding discoveries for them would therefore be unjust). We finally have a dataset with 80,840 
users, 33,661 items, 348,060 user-item links and 674,231 directed user-user links.

As in the other reported datasets, also the Yelp data features discoverers: the largest user surprisal value is 21, 
the average highest surprisal in bootstrap realizations is 9.7, and the number of identified discoverers is 30. The 
discoverers have on average 7 friends which is less than the average number of friends in the whole Yelp dataset 
(10.3). We can conclude that in the Yelp data, users with many social contacts are in no way more successful in 
achieving discoveries than users with few social contacts. Social influence thus cannot be the sole explanation for 
the observed discovery patterns. It is also worth to note that among the 30 identified discoverers, there is not a 
single explicit social link in the Yelp data, which shows that the discoverers are no privileged closed group. Other 
network centrality metrics, such as betweenness and k-shell12, show similar negative results.

In summary, the discoverers identified by the proposed statistical method do not appear to share any particu-
lar trait except for the defining one: they are disproportionately often among the first ones to collect the items 
that eventually become very popular. Note that this is similar to the existing notion of innovators who are among 
the first ones in the adoption curve of products or innovations22. The crucial difference lies in considering the 
temporal dimension and the persistence of user behavior—discoverers are at the start of the adoption curve for 
many successful items. By contrast to the standard theory of innovations by Rogers22 where innovators have the 
highest social status, are social, and interact with other innovators, we found that none of these characteristics 
apply to the identified discoverers.

Figure 3.  Future degree evolution of the target items collected by users of different surprisal in Amazon (A) and 
Delicious (B) data. The items collected by high surprisal users become significantly more popular (according 
to the Mann-Whitney test) than target items collected by users of low or zero surprisal. The popularity ratio 
between the high and zero surprisal group at the end of the future time window is 10.0 and 6.1 for the Amazon 
and Delicious data, respectively.

http://www.yelp.com/academic-dataset
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Network model.  Since none of the existing network growth models based on preferential attachment is 
able to reproduce the observed discovery patterns, we propose a simple model that fares better in this respect. In 
the model, we assume that some items are inherently more fit for a given system than the others and thus have 
higher chance of becoming very popular in the long run. Network models with node fitness have been studied 
in the past15,26,33 and they have been used to model various systems such as the World Wide Web34, citations of 
scientific papers5,35, and an online scientific forum25, for example. Unlike the existing models, we then assume 
that the users differ in how they perceive item fitness and choose the items for their collections. While the first 
group of users are driven by item popularity and thus mostly ignore new and little popular items, the second 
group of users are driven by item fitness. Discoverers then emerge among the users in the latter group because: (1) 
fitness-driven users are consistently among the first ones to collect items of high fitness, (2) high fitness items are 
likely to become very popular, (3) active fitness-sensitive users have the potential to achieve many discoveries and 
eventually be identified as discoverers by the statistical procedure that we propose here.

We generate artificial bipartite networks with U users where the number of items gradually grows from a small 
number I0 to I (we use U =​ 4000, I0 =​ 50, and I =​ 8000 here). There are UF fitness-sensitive users and the remaining 
U −​ UF users are popularity-driven. Each user is further endowed with a level of activity which determines the 
rate at which users collect new items. While one can vary the distribution of activity among the users to model a 
broad range of real systems, user activity values are for simplicity drawn from the uniform distribution [0, 1] here. 
Item fitness quantifies how suitable and attractive is an item to the given system and its users; fitness values fα are 
drawn from the power-law distribution with the lower bound fmin =​ 1 and exponent 3. As the analytic computa-
tion in SM shows, a power-law fitness distribution directly translates into a power-law distribution of item pop-
ularity (see ref. 36 for a similar direct relation between an input power law and an output power law in network 
modeling). Our choice of the item fitness distribution thus allows us to mimic real systems where the distribution 
of node popularity (degree) is often broad, typically power-law or log-normal37. Time at which item α has been 
added in the system is denoted as τα. New links are added regularly until the final network density η is achieved; 
the total number of links is thus L =​ ηUI. To reach I items before all links have been added in the network, new 
items are added every L/(I −​ I0 +​ 1) steps.

In the simulation, one user-item link is added in each time step. The user who creates this link is chosen from 
the pool of users with probability proportional to user activity. If a fitness-driven user i creates a link at time t, the 
probability of choosing item α is proportional to

τ−α α α~P f A t( ) (4)i

where A(t −​ τα) =​ exp[−​(t −​ τα)/θ] is an aging factor (see refs 5 and 25 for the original model of network growth 
with heterogeneous fitness and aging). Consequently, θ is a typical lifetime at which item attractiveness decays; 
we use θ =​ 1000 steps which is neither too quick (in which case the high-fitness items do not have sufficient time 
to attract many links and the resulting degree distribution is thus very homogeneous) nor too slow (in which case 
a strong bias towards old items develops and the fitness-popularity correlation is low). If a popularity-driven user 
i creates a link at time t, the probability of choosing item α is proportional to

τ+ −α α α~P k t A t( ( ) 1) ( ) (5)i

where kα(t) is the degree (popularity) of item α at time t. The additive term in kα +​ 1 is necessary to allow items 
of zero degree (every item is introduced in the system with zero degree) to gain their first links. Multiple links 
between a given user and an item are not allowed.

Note that two consumer groups—innovators and imitators—are assumed also by the Bass model18 which 
constitutes a seminal model for the diffusion of innovations. However, the original Bass model does not consider 
competition among the items and the link between an item’s final popularity and its properties. Because of its 
focus on individual items, the Bass model cannot reproduce persistent discovery patterns and thus we do not use 
it here to model the discovery patterns found in real data.

Results on model data.  Simulation results for the artificial model are presented in Fig. 4. Panel A shows 
that when a significant number of users are sensitive to item fitness (here UF =​ 600), there is considerable corre-
lation between between item fitness and popularity in the resulting networks. As UF decreases, this correlation 
gradually vanishes because we assume that the popularity-sensitive users ignore item fitness. As shown in panel 
B, the distribution of item popularity is indeed rather broad and displays a power-law tail when UF is positive 
which agrees with the approximate analytical solution in SM. Panel C demonstrates that when UF is positive, user 
surprisal computed in model data differs from the bootstrap surprisal profile in the same way as we have shown in 
Fig. 2 for the real data. The number of identified discoverers as a function of the number of fitness-sensitive users 
is displayed in panel D. The dependence is notably non-monotonous. When UF is small, the correlation between 
item fitness and popularity is low and many of the popular items that are used to assign discoveries are thus of low 
fitness; the fitness-sensitive users thus fail to achieve many discoveries and the resulting UD is close to zero. As UF 
grows, the fitness-popularity increases and so does UD but eventually, there number of fitness-sensitive users is 
too large for the number of available discoveries and UD declines. For intermediate values of UF, the numbers of 
identified discoverers are significant and we can thus conclude that the proposed simple model is able to repro-
duce the discovery patterns observed in real data. The observed fraction UD/U which gets as high as 0.03% at 
UF =​ 300 is similar to that found in the Amazon data.

Note that the groups of fitness-driven users and discoverers are in general not the same. While in the current 
setting, all discoverers identified using the proposed statistical framework are fitness-driven, only a small fraction 
of fitness-driven users are identified as discoverers (in Fig. 4D, for example, UF =​ 600, yet U 10D ). There are 
various reasons why a fitness-driven user does not become a discoverer: the user is not active enough, or by 
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chance becomes active at moments when there are no relevant items (that is, little popular high-fitness items) 
available and hence no discoveries can be made, or simply fails to connect with the available relevant items 
because of the probabilistic network growth mechanism. The fact that discoverers are found in the model data is 
thus not automatic and the number of statistically significant discoverers depends strongly on model 
parameters.

It has been demonstrated that in real systems, the popularity of items is path-dependent and sensitive to sys-
tem design and possible external factors38,39 which questions the choice of the most popular items as the items 
for which discoveries are awarded to the users. The analysis of model data allows us to return to this important 
point equipped with better understanding of both the statistical procedure and the systems on which it is applied. 
Despite the fact that the correlation between item fitness and popularity is far from perfect (see Fig. 4A), we find 
discoverers in the model data and it can be verified that almost all of them are indeed fitness-sensitive users. This 
high robustness of the model to a sub-optimal choice of relevant items is due to the fact that when some popular 
items are actually of low-fitness, fitness-sensitive users simply ignore them. By contrast, the popularity-sensitive 
users gain some discoveries for these inferior popular items but since these users are typically in majority by a 
wide margin, the limited number of discoveries that distributes among them is not sufficient to yield significant 
surprisal values. An imperfect choice of the relevant items thus reduces the useful signal for discoverer identifica-
tion, yet it creates only a weak false signal for popularity-sensitive users.

Discussion
In this article, we introduce discoverers as the users in data from real systems who significantly outperform the 
others in the rate of making discoveries, i.e. in being among the first ones to collect items that eventually become 
very popular. We develop a statistical framework to identify the discoverers and use it to demonstrate that they 
can be found across a number of online systems where users have the freedom to choose from a large number 
of possible items. The proposed approach is suitable to any data with time information. Evidence for discovery 
behavior in monopartite networks (work in progress) shows that our approach is applicable and relevant to an 
even broader range of systems than those studied here. The ability to identify the discoverers is shown beneficial 
for predicting the future popularity of items as well as for ranking the users.

We stress again that the classical concepts of social leaders or innovators who have high social status or are 
well positioned in the social network, extensively studied in the past17,18,21,22, do not provide an explanation for 
the presence of discoverers who do not share any advantageous or privileged social position and achieve discov-
eries consistently over time. Our work demonstrates the presence of discoverers in social systems and at the same 
time calls for a deeper understanding of their behavior and roles. To quantify the level to which a user’s discovery 
performance is due to some external influence (such as the above-mentioned Amazon Vice program) is just one 
of the steps towards understanding the phenomenon of discoverers.

Figure 4.  User surprisal and discoverers in artificial model networks. (A) The relation between item 
fitness and popularity as well as the cumulative distribution of item popularity (UF =​ 600). (B) Item degree 
distributions for various values of UF. (C) The plot of user surprisal in artificial data (UF =​ 0, 600) and in 
bootstrap (this curve is independent of UF). (D) The dependence of the number of discoverers identified by the 
proposed statistical procedure on UF/U. For comparison, we also show here results for 2,000 users and 4,000 
items.
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Motivated by the generality of the observed phenomenon and a lack of direct ways for an individual to influ-
ence other users in the systems studied here, we search for a general mechanism to model the discovery behavior. 
To this end, we generalize the preferential-attachment network growth model with fitness and aging5 by assuming 
that not only the item nodes differ in their fitness but also the user nodes differ in their sensitivity to item fitness. 
In the model data, fitness-sensitive users recognize the high fitness items, collect them, and these items then 
often eventually become very popular due to their high fitness. While the model reproduces the discovery pat-
terns found in the real data, we emphasize that the main goal of the model is to show that the reported discovery 
patterns can be modeled based on a small variation of the existing network growth models. A comprehensive 
quantitative and qualitative analysis of various possible reasons for the presence of discoverers in real data as well 
as a study of model formulations that best agree with real data remain as future research challenges.

Materials and Methods
The bootstrap analysis.  To evaluate whether a user’s discovery behavior is compatible with the null 
hypothesis, we use parametric bootstrap29. Using the discovery probability pD, we generate the number of discov-
eries under H0 for each user according to Eq. (1), compute the corresponding bootstrap surprisal value, and 
consequently compute the largest bootstrap surprisal value found for any of the users. By repeating this procedure 
many times, we find the average largest surprisal value in bootstrap SB

max  (we use 10,000 independent bootstrap 
realizations to compute this average; the more realizations, the more precise the estimate). Any user whose real 
surprisal is higher than this value is referred to as discoverer; the number of discoverers is labeled as UD. Bootstrap 
surprisal values are further used for comparison with real user surprisal values in Fig. 2.

Data description.  To properly detect discoverers in a given dataset, we need to avoid the items that have 
actually appeared before the dataset’s start. The reason for this is that if such an item is selected as the target item, 
we award users who collect it first with discoveries despite the fact that the item has existed before. To prevent 
that, we always select a subset of the given dataset by specifying its start and end point, and discard the items that 
have appeared before the subset’s start point. When the start point is sufficiently “late”, old items effectively do not 
appear in the subset. Since the observed discovery patterns are robust with respect to the data (see SM, Figure S4), 
the precise choice of the start and end point does not alter the results qualitatively. Properties of the used subsets 
are summarized in Table 1.

Amazon.com is a leading online retailer. We obtained the Amazon DVD review data from snap.stanford.edu/
data/web-Movies.html40. After data cleaning (merging distinct items which actually correspond to the same prod-
uct—different releases of a DVD are the typical example of this phenomenon—and removing duplicate reviews), 
there are 1,901,110 reviews in the integer scale 1–5 from 889,066 users for 141,039 items. While the data span 
5,546 days (August 1997-October 2012), we only use the data from days 2,000 to 5,000 because the rest of the data 
shows comparably low activity of users. To obtain an unweighted bipartite network, we neglect all reviews with 
rating 3 or less and represent all reviews with rating 4 or 5 as links between the corresponding user and item. After 
this operation, there are 713,581 links whereas 406,275 users and 76,205 items have at least one link.

Delicious.com is a web site that allows users to store, share, and discover web bookmarks. Delicious bookmark 
collections were obtained by downloading publicly-available data from the social bookmarking website delicious.
com in May 2008. Due to processing speed constraints, we randomly sampled 50% of all users available in the 
source data and included all their bookmarks. To avoid the possible ambiguity of various web addresses pointing 
to the same web page, reduce the number of items and thus increase the data density, bookmarks are represented 
only by their base www-address without the initial protocol specification, possible leading “www.” and the trailing 
slash (e.g., http://www.edition.cnn.com/US/ is modified to edition.cnn.com); each www-address is then repre-
sented as an item-node and connected with the users who have collected it. Time stamps are counted in hours 
from 01/09/2003 and run from 0 to 36,027. For the same user activity reasons as in Amazon, we only use the data 
from hours 15,000 to 35,000. There are 107,810 users, 2,435,912 items and 9,322,949 links in the resulting data. 
We have analyzed also data where the full address hierarchy is preserved (e.g., edition.cnn.com/US instead of the 
previously mentioned edition.cnn.com) and found the same behavior as presented here.

Epinions.com is a consumer review web site. We obtained the Epinion data from konect.uni-koblenz.de/net-
works/. The original data comprise 120,492 users, 755,760 items and 13,668,320 ratings. Time span of the data is 
from 9 January 2001 to 29 May 2002. In the raw data, the time stamps exhibit a periodic pattern with respect to 

Dataset Users Items Links Time span ki Ki αk Kα kD
Amazon 406,275 76,205 713,581 3,000 days 1.8 1,296 9.4 790 127

Delicious 107,810 2,435,912 9,322,949 20,000 hours 86.5 6,582 3.8 7,014 40

Epinions 17,542 32,482 753,392 499 days 42.9 5,809 23.2 508 154

Keyword 1,523 915,271 2,824,853 40,360 hours 1855 23,775 3.1 227 32

Movielens 44,548 7,974 2,132,128 82,624 hours 47.9 2,419 267 18,858 3,852

Netflix 115,131 7,351 2,775,772 1,000 days 24.1 959 378 26,700 8,256

Table 1.   Basic properties of the studied datasets. The time span column specifies both duration and time 
resolution of the datasets. ki  and αk  are the mean user and item degree, respectively. Ki and Kα are the largest 
user and item degree, respectively. kD is the smallest degree upon which an items is considered as one of items 
that are to be discovered when fD =​ 1%.

http://www.edition.cnn.com/US/
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link order. In addition, many links appear at the starting day of the data. To avoid these two problems, we use only 
links ranked from 12,276,827 to 13,213,749 in the original data. Since ratings are in the integer scale from 1 to 5, 
we apply the same threshold mechanism as in the Amazon data. The final subset contains 17,542 users, 32,482 
items and 753,392 links. Time span of the subset is from 16 January 2001 to 29 May 2002 (499 days in total).

Taobao.com is the biggest Chinese e-commerce platform. The produce keyword data were crawled from the 
web site via its open API. On Taobao.com, vendors can use keywords to describe their products and well-chosen 
keywords can contribute to their products being ranked at the top of customers’ search results. Vendors have to 
pay a price for using keywords and the price of a keyword depends on the keyword’s popularity—vendors thus 
have an incentive to invent new keywords or early adopt already existing keywords. The data comprise 2,824,853 
links between 1,523 online retailers and 915,271 keywords that they attached to their products. Time span of the 
data is from 12 November 2009 to 21 June 2014 (40,360 hours in total).

Movielens.org is a non-commercial web site with personalized movie recommendations. We obtained the 
Movielens data from grouplens.org/datasets/movielens/. The original data comprise 10,000,054 ratings from 
71,567 users to 10,681 movies in the online movie recommender service MovieLens. Since ratings are in the 
integer scale from 1 to 5, we apply the same threshold mechanism as in the Amazon data. Time span of the data is 
from January 1995 to January 2009 (122,634 hours in total). We use the subset from hour 40,000 until the end of 
the data. The final subset contains 2,132,128 links between 44,548 users and 7,974 items.

Netflix is an international DVD rental and on-demand media streaming provider. Netflix DVD rating data 
were made available for the Netflixprize contest and can be still downloaded from www.netflixprize.com/. The 
original data comprise 100,481,826 ratings from 480,189 users to 17,770 movies in the online DVD rental web-
site Netflix. Since ratings are in the integer scale from 1 to 5, we apply the same threshold mechanism as in the 
Amazon data. Time span of the data is from January 2000 to January 2006 (2242 days in total). We use the subset 
from day 500 to day 1,500 to constraint the data size. The final subset contains 2,775,772 links between 115,131 
users and 7,351 items.

Evaluation of future degree evolution.  We choose subsets of time span TS by choosing their starting 
time TX at random from the range [0, TW −​ TS −​ TF) where TW is the time span of the whole dataset and TF is the 
length of the future time window, over which we observe the future degree increase of items. A given subset is 
then used to compute surprisal of all its users. We further choose all items that have received exactly one link and 
they have appeared at most τmax before the subset’s end time (this represents young and yet unpopular items) as 
items of interest. We then track all links that are attached to the items of interest in the future time window of 
length TF (i.e., these links are not part of the subset which was used to compute user surprisal values). This allows 
us to compute the average degree of these items as a function of time. Results are further averaged over 100 sub-
sets defined by their TX value.

We use the subset parameter values TS =​ 2,000 days, TF =​ 300 days, and τmax =​ 20 days for the Amazon data 
and TS =​ 300 days, TF =​ 100 days, and τmax =​ 2 days for the Delicious data, which accounts for different dynamics 
of these two systems. While the chosen values influence the detailed shape and relative heights of the curves 
reported in Fig. 3, the main result that the items collected by high surprisal users become on average more popu-
lar than the items collected by users of zero or low surprisal holds always.
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